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Abstract. In this article, we introduce the conceptsmfpolar fuzzy (nPF) detourg-
boundary nodes anghPF detourg-interior nodes withinm-polar fuzzy graphafPFGs).
We explore their significance and examine theimpprties. Furthermore, we establish a
relationship betweemPF detourg-boundary nodes anthPF cut vertices. Utilizing the
notion of maximummPF spanning trees, we defimePF detourg-boundary nodes and
m PF detour g -interior nodes inm PF trees. Additionally, we investigate the
characteristics omPF complete verticesnPF detourg-interior nodes, ananPF detour
g-boundary nodes. Finally, we provide applicatiohthese concepts.

Keywords:. mPFG, mPF detourg-distance,mPF detourg interior node,mPF detour
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1. Introduction

In real life, graph theory is immensely utilized warious fields, including artificial
intelligence, operations research, signal procgssietwork routing, robotics, electrical
engineering, medical science, computer science,lett965, Zadeh [37] replaced the
classical set with a fuzzy set which gives betterceness in both theory and application.
In 1975, Rosenfeld [32] initiated the concept of a fuzesgh and in various fields, it has
various applications. The conceptmPF sets was established by Chen et al. [H(h4.
Based on this concept, Ghorai and Pal [13] defimd®FG and Presented several new
results. Ghorai and Pal [14, 16, 10, 15, 12] suidieveral new results, theories and
applications onm-polar fuzzy graphs. Then Singh [21] defined m-pdlazzy graph
representation using the concept of a lattice. ¢wew results omn-polar fuzzy graphs
are studied by Singh [22, 23] and he defined amswlt on the bipolar fuzzy graph in the
references [25, 26, 24]. The idea of a strongraecfuzzy graph was given by Bhutani and
Rosenfeld [3] and Mathew and Sunitha [29] defindféicknt types of arcs in a fuzzy graph.
The notion of a bridge, trees, cycles, cut nodd,erd node was introduced by Rosenfeld
[32]. The concepts of strength of connectednesal+G, mPF tree, andnPF cut node
are established by Mandal et al. [28]. Differemety of fuzzy graphs with operations and
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applications are explained in the references [2].,,Bashmanlou et al. [30, 31] presented
some work on bipolar and interval-valued fuzzy tpapSamanta and Pal defined fuzzy
planar graphs [35]. Ghorai and Pal investigatedsbiorphic properties ah-polar fuzzy
graphs [16]. The other interesting papers relatdflis work are [40-44].

Linda and Sunitha [17] gave the concept of fuzzipdeg-distance. Rosenfeld
and Bhutani [3] established the notiongistance in a fuzzy graph. Linda and Sunitha
[18] founded the notation of -boundary nodeg -interior node, g -eccentric node.
Sameena and Sunitha [33] gave a characterization-s#lf centred fuzzy graph. The
length of the longest — y path in a connected fuzzy grapghis the detour distance
between two nodes andy defined in [6]. Chartrand [9] defined the main cept of the
detour centre of a graph. The notion of detour nemntietour set, detour nodes, and detour
basis in a graph was established by Chartrand &]alnterior nodes and boundary nodes
are discussed in [7]. In this paper, we introdued@F detourg-distance,mPF detourg-
interior node,mPF detourg-boundary node and explained their relations. Atsome
properties of these parameters are investigatedmieoe definitions, terminologies and
applications of the fuzzy graph, the reader maysatirthe book [20].

2. Preliminaries
Firstly, we definemPFGs and other related terms.

In this paper, for a natural number, m-power of [0,1] or[0,1]™ is considered
as a poset with point-wise order. “<" is defined byx' <y’ & p;(x") < p;(y') for
eachi = 1,2,...,m, wherex',y’' € [0,1]™ andp;:[0,1]™ — [0,1] be theith projection
mapping.

Definition 2.1. [11] An m-polar fuzzy graph mPFG) of a graphG* = (V,E) is a pair
G = (V,A,B) whereB:V2 - [0,1]™ and A:V — [0,1]™ are anmPF set inV? and an
mPF setinV respectively such that; o B(a, b) < min{p; o A(a),p; e A(b)} for all
(a,b) € V2, for eachi = 1,2, ...,m and B(a,b) = 0 for all (a,b) € (V2 —E), (The
smallest element if0,1]™ is 0 = (0,0, ...,0)).

v1(0.3.0.5) (0.1,0.3)  49(0.1,0.3)

(0.3,0.5) (0,0.2)

v4(0.4,0.6) (0.3.0.5)  43(0.7.0.9)
Figurel: A 2PFG

Definition 2.2. [10] If an mPFG G = (V, 4, B) satisfies the relation
p; °c B(x,z) = min{p; c A(x),p; e A(2)}, forall x,z€ V,i = 1,2,3,...,m.

Definition 2.3. [28] A path u' = vy, v,, ..., v, = v’ in mPFG G is said to be amPF
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path if this path satisfies the relatign o B(v;, vj+1) > 0, (j = 1,2,...,n — 1) for at least
onei and all the vertices are distinct excagt which may be the same ags.

Definition 2.4. [28] The strength of thenPF pathP: u' = vy, vy, ...,v, = v’ in mPFG
G is defined as
S(P) = (Bf (W, v"), B3 (u',v"), ..., Bp (W', v")),

where, B} (u',v") = . m<1n Pk °c B(vy,v)), k = 1,2, ...,m.
<i<jsn

CONNg(u',v") is the strength of connectedness betweénand v’ and is
defined as

CONNg(w',v') = ((max(Bf' (W', v")), (max(B3 (w', v')), ... (max(By, (u', v'))).

Definition 2.5. [28] An mPFG is said to benPF connected graph ifp; o
B(a',b'))* > 0, for at least ond = 1,2,3, ..., m.

Definition 2.6. [28] A u’' — v’ path P:u' = vy, v,,...,v, = v' in mPFG G is said to
be a strongestnPF u' — v’ path if S(P) = CONN;(u',v').

Definition 2.7. [28] An edge(a’, b") of anmPFG G is said to be strongnPF arc if
B(a,, b,) 2 CONNG_(a”b’)(aI, b’)

Definition 2.8. [28] A path P: x = x4, x5, ..., x, = y from x to y is called strongmPF
path if (x;,x;4,) isstrongmPF arcforalll1 <i<n-—1.

Definition 2.9. [28] A vertexy is an mPF cut vertex of; if removing it fromG
reduces the connectedness strength between soarepathof nodes;.

Definition 2.10. [28] An mPFG G is called anmPF tree if it has a spanningtPF
subgraphH’ which is anm-polar F-tree and such that for all p; e B'(x,y) = 0
impliesp; e B(x,y) < p; e CONNy,(x, ).

Definition 2.11. A maximum spanningnPF tree of a connectethPFG G = (V, 4, B)
is an mPF spanning subgrapi of G, which is am polar F-tree, such that
CONN; (u, v) is the strength of the unique strongest mPF path inT for all u,v €
G.

3. mPF detour g-boundary node and mPF detour g-interior node of an mPFG
In this section, we definethPF detourg boundary node anthPF detourg interior node
of an mPFG G and discussed some results on these nodes.

Definition 3.1. A nodek in a connectednPFG G is an mPF detourg boundary node
of anodel if mPFD,(l, k) = mPFDy(l,j) for eachj in G, wherej is a neighbor ofk.
The set of allmPF detourg boundary nodes of symbolized asnPFDyB(l). The set of
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all mPF detourg boundary nodes of, Symbolized agPFDyB(G).

Example 3.2. For the connecteanPFG G shown in Figure 1mPFDyB(a) = {c, g},
mPFD,B(b) ={a, f, g}, mPFD;B(c) ={a,g,f}, mPFD4B(d) ={a,c,g,f},
mPFDyB(e) = {a,f,g}, mPFDyB(g) ={a,c, f},mPFD,B(f) = {a,g}. Herea,c, f, g
are them-polar detour g- fuzzy boundary nodes 6f

(0.3,0.4,0.6)
(0.6,0.7,0.9) .

l

(0.2,0.3,0.5) (0.7,0.8.1)

(0.4,0.5,0.7)

(0.6.0.7,0.9) (0.1.0.2,04)

®
(0.3,0.4,0.6) d (0.5.0.6.0.8)9
(0.7.0.8.1) (0.5.0.6,0.8) (0.6.0.7,0.9)
Figure2: ConnectedPF graphG with boundary node$a, c, f, g}

Definition 3.3. The set of all neighbors of is symbolized a&,,,pr (1) and the set of all
strong mPF neighbors ofu is symbolized a®/,,,prs(u).

Definition 3.4. If an mPF subgraph formed by a strong-polar neighbor of a node in
an mPFG G, form a completenPFG then the nodé is said to be a complete node of
G.

Theorem 3.5. A node in a completeiPFG is mPF detourg boundary node of every
other node if and only if the node is complete.

Proof: Let a nodel be a node in a connectedPFG ¢ and! be a complete node. L&t
be another node of. Each arc inG is strong, because of the completenesg& oo
mPFDy(k,l) =n—1=mPFDy(k,s),Vs € N(l). Thenl € mPFD;B(a).

Conversely, let be anmPF detourg boundary node of every other node. Then
each arc inG is strong, because of the completenes& offhenmPFD,(k,l) =n —
1,vk € G. So all neighbors of are strong. Hence by Definitiof.3, the nodel is
complete.

Theorem 3.6. If a node in a connectettPFG G is a complete vertex, then the vertex is
an mPF detourg boundary node of every other node.
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Proof: Here a node is a complete node in a connecta®FG G. If k is another node of
G. Assume thak = [y, 14, ..., l,_1, lx = | be ak — mPF g-detour andc € N,,,PFS(b).
Here two cases will arise:

Case 1. If ¢ =1,_q, thenmPFD,(k,c) < mPFD,(k,1). Hence,l is am-polar detour
g-fuzzy boundary node dk.

Case 2: If ¢ # [;_4, sincec is a strong neighbor df an arc(c,l;_,) is a strongnPF
arc and alsa # [,_;. So the length of a path = [y, 4, ..., [x_1, ¢, [ =L is greater than
than the length of a path = 1y, 1y, ... [y_1,lx = l. ThatismPFD,(k,c) < mPFD4(k,1).
Hence,l € mPFDyB (k).

Remark 3.7. The converse of the above theorem may not beRareexample, consider
the mPFG of Figure 3. We see thatis an mPF detour g boundary node of every other
node, buts is not a complete node.

T
(0.6,0.3.0.7) (0.8,0.5,0.9)

: (0.4,0.2,0.5) <

(0.4,0.2,0.5)
(0.6,0.4,0.7)
(0.3,0.1,0.4) o (0.7,0.4,0.8)
0.3,0.6)
€
p (0.3,0.1,0.4) r
(0.4,0.1,0.5) (0.8,0.5,0.9)

Figure 3: ConnectednPFG G.

Theorem 3.8. A connectednPFG G is anmPF tree iff G is mPF detourg graph.
Proof: Between any two nodes mPF treeG, there is exactly one strongPF path. So
mPFDy(l,k) = mPFDy(l, k) for any two verticed, k in G. Hence,G is mPF g-detour
graph.

Conversely, letG be anmPF g -detour graph, which haa nodes. Then
mPFDy(l,k) = mPFDy(l, k) for any two nodes, k in G. If n =2 thenG is anmPF
tree.

Let n = 3. If G is not anmPF tree. So two nodasg b are exist inG for which
there is at least two strongPF paths betweea andb. Let B, andB, be twoa — b
strong mPF paths. SoB;, U B, has a cycleC(say) in G. If the nodesp andq are
adjacent nodes irt;, then we havenPFD,(q,p) =1 and mPFD,(q,p) > 1. This
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contradicts the fact thahPFD,(q,p) = mPFDy(q,p). S0, G is anmPF tree.

Theorem 3.9. In an mPF tree G, a vertex! is an mPF detourg boundary node of iff
[ cannot be aimPF cut vertex of;.

Proof: Suppose a nodein mPF treeG is anmPF detourg boundary node of a nodg
in G. If [ isanmPF cut node of.

Let E be anmPF maximum spanning tred/6T,,p-(G)) in G and this tree is
unique inG. Again sincel is anmPF cut node that meariscannot be an internal node
of E. Let p € N,,,pr () such thatp does not lie on thenPF detour inE. Therefore,
mPFD,(q,z) is the same whem,z be any two nodes of. But mPFD,(g,p) =
mPFDy(g,1) + mPFDy(l,p) > mPFDy(g,l) . This contradicts the fact that e
mPFD,B(G). Therefore the nodé cannot be amPF cut node of:.

Conversely, supposk be not anmPF cut vertex of thenPFG G. Sol is the end
vertex of MST,,,pr(G), which is unique. Theid has a strong neighbor which is also unique
[28]. So there does not exist any extension of aRF g-detour for a nodey to [. Hence,
| € mPFDy(G).

Definition 3.10. A nodel in an mPFG G is anmPF end vertex of; if h is only a
strong mPF neighbour ofl, whereh € G.

Example 3.11. For the mPFG G in Fig. 1, the nodeg, f, g are mPF end vertex of:.

Theorem 3.12. A vertexa in an mPF tree G is an mPF detourg boundary node then
b is anmPF end node. Again ib is anmPF end node them is an mPF detour g
boundary node.

Proof: Supposea is an belonging tanPFD,B(b) in an mPF treeG. Let E be a
MST,,pr(G) in G, which is unique inG [28]. By Theorem4.9, each node of; is an
mPF cut vertex oz or anmPF end node of;. So by Theoren#.9, a must be ammPF
end node ofG.

Conversely, leta be anmPF end vertex of ammPF treeG. Let E be the
MST,,pr(G) Of G. Thena is anmPF end node of. Hence,a is not anmPF cut node.
Therefore, by Theorem.9, a € mPFDyB(G).

In a connectednPFG G, a nodeb lies between the nodes and ¢ in the sense
of mPF detourg-distance ifmPFDg(a,c) = mPFDy(a,b) + mPFD4(b, c).

Definition 3.13. In a connectednPFG G, a nodeb is an m-polar detour g —fuzzy
interior nodes if for each node in G different fromb, there is a node in G for which
mPFDg(a,c) = mPFDy(a,b) + mPFDy(b, c).

Definition 3.14. The set of allmPF detour g -interior node of G, Symbolized as
Intyprp, (@), form anmPF subgraph ofG.

Example 3.15. For the mPFG in Figure LIntmp rp,(G) = {b,e,d}.
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Theorem 3.16. A node in a connectedtPFG G is anmPF detourg boundary node of
G iff the node cannot be anPF detourg interior node ofG.

Proof: Let b € mPFD,B(a) in a connectednPFG G. If possible, leth € Intyprp, (G).
So there exists a nodedifferent froma andb such thath lies betweernu andc. Let
U:a = by, by, ...,b = by, bgiq,...,bp =c be aa—c mPF g —detour andl < k < [.
Then byi1 € Npprs(b) , and this impliesmPFDy(a, byy1) > mPFDy(a,b) , so
contradiction arise. Hende € G.

Conversely, let the node ¢ Intyprp, (G). Then a noder exists inG for which
any nodec different from b and a, mPFDy(a,c) # mPFDy(a,b) + mPFD4(b,c).
Therefore,mPFDy(a,q) < mPFDy(a,b) whereq € Nyprs(b). This implies that is
a m-polar detourg-fuzzy boundary node af.

(0.4,0.2,0.5) (0.8,0.6,0.9)
& (0.3,0.1,0.4) ¥

(0.5,0.3.0.6)

(0.4,0.2,0.5)

w

(0.8,0.6.0.9)

U

(0.7,0.5,0.8)
Figure4: ConnectednPFGG.

Example 3.17. For the ConnectechPFG G shown in Figure 3mPFD,B(z) = {u},
mPFDyB(x) = {u}, mPFD4B(y) = {u}, mPFDyB(w) = {x,u}, mPFDyB(u) = {x}.
Here x,u are them-polar detourg- fuzzy boundary nodes df, but x, u are notm-
polar detourg- fuzzy interior nodes of;. Again z, w,y arem-polar detourg- fuzzy
interior nodes ofG but they are noin-polar detourg- fuzzy boundary nodes @f. So if
we consider any ConnectedPFG, we can easily show that the above theoreras t

Theorem 3.18. A mPF end vertex of a connectedPFG G cannot be ammPF detourg
interior node.
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Proof: Let ¢ be anmPF end node of amPFG G. Then there is only onmPF strong
neighbor ofg. So there is no strongPF g-detour for whichb lies betweem andc,
wherea andc are two nodes off and also different fronb. Hence,b ¢ Intyprp, (@).

4. Application
Many problems in the real world involve multipolaformation or multi-agents or multi-
objects. Here, we present an applicationrnd?FG about how a person can reach his
destination in a short time using the strong pattmpared to a fuzzy grapmPFG gives
more accurate and exact results for real problemmodern days, if we go from one town
to another, we usually use a car, train, bus,Téte.availability of buses or trains is not the
same everywhere. When a person makes the samevéip day to work or school, this
type of travelling is usually called commuting. Sopeople travel on their vacation to visit
other states, cities or countries. If the commuiacesystem is good, then the journey will
be good. This communication system depends notamtize economic condition but also
on many other things, for example, infrastructemeyironment, fire safety, security, etc.
Again, if the economic system of a city is goodrthihe road condition is generally good.

Here, we present a model 8PFG, which is used to find the shortest strong path
between two cities. Fig. 3 shows a model of thel noatwork which is represented by a
3PFG G = (V, A, B). Here the vertices stand for cities and each efige stands for the
roads between two cities. Here six cities are ammed and they are denoted las=
Ve, Vs, Vo, V5, V5, Vi 3. Then the membership value of every vertex deptrate three
criteria namely{environment, economic system,

infrastructure} and the membership value of each road dependéutemcriteria
namely {Transportation availability, traffic, roadlength} and these characteristics are
uncertain. Using the relatioB(u,v) < min{A(u),A(v)} for all (w,v) €EE, we
calculated Edge membership value and edge mempevshie represent the relation
between two cities.

(0.7,1,0.8) (0.7.1,0.8)
Ve

(0.6.0.9,0.7) "

(0.3,0.6,0.4)

(0.5.0.8,0.6)

(0.6.0.9,0.7)V4 (0.4,0.7,0.5)

(0.6,0.9,0.7 . -
v, (0.4,0.7.0.5)

Vs (0.3.0.6,0.4) Va
(0.6,0.9.0.7) (0.5.0.8,0.6)

Figure5: 3PFG G corresponding to the communication between somago

Suppose a person has started his/her journey Wornd he/she wants to go the
placeVs. Then his first goal is to find the strong pattweenV; andVs. And then he/she
wants to find out the shortest path between thtyeag paths. So, he tries to find out the
shortest strong path betwe&n and Vs for his safe journey. For th&PFG G in Figure
4, the arcqVs, V), (V4, V3), (V5, Ve), (Vs, Vi), Vs, V), (V,, V) are strong arcs. The paths

88



A Study onm-polar Fuzzy Detoug-Boundary Node andh-polar Fuzzy Detoug-Interior
Node of arm-polar Fuzzy and Application

Vi—=-V,—Vy—V53—-V,— Vs andV; — V, — V, — Vs are only two strong paths froi}
to Vs. SomPFDy(V,,Vs) =5 andB.F.d,(V4,Vs) = 3. So the pathV; —V, — Vg — Vs
is the shortest strong path fro to Vs. If a person wants to go froly to Vs in the
shortest path with the best communication systaen for him the path; — V, — V¢ —
Ve will be the best route to go for his safe journey.

5. Conclusion

In this article, we have introducedPF detoug-distance,mPF detourg-boundary nodes,
mPF detourg-interior nodes inrmPFGs and properties of these. We initiated theormms
mPF detourg-interior node,mPF detourg-boundary nodemPF cut node inmmPFG,
using maximummPF spanning tree. We are extending our research tgodefine the
connectivity index on then-polar fuzzy graph and its properties and its ajagibns on
real-life problems etc.
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