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Abstract. In this article, we introduce the concepts of �-polar fuzzy (�PF) detour �-
boundary nodes and �PF detour �-interior nodes within �-polar fuzzy graphs (�PFGs). 
We explore their significance and examine their properties. Furthermore, we establish a 
relationship between �PF detour �-boundary nodes and �PF cut vertices. Utilizing the 
notion of maximum �PF spanning trees, we define �PF detour �-boundary nodes and 
� PF detour � -interior nodes in � PF trees. Additionally, we investigate the 
characteristics of �PF complete vertices, �PF detour �-interior nodes, and �PF detour 
�-boundary nodes. Finally, we provide applications of these concepts. 
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1. Introduction 
In real life, graph theory is immensely utilized in various fields, including artificial 
intelligence, operations research, signal processing, network routing, robotics, electrical 
engineering, medical science, computer science, etc. In 1965, Zadeh [37] replaced the 
classical set with a fuzzy set which gives better exactness in both theory and application. 
In 1975, Rosenfeld [32] initiated the concept of a fuzzy graph and in various fields, it has 
various applications. The concept of �PF sets was established by Chen et al. [1] in 2014. 
Based on this concept, Ghorai and Pal [13] defined �PFG and Presented several new 
results. Ghorai and Pal [14, 16, 10, 15, 12] studied several new results, theories and 
applications on � -polar fuzzy graphs. Then Singh [21] defined m-polar fuzzy graph 
representation using the concept of a lattice. Several new results on �-polar fuzzy graphs 
are studied by Singh [22, 23] and he defined a new result on the bipolar fuzzy graph in the 
references [25, 26, 24]. The idea of a strong arc in a fuzzy graph was given by Bhutani and 
Rosenfeld [3] and Mathew and Sunitha [29] defined different types of arcs in a fuzzy graph. 
The notion of a bridge, trees, cycles, cut node, and end node was introduced by Rosenfeld 
[32]. The concepts of strength of connectedness in �PFG, �PF tree, and �PF cut node 
are established by Mandal et al. [28]. Different types of fuzzy graphs with operations and 
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applications are explained in the references [27, 34]. Rashmanlou et al. [30, 31] presented 
some work on bipolar and interval-valued fuzzy graphs. Samanta and Pal defined fuzzy 
planar graphs [35]. Ghorai and Pal investigated the isomorphic properties of �-polar fuzzy 
graphs [16]. The other interesting papers related to this work are [40-44]. 

Linda and Sunitha [17] gave the concept of fuzzy detour �-distance. Rosenfeld 
and Bhutani [3] established the notion of �-distance in a fuzzy graph. Linda and Sunitha 
[18] founded the notation of � -boundary node, � -interior node, � -eccentric node. 
Sameena and Sunitha [33] gave a characterization of �-self centred fuzzy graph. The 
length of the longest 
 − � path in a connected fuzzy graph �  is the detour distance 
between two nodes 
 and � defined in [6]. Chartrand [9] defined the main concept of the 
detour centre of a graph. The notion of detour number, detour set, detour nodes, and detour 
basis in a graph was established by Chartrand et al. [8]. Interior nodes and boundary nodes 
are discussed in [7]. In this paper, we introduced �PF detour �-distance, �PF detour �-
interior node, �PF detour �-boundary node and explained their relations. Also, some 
properties of these parameters are investigated. For more definitions, terminologies and 
applications of the fuzzy graph, the reader may consult the book [20].  

 
2. Preliminaries 
Firstly, we define �PFGs and other related terms. 

In this paper, for a natural number �, �-power of [0,1] or [0,1]� is considered 
as a poset with point-wise order ≤. “≤" is defined by 
� ≤ �� ⇔ ��(
�) ≤ ��(��) for 
each � = 1,2, … , �, where 
�, �� ∈ [0,1]�  and ��: [0,1]� → [0,1] be the �th projection 
mapping. 

 
Definition 2.1. [11] An �-polar fuzzy graph ( �PFG) of a graph �∗ = (#, $) is a pair 
� = (#, %, &) where &: #'( → [0,1]� and %: # → [0,1]� are an �PF set in #'(  and an 
�PF set in # respectively such that �� ∘ &(*, +) ≤ ��,{�� ∘ %(*), �� ∘ %(+)} for all 
(*, +) ∈ #'( , for each � = 1,2, … , � and &(*, +) = 0 for all (*, +) ∈ (#'( − $), (The 
smallest element in [0,1]� is 0 = (0,0, … ,0)).  

 
Figure 1: A 2PFG 

  
Definition 2.2. [10] If an �PFG � = (#, %, &) satisfies the relation  

 �� ∘ &(
, /) = ��,{�� ∘ %(
), �� ∘ %(/)}, 012 *44 
, / ∈ #, � = 1,2,3, … , �. 
 

Definition 2.3. [28] A path 7� = 89, 8', … , 8: = 8� in �PFG G is said to be an �PF 
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path if this path satisfies the relation �� ∘ &(8;, 8;<9) > 0, (> = 1,2, … , , − 1) for at least 
one � and all the vertices are distinct except 89 which may be the same as 8:.  

 
Definition 2.4. [28] The strength of the �PF path ?: 7� = 89, 8', … , 8: = 8� in �PFG 
� is defined as  

 @(?) = (&9
:(7�, 8�), &'

:(7�, 8�), … , &�
: (7�, 8�)), 

where, &A
:(7�, 8�) = min

9E�F;E:
(�A ∘ &(8� , 8;)), G = 1,2, … , �. 

HIJJK(7�, 8�)  is the strength of connectedness between 7�  and 8�  and is 
defined as  

 HIJJK(7�, 8�) = ((max
:∈N

(&9
:(7�, 8�)), (max

:∈N
(&'

:(7�, 8�)), … (max
:∈N

(&�
: (7�, 8�))). 

 
Definition 2.5. [28] An �PFG is said to be �PF connected graph if (�� ∘
&(*�, +�))O > 0, for at least one � = 1,2,3, … , �.  

 
Definition 2.6. [28] A 7� − 8� path ?: 7� = 89, 8', … , 8: = 8� in �PFG � is said to 
be a strongest �PF 7� − 8� path if @(?) = HIJJK(7�, 8�).  

 
 

Definition 2.7. [28] An edge (*�, +�) of an �PFG � is said to be strong �PF arc if 
&(*�, +�) ≥ HIJJKQ(RS,TS)(*�, +�).  
 
Definition 2.8. [28] A path ?: 
 = 
9, 
', … , 
: = � from 
 to � is called strong �PF 
path if (
� , 
�<9) is strong �PF arc for all 1 ≤ � ≤ , − 1.  
 
Definition 2.9. [28] A vertex � is an �PF cut vertex of � if removing it from � 
reduces the connectedness strength between some other pair of nodes �.  
 
Definition 2.10. [28] An �PFG � is called an �PF tree if it has a spanning �PF 
subgraph U′ which is an �-polar F-tree and such that for all �, �� ∘ &′(
, �) = 0 
implies �� ∘ &(
, �) < �� ∘ HIJJX�(
, �).  

 
Definition 2.11. A maximum spanning �PF tree of a connected �PFG � = (#, %, &) 
is an �PF spanning subgraph Y of �, which is a � polar F-tree, such that 
HIJJK(7, 8) is the strength of the unique strongest 78 �PF path in Y for all 7, 8 ∈
�.  

 
3. �PF detour �-boundary node and �PF detour �-interior node of an �PFG 
In this section, we defined �PF detour � boundary node and �PF detour � interior node 
of an �PFG � and discussed some results on these nodes. 

 
Definition 3.1. A node G in a connected �PFG � is an �PF detour � boundary node 
of a node 4 if �?Z[\(4, G) ≥ �?Z[\(4, >) for each > in �, where > is a neighbor of G. 
The set of all �PF detour � boundary nodes of 4 symbolized as �?Z[\&(4). The set of 
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all �PF detour � boundary nodes of �, Symbolized as �?Z[\&(�). 
  

Example 3.2. For the connected �PFG � shown in Figure 1, �?Z[\&(*) = {], �}, 
�?Z[\&(+) = {*, 0, �}, �?Z[\&(]) = {*, �, 0}, �?Z[\&(^) = {*, ], �, 0}, 
�?Z[\&(_) = {*, 0, �}, �?Z[\&(�) = {*, ], 0},�?Z[\&(0) = {*, �}. Here *, ], 0, � 
are the �-polar detour �- fuzzy boundary nodes of �.  

 
 Figure 2:  Connected 3PF graph � with boundary nodes {*, ], 0, �}. 
  

Definition 3.3. The set of all neighbors of 7 is symbolized as J�`a(7) and the set of all 
strong �PF neighbors of 7 is symbolized as J�`ab(7).  

 
Definition 3.4. If an �PF subgraph formed by a strong �-polar neighbor of a node * in 
an �PFG �, form a complete �PFG then the node + is said to be a complete node of 
�.  

 
Theorem 3.5. A node in a complete �PFG is �PF detour � boundary node of every 
other node if and only if the node is complete.  
Proof: Let a node 4 be a node in a connected �PFG � and 4 be a complete node. Let G 
be another node of �. Each arc in � is strong, because of the completeness of �. So 
�?Z[\(G, 4) = , − 1 = �?Z[\(G, c), ∀c ∈ J(4). Then 4 ∈ �?Z[K&(*). 

Conversely, let 4 be an �PF detour � boundary node of every other node. Then 
each arc in �  is strong, because of the completeness of � . Then �?Z[\(G, 4) = , −

1, ∀G ∈ � . So all neighbors of 4  are strong. Hence by Definition 4.3, the node 4  is 
complete. 

 
Theorem 3.6. If a node in a connected �PFG � is a complete vertex, then the vertex is 
an �PF detour � boundary node of every other node.  
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Proof: Here a node 4 is a complete node in a connected �PFG �. If G is another node of 
�. Assume that G = 4e, 49, … , 4AQ9, 4A = 4 be a G − 4 �PF �-detour and ] ∈ J�?Z@(+). 
Here two cases will arise: 
 
Case 1: If ] = 4AQ9, then �?Z[\(G, ]) ≤ �?Z[\(G, 4). Hence, 4 is a �-polar detour 
�-fuzzy boundary node of G. 
Case 2: If ] ≠ 4AQ9, since ] is a strong neighbor of 4, an arc (], 4AQ9) is a strong �PF 
arc and also ] ≠ 4AQ9. So the length of a path G = 4e, 49, … , 4AQ9, ], 4A = 4 is greater than 
than the length of a path G = 4e, 49, … 4AQ9, 4A = 4. That is �?Z[\(G, ]) ≤ �?Z[\(G, 4). 
Hence, 4 ∈ �?Z[\&(G). 

 
Remark 3.7. The converse of the above theorem may not be true. For example, consider 
the �PFG of Figure 3. We see that c is an �PF detour g boundary node of every other 
node, but c is not a complete node. 

                                   
Figure 3: Connected �PFG �. 

  
Theorem 3.8. A connected �PFG � is an �PF tree iff � is �PF detour � graph.  
Proof: Between any two nodes in �PF tree �, there is exactly one strong �PF path. So 
�?Z[\(4, G) = �?Z[\(4, G) for any two vertices 4, G in �. Hence, � is �PF �-detour 
graph. 

Conversely, let �  be an � PF � -detour graph, which has ,  nodes. Then 
�?Z[\(4, G) = �?Z[\(4, G) for any two nodes 4, G in �. If , = 2 then � is an �PF 
tree. 

Let , ≥ 3. If � is not an �PF tree. So two nodes *, + are exist in � for which 
there is at least two strong �PF paths between * and +. Let &9 and &' be two * − + 
strong �PF paths. So, &9 ∪ &'  has a cycle H(c*�) in � . If the nodes � and h  are 
adjacent nodes in � , then we have �?Z[\(h, �) = 1  and �?Z[\(h, �) > 1 . This 
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contradicts the fact that �?Z[\(h, �) = �?Z[\(h, �). So, � is an �PF tree. 
 

Theorem 3.9. In an �PF tree �, a vertex 4 is an �PF detour � boundary node of � iff 
4 cannot be an �PF cut vertex of �.  
Proof: Suppose a node 4 in �PF tree � is an �PF detour � boundary node of a node � 
in �. If 4 is an �PF cut node of �. 

Let $ be an �PF maximum spanning tree (i@Y�`a(�)) in � and this tree is 
unique in �. Again since 4 is an �PF cut node that means 4 cannot be an internal node 
of $. Let � ∈ J�`.a.b(4) such that � does not lie on the �PF detour in $. Therefore, 
�?Z[\(h, /)  is the same when h, /  be any two nodes of $ . But �?Z[\(�, �) =

�?Z[\(�, 4) + �?Z[\(4, �) > �?Z[\(�, 4) . This contradicts the fact that 4 ∈

�?Z[\&(�). Therefore the node 4 cannot be an �PF cut node of �. 
Conversely, suppose 4 be not an �PF cut vertex of the �PFG �. So 4 is the end 

vertex of i@Y�`a(�), which is unique. Then 4 has a strong neighbor which is also unique 
[28]. So there does not exist any extension of any �PF �-detour for a node � to 4. Hence, 
4 ∈ �?Z[\(�). 

 
Definition 3.10. A node 4 in an �PFG � is an �PF end vertex of � if ℎ is only a 
strong �PF neighbour of 4, where ℎ ∈ �.  
 
Example 3.11. For the �PFG � in Fig. 1, the nodes *, 0, � are �PF end vertex of �.  
 
Theorem 3.12. A vertex * in an �PF tree � is an �PF detour � boundary node then 
+ is an �PF end node. Again if + is an �PF end node then * is an �PF detour � 
boundary node.   
Proof: Suppose *  is an belonging to �?Z[\&(+)  in an �PF tree � . Let $  be a 
i@Y�`a(�) in �, which is unique in � [28]. By Theorem 4.9, each node of � is an 
�PF cut vertex of � or an �PF end node of �. So by Theorem 4.9, * must be an �PF 
end node of �. 

Conversely, let *  be an �PF end vertex of an �PF tree � . Let $  be the 
i@Y�`a(�) of �. Then * is an �PF end node of $. Hence, * is not an �PF cut node. 
Therefore, by Theorem 4.9, * ∈ �?Z[\&(�). 

In a connected �PFG �, a node + lies between the nodes * and ] in the sense 
of �PF detour �-distance if �?Z[\(*, ]) = �?Z[\(*, +) + �?Z[\(+, ]). 

 
Definition 3.13. In a connected �PFG � , a node + is an �-polar detour � −fuzzy 
interior nodes if for each node * in � different from +, there is a node ] in � for which 
�?Z[\(*, ]) = �?Z[\(*, +) + �?Z[\(+, ]).  

 
Definition 3.14. The set of all � PF detour � -interior node of � , Symbolized as 
l,m�`ano

(�), form an �PF subgraph of �.  
 
Example 3.15. For the �PFG in Figure 1, l,m�`.a.no

(�) = {+, _, ^}.  
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Theorem 3.16. A node in a connected �PFG � is an �PF detour � boundary node of 
� iff the node cannot be an �PF detour � interior node of �.  
Proof: Let + ∈ �?Z[\&(*) in a connected �PFG �. If possible, let + ∈ l,m�`ano

(�). 

So there exists a node ] different from * and + such that + lies between * and ]. Let 
p: * = +9, +', … , + = +A , +A<9, … , +q = ]  be a * − ]  �PF � −detour and 1 < G < 4 . 
Then +A<9 ∈ J�`.a.b(+) , and this implies �?Z[\(*, +A<9) > �?Z[\(*, +) , so 
contradiction arise. Hence + ∉ �. 

Conversely, let the node + ∉ l,m�`ano
(�). Then a node * exists in � for which 

any node ]  different from +  and * , �?Z[\(*, ]) ≠ �?Z[\(*, +) + �?Z[\(+, ]) . 
Therefore, �?Z[\(*, h) ≤ �?Z[\(*, +) where h ∈ J�`.a.b(+). This implies that + is 
a �-polar detour �-fuzzy boundary node of *. 

 

                               
Figure 4: Connected �PFG �. 

 
Example 3.17. For the Connected �PFG � shown in Figure 3, �?Z[\&(/) = {7}, 
�?Z[\&(
) = {7}, �?Z[\&(�) = {7}, �?Z[\&(s) = {
, 7}, �?Z[\&(7) = {
}. 
Here 
, 7 are the �-polar detour �- fuzzy boundary nodes of �, but 
, 7 are not �-
polar detour �- fuzzy interior nodes of �. Again /, s, � are �-polar detour �- fuzzy 
interior nodes of � but they are not �-polar detour �- fuzzy boundary nodes of �. So if 
we consider any Connected �PFG, we can easily show that the above theorem is true.  
 
Theorem 3.18. A �PF end vertex of a connected �PFG � cannot be an �PF detour � 
interior node.  
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Proof: Let h be an �PF end node of an �PFG �. Then there is only one �PF strong 
neighbor of h. So there is no strong �PF �-detour for which + lies between * and ], 
where * and ] are two nodes of � and also different from +. Hence, + ∉ l,m�`ano

(�). 

 
4. Application 
Many problems in the real world involve multipolar information or multi-agents or multi-
objects. Here, we present an application of �PFG about how a person can reach his 
destination in a short time using the strong path. Compared to a fuzzy graph, �PFG gives 
more accurate and exact results for real problems. In modern days, if we go from one town 
to another, we usually use a car, train, bus, etc. The availability of buses or trains is not the 
same everywhere. When a person makes the same trip every day to work or school, this 
type of travelling is usually called commuting. Some people travel on their vacation to visit 
other states, cities or countries. If the communication system is good, then the journey will 
be good. This communication system depends not only on the economic condition but also 
on many other things, for example, infrastructure, environment, fire safety, security, etc. 
Again, if the economic system of a city is good, then the road condition is generally good. 

Here, we present a model of 3PFG, which is used to find the shortest strong path 
between two cities. Fig. 3 shows a model of the road network which is represented by a 
3PFG � = (#, %, &). Here the vertices stand for cities and each edge of � stands for the 
roads between two cities. Here six cities are considered and they are denoted as # =
{#t, #u, #v, #w, #', #9}. Then the membership value of every vertex depended on three 
criteria namely {environment, economic system,  

infrastructure} and the membership value of each road depended on three criteria 
namely {Transportation availability, traffic, roadlength} and these characteristics are 
uncertain. Using the relation &(7, 8) ≤ ��,{%(7), %(8)}  for all (7, 8) ∈ $ , we 
calculated Edge membership value and edge membership value represent the relation 
between two cities. 

 
Figure 5: 3PFG � corresponding to the communication between some towns. 

  
Suppose a person has started his/her journey from #9 and he/she wants to go the 

place #u. Then his first goal is to find the strong path between #9 and #u. And then he/she 
wants to find out the shortest path between those strong paths. So, he tries to find out the 
shortest strong path between #9 and #u for his safe journey. For the 3PFG � in Figure 
4, the arcs (#u, #v), (#v, #w), (#w, #t), (#u, #t), (#t, #'), (#', #9) are strong arcs. The paths 
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#9 − #' − #t − #w − #v − #u and #9 − #' − #t − #u are only two strong paths from #9 
to #u. So �?Z[\(#9, #u) = 5 and &. Z. ^\(#9, #u) = 3. So the path #9 − #' − #t − #u 
is the shortest strong path from #9 to #u. If a person wants to go from #9 to #u in the 
shortest path with the best communication system, then for him the path #9 − #' − #t −
#u will be the best route to go for his safe journey. 

 
5. Conclusion 
In this article, we have introduced �PF detour g-distance, �PF detour �-boundary nodes, 
�PF detour �-interior nodes in �PFGs and properties of these. We initiated theorems on 
�PF detour �-interior node, �PF detour �-boundary node, �PF cut node in �PFG, 
using maximum �PF spanning tree. We are extending our research work to define the 
connectivity index on the �-polar fuzzy graph and its properties and its applications on 
real-life problems etc. 
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