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Abstract. In this paper, we study the Successive Over-Relaxation (SOR) method to solve a 
fuzzy system of linear equations (FSLE). This method which is followed by the 
convergence theorem is discussed in detail and the useful iteration scheme is derived. The 
applicability of this iteration scheme is shown through supporting theorems and some 
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1. Introduction 
Systems of linear equations have a major contribution in various fields such as 
mathematics, physics, statistics, economics, engineering and social sciences. Since in many 
applications at least some of the system’s parameters and measurements are represented by 
fuzzy numbers rather than crisp numbers, it is important to develop mathematical models 
and numerical procedures that would appropriately treat general fuzzy linear systems and 
solve them. Fuzzy systems of linear equations with crisp coefficients and fuzzy right-hand 
side vectors are mathematical models that combine crispness and fuzziness in a linear 
system of equations. The presence of fuzziness in the right-hand side vector introduces 
uncertainty and imprecision into the problem, making it more challenging to solve. 
Traditional methods for solving crisp linear systems are not directly applicable to fuzzy 
systems. 

The concept of fuzzy numbers and arithmetic operations with these numbers was 
first introduced and investigated by Zadeh. Dubois and Prade investigated various 
operations on fuzzy numbers. A general model for solving an � × � FSLE in which the 
coefficient matrix is crisp and the right-hand side is an arbitrary fuzzy number vector was 
first proposed by Friedman et al. [1]. Allahviranloo [3, 5] investigated various numerical 
methods for solving FSLE, which are based on numerical iterative methods such as 
Jacobi’s method, Gauss-Seidal’s method and the SOR method. Senthilkumar and 
Rajendran [12] proposed some algorithms to solve fuzzy linear systems. Inearat and 
Qatanani [10] discussed the efficiency of fuzzy solutions in these iterative methods. 
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Different authors have investigated and invented different procedures to solve 
fuzzy systems of linear equations. Cong-Xing and Ming [7] introduced the embedding 
method for fuzzy number space. Friedman et al. [1, 8, 15] proposed a general model to 
solve a fuzzy system of linear equations by using this embedding approach. Wang et al. 
invented an iterative method for solving a system of linear equations of the form � = �� +�. Asady et al. developed different methods of a general fuzzy system using embedding 
concepts. Vroman et al. [17] solved the general fuzzy linear systems using a parametric 
form of a fuzzy number. Ezzati [20] developed a new method for solving fuzzy linear 
systems by using the embedding method and replaced a � × � fuzzy linear system with 
two � × � crisp linear systems. Dehghan and Hashemi [9] investigated various iterative 
methods for solving FSLE. For fuzzy linear systems, Wang and Zheng [18] developed 
block iterative methods and Miao et al. [13] developed block SOR methods. 

In this paper, we focus on developing a solution methodology for fuzzy systems of 
linear equations using the Successive Overrelaxation (SOR) method. The SOR method is 
an iterative numerical technique commonly used for solving crisp linear systems of 
equations. This paper aims to extend the applicability of the SOR method to solve fuzzy 
systems of linear equations and provide an efficient and accurate solution. To do so, 
theoretical and conceptual assistance are taken from various textbooks [2, 4, 21]. By 
addressing the challenges posed by fuzziness in the right-hand side vector, we strive to 
provide an effective and efficient solution that can enhance the analysis and decision-
making processes in fuzzy systems. 

The paper is organized as follows. In Section 1, we introduce the paper and its 
objective. In Section 2, we recall the preliminary concepts required to develop the result. 
In Section 3, we discuss the SOR Method in the crisp system of linear equations and the 
implementation of the SOR Method in FSLE to derive the proposed iteration scheme. In 
Section 4, we illustrate some numerical examples by using this iteration scheme, varying 
degrees of fuzziness and system sizes. At last in Section 5, we discuss the conclusion of 
this paper. 

 
2. Preliminaries 
In this section, we recall the basic notations of fuzzy numbers, their arithmetic operations, 
triangular fuzzy numbers, fuzzy systems of linear equations, and some theorems and 
concepts related to them. We start by defining the fuzzy number. 

2.1. Fuzzy number 
A fuzzy number is a fuzzy set defined on the set of real numbers ℝ like �: ℝ → �0,1� 
which satisfies: 

1. � is upper semi-continuous, i.e., for a chosen � > 0 there exists � > 0 such that ���� − ����� < � whenever |� − ��| < �, ∀�, �� ∈ ℝ, 

2. � is fuzzy convex, i.e., ��!� + �1 − !�"� ≥ $%�{����, ��"�}, ∀�, " ∈ ℝ, ! ∈�0,1�, 
3. � is normal, i.e., there exists �� ∈ ℝ for which ����� = 1, 

4. (�))��� = {� ∈ ℝ: ���� > 0} is the support of u, and its closure *+,(�))���- is 
compact. 
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Parametric form of a fuzzy number 

The parametric form of a fuzzy number � is an ordered pair ,�, �- of the functions .��/�, ��/�0, 0 ≤ / ≤ 1, which satisfies the following requirements: 

1. ��/� is a bounded monotonically increasing left continuous function over �0,1�, 
2. ��/� is a bounded monotonically decreasing left continuous function over �0,1�, 
3. ��/� ≤ ��/�, 0 ≤ / ≤ 1 

For example, the fuzzy numbers �1 + 2/, 4 − /� is shown in Figure 1. A crisp number 2 
is simply represented by ��/� = ��/� = 2, 0 ≤ / ≤ 1. 

A fuzzy number 

Let 3 be the set of all real fuzzy numbers which are upper semi-continuous, normal, 
convex and compactly supported fuzzy sets. By appropriate, the fuzzy number space {��/�, ��/�} becomes a convex cone 3 which is isomorphically and isometrically into a 
Banach space. 

Triangular fuzzy number 
A triangular fuzzy number (TFN) is a fuzzy number which is denoted by a triplet, i.e., �4 = �5, 6, *� and it is defined by its membership function 789��� which is described as 
follows: 

789��� =
⎩⎪⎨
⎪⎧0, if  � < 5� − 56 − 5 , if  5 ≤ � ≤ 6* − �* − 6 , if  6 ≤ � ≤ *0, if  � > *

 

Triangular fuzzy number �5, 6, *� 

The graph of the membership function of a triangular fuzzy number is triangular as 
shown in Figure 2. 

Mean-spread representation of TFNs 
Triangular fuzzy number �4 = �5, 6, *� can also be written as �4 =< $, 2, ? >, where $ 
is the centre point or mean value, 2 and ? are called left and right spreads respectively. 
That is, 6 = $, 2 = 6 − 5, ? = * − 6. 

If 2 = ?, then TFN is called symmetric. 

Triangular fuzzy number in mean-spread representation 
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Conversion rule between various forms of TFN 
The triplet representation of a TFN �5, 6, *� can be written as the parametric form .��/�, ��/�0 = �5 + �6 − 5�/, * − �* − 6�/�, where / ∈ �0,1�. 
The mean-spread representation of a TFN can be written as the parametric form .��/�, ��/�0 = ,�$ − 2� + 2/, �$ + ?� − ?/-, where / ∈ �0,1�. 
Conversely, the parametric form of a TFN �5 + 2/, * − ?/�, where / ∈ �0,1�, can be written as the triplet representation �5, 5 + 2, *� or �5, * − ?, *�. The parametric form of the same can be written as the mean-spread 
representation < 5 + 2, 2, ? > or < * − ?, 2, ? >. 

Identification of a TFN from its parametric form 
The parametric form of a fuzzy number does not necessarily indicate it to be a TFN. 
Let �5 + 2/, * − ?/�, where / ∈ �0,1�, be the parametric form of an arbitrary fuzzy 
number. This fuzzy number will be considered to be a TFN if 2 + ? = * − 5. 

If 2 + ? ≠ * − 5, then this fuzzy number is not a TFN. 

Arithmetic of parametric TFNs 

Let � = .��/�, ��/�0 , " = A"�/�, "�/�B ∈ 3, / ∈ �0,1� and arbitrary C ∈ ℝ. Then 

1. � = " if and only if ��/� = "�/� and ��/� = "�/� 
2. � + " = A��/� + "�/�, ��/� + "�/�B 

3. � − " = A��/� − "�/�, ��/� − "�/�B 

4. C� = D.C��/�, C��/�0 ,ifC ≥ 0.C��/�, C��/�0 ,ifC < 0 

2.2. Fuzzy system of linear equations 
In a system of linear equations, fuzziness occurs in many different ways. The right-hand 
vector E may be fuzzy, along with coefficient matrix � and variable vector � are crisp. 
Alternately, � and E are fuzzy, � is crisp. � is fuzzy, � and E are crisp. All �, � and E are 
fuzzy matrices. An � × � linear system is �� = E or it can be written as 5FF�F + 5FG�G+. . . +5FI�I = "F,5GF�F + 5GG�G+. . . +5GI�I = "G,…5IF�F + 5IG�G+. . . +5II�I = "I,                                            (1) 

where the coefficient matrix � = ,5KL-, 1 ≤ %, M ≤ � is an � × � matrix, � =��F, �G, . . . , �I�N and E = �"F, "G, . . . , "I�N. Here we consider, � is a crisp matrix while � 



Solution of Fuzzy System of Linear Equations using Successive Over-Relaxation Method 

31 
 

and E are fuzzy matrices, where �K ∈ 3, "K ∈ 3 for 1 ≤ % ≤ �. This system of equations is 
referred to as a fuzzy system of linear equations. 

2.3. Solution Methodology of FSLE 

A fuzzy number vector ��F, �G, . . . , �I�N is given by �K = A�K�/�, �K�/�B, 1 ≤ % ≤ �, 0 ≤/ ≤ 1, is said to be a solution of the FSLE (1) if 

O 5KL
I

LPF �L = O 5KL
I

LPF �L = "L,
O 5KL

I
LPF �L = O 5KL

I
LPF �L = "L. 

Let us consider the %th equation of the system ([FSLE]) be: 
 5KF�F + 5KG�G + ⋯ + 5KK�K + ⋯ + 5KI�I = "K 
That is,5KF .�F, �F0 + 5KG .�G, �G0 +. . . +5KK .�K, �K0 +. . . +5KI .�I, �I0 = A"K�/�, "K�/�B 

Then we obtain: 
 5KF�F + 5KG�G+. . . +5KK�K+. . . +5KI�I = "K�/�,5KF�F + 5KG�G+. . . +5KK�K+. . . +5KI�I = "K�/�,1 ≤ % ≤ �, 0 ≤ / ≤ 1. 
From the above system, we have two crisp � × � linear systems for all % that can be 
extended to �2�� × �2�� crisp linear system as follows: R� = E 

This can be written as 

SRF RGRG RFT S��T = SEET                                              (2) 

where R is the extended �2�� × �2�� matrix, RF and RG are � × � matrices with elements 
being the corresponding non-negative and non-positive elements of the matrix � 

respectively, � = .�F, �G, . . . , �I0N
, � = ��F, �G, . . . , �I�N, E = ."F, "G, . . . , "I0N

, E =�"F, "G, . . . , "I�N. 
Thus the FSLE (2) can be extended to a crisp system of linear equation, where � = RF +RG. 

Therefore, equation (2) can be written as follows: 
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 RF� + RG� = ERG� + RF� = E                                                  (3) 

If we observe equation (3) in details, we can expend it in the �2�� × �2�� linear system: (FF�F + (FG�G+. . . +(FI�I + (F,IUF�F + (F,IUG�G+. . . +(F,GI�I = "F,(GF�F + (GG�G+. . . +(GI�I + (G,IUF�F + (G,IUG�G+. . . +(G,GI�I = "G,…(IF�F + (IG�G+. . . +(II�I + (I,IUF�F + (I,IUG�G+. . . +(I,GI�I = "I,(IUF,F�F + (IUF,G�G+. . . +(IUF,I�I + (IUF,IUF�F + (IUF,IUG�G+. . . +(IUF,GI�I = "F,(IUG,F�F + (IUG,G�G+. . . +(IUG,I�I + (IUG,IUF�F + (IUG,IUG�G+. . . +(IUG,GI�I = "G,…(GI,F�F + (GI,G�G+. . . +(GI,I�I + (GI,IUF�F + (GI,IUG�G+. . . +(GI,GI�I = "I,
 

where (KL is determined as follows: 
 5KL ≥ 0 then (KL = 5KL , (KUI,LUI = 5KL ,5KL ≤ 0 then (K,LUI = 5KL , (KUI,L = 5KL ,for 1 ≤ % ≤ �, 1 ≤ M ≤ �. 
Therefore, in this way, using matrix notation we obtain, R� = E, where R = ,(KL-, 1 ≤ %, M ≤ 2�, � =  ��FYYY, �GYYY , … , �IYYY , �F, �G, … , �I�N    
and  E =  �"FYYY, "GYYY , … , "IYYY , "F, "G, … , "I�N.    
 
Theorem 1.   A matrix R is non-singular if and only if the matrices RF + RG and RF − RG 
are both non-singular. 

Let R be a non-singular �2�� × �2�� matrix of the form R = SRF RGRG RFT, where RF and RG 

are � × � matrices with elements being the corresponding non-negative and non-positive 
elements of the matrix � respectively. 

By adding the �� + %�th row of R to its %th row for 1 ≤ % ≤ �, we obtain 

R = SRF + RG RF + RGRG RF T = �(say) 

Next, we subtract the Mth column of R, from its �� + M�th column for 1 ≤ M ≤ �, we 
obtain 
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R = SRF + RG RF + RGRG RF T = SRF + RG 0RG RF − RGT = Z(say) 

It is clear that, |R| = |�| = |Z| = |RF + RG||RF − RG|. 
Therefore |R| ≠ 0 if and only if |RF + RG| ≠ 0 and |RF − RG| ≠ 0. 

This completes the proof. 

2.4. Fuzzy Solution of FSLE 

Let � = {A�K�/�, �K�/�B , 1 ≤ % ≤ �} denote the unique solution of the FSLE. The fuzzy 

number vector [ = {A�K�/�, �K�/�B , 1 ≤ % ≤ �} defined by �K�/� = $%�{�K�/�, �K�/�, �K�1�}�K�/� = $5�{�K�/�, �K�/�, �K�1�} 
is called the fuzzy solution of R� = E. 

If A�K�/�, �K�/�B , 1 ≤ % ≤ �, are all triangular fuzzy numbers, then �K�/� = �K�/�, �K�/� = �K�/�, 1 ≤ % ≤ � and [ is called a strong fuzzy solution. 

Otherwise, [ is a weak fuzzy solution. 

3. Solution of FSLE using the SOR method 
In this section, we study the modified version of the Gauss-Seidel iteration method known 
as the Successive Over-Relaxation (SOR) method. We also study the implementation of 
this method in FSLE, the derivation of the iteration scheme to obtain the solution of FSLE 
using the SOR method and some theorems related to it. We start by describing the SOR 
method in a crisp system of linear equations and then we extend this to FSLE. 

3.1. SOR method in crisp system of linear equations 
Assume that all numbers 5KL, "K are real for all 1 ≤ %, M ≤ �. Then the %th equation ∑ 5KLILPF �L = "L, % = 1,2, . . . , �, can be written as 

O 5KL
K]F
LPF �L + O 5KL

I
LPK �L = "K                                                  �4� 

Like Gauss-Seidel iteration method, for the solution 

.�F�^UF�, �G�^UF�, . . . , �K]F�^UF�, �K�^�, �KUF�^� , . . . , �I�^�0 

the equation (4) becomes 

O 5KL
K]F
LPF �L�^UF� + O 5KL

I
LPK �L�^� = "K                                            �5� 
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The residual at the %th equation is then can be computed as 

/K = "K − O 5KL
K]F
LPF �L�^UF� − O 5KL

I
LPK �L�^�                                        �6� 

Let ̀ K�^� = �K�^UF� − �K�^� denote the differences of �K at two consecutive. 
In the Successive Over-Relaxation (SOR) method, we assume that 

5KK  `K�^� = a /K,    % = 1,2, . . . , �                                             (7) 

where a is a suitable factor, which is known as the relaxation factor. 
Using (6) in (7) we obtain, 

5KK .�K�^UF� − �K�^�0 = a b"K − O 5KL
K]F
LPF �L�^UF� − O 5KL

I
LPK �L�^�c 

or,5KK�K�^UF� − 5KK�K�^� = a"K − a O 5KL
K]F
LPF �L�^UF� − a O 5KL

I
LPK �L�^� 

That is 

5KK�K�^UF� + a O 5KL
K]F
LPF �L�^UF� = �1 − a�5KK�K�^� − a O 5KL

I
LPKUF �L�^� + a"K,

  % = 1,2, . . . , �; C = 0,1,2, . . .   �8� 

and .�F���, �G���, . . . , �I���0N
 is the initial solution. 

The method is repeated until the desired accuracy is achieved. 

The method is called the over-relaxation method when 1 < a < 2, and is called the under-
relaxation method when 0 < a < 1. When a = 1, the method becomes the Gauss-Seidal 
iteration method. 

3.2. Implementation of the SOR method in FSLE 
Recalling the concept of FSLE discussed in the preliminary section, we that in the equation 
(8), {,5KL-: 1 ≤ % ≤ �, 1 ≤ M ≤ �} are crisp numbers and "K ∈ 3, i.e., "K are real fuzzy 
numbers for % = 1,2, . . . , �. 

Without loss of generality, we can extend the equation to and we can convert equation (8) 
in the matrix form as follows g��^UF� + ah��^UF� = �1 − a�g��^� − a[��^� + aE 

or,�g + ah���^UF� = �1 − a�g��^� − a[��^� + aE                        �9� 
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where g = SgF 00 gFT with gF = `%5j�5FF, 5GG, . . . , 5II�, h is strictly lower triangular 

matrix defined as h = ShF 0RG hFT with hF being strictly lower triangular matrix, [ is 

strictly upper triangular matrix defined as [ = S[F RG0 [FT with [F being strictly upper 

triangular matrix, ��^UF� = k��^UF�
��^UF�l , ��^� = k��^�

��^�l and E = SEET. 
Let RF = gF + hF + [F and such that R = SRF RGRG RFT. 
Now, g + ah = SgF 00 gFT + a ShF 0RG hFT = SgF + ahF 0aRG gF + ahFT 
Now, from equation (9), it follows 

SgF + ahF 0aRG gF + ahFT k��^UF�
��^UF�l

= �1 − a� SgF 00 gFT k��^�
��^�l − a S[F RG0 [FT k��^�

��^�l + a SEET 
or,m �gF + ahF���^UF�

aRG��^UF� + �gF + ahF���^UF�n
= m�1 − a�gF��^�

�1 − a�gF��^�n − oa[F��^� + aRG��^�
a[F��^� p + SaEaET 

or,q�gF + ahF���^UF� = �1 − a�gF��^� − a[F��^� − aRG��^� + aE,
aRG��^UF� + �gF + ahF���^UF� = �1 − a�gF��^� − a[F��^� + aE 

or,q�gF + ahF���^UF� = �1 − a�gF��^� − a[F��^� − aRG��^� + aE,
�gF + ahF���^UF� = �1 − a�gF��^� − a[F��^� − aRG��^UF� + aE      �10� 

 
From equation (10), it also follows that 

m�gF + ahF���^UF�
�gF + ahF���^UF�n = o �1 − a�gF��^� − a[F��^� − aRG��^� + aE�1 − a�gF��^� − a[F��^� − aRG��^UF� + aEp 

That is 
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�gF + ahF� k��^UF�
��^UF�l = S�1 − a�gF − a[F −aRG−aRG �1 − a�gF − a[FT k��^�

��^�l + SaEaET 
or,k��^UF�

��^UF�l = S�gF + ahF�]F��1 − a�gF − a[F� −�gF + ahF�]FaRG−�gF + ahF�]FaRG �gF + ahF�]F��1 − a�gF − a[F�T k��^�
��^�l

 + k�gF + ahF�]FaE�gF + ahF�]FaEl  

 
Finally, ��^UF� = r��^� + Z                                           (11) 

where 

r = S�gF + ahF�]F��1 − a�gF − a[F� −�gF + ahF�]FaRG−�gF + ahF�]FaRG �gF + ahF�]F��1 − a�gF − a[F�T, 
Z = k�gF + ahF�]FaE�gF + ahF�]FaEl. 

We note that, matrix forms like equation (10) and equation (11) are used for the sake of 
analytical proof of the theorems. But, for computational purpose we must express these to 
iterative scheme. 

Thus from equation (10), it follows 

(KK�K�^UF� + a O (KL
K]F
LPF �L�^UF� = �1 − a�(KK�K�^� − a O (KL

I
LPKUF �L�^� − a O (K,LUI

I
LPF �L�^� + a"K ,

(KK�K�^UF� + a O (KL
K]F
LPF �L�^UF� = �1 − a�(KK�K�^� − a O (KL

I
LPKUF �L�^� − a O (K,LUI

I
LPF �L�^� + a"K , 

where % = 1,2, . . . , �;    C = 0,1,2, . .. 
 
This is the iteration scheme for the solution of the FSLE using the SOR method. 
The stopping criterion of this method with tolerance � > 0 is 

||�(^UF)|| − ||�(^)||||�(^)|| < �,     ||�(^UF)|| − ||�(^)||||�(^)|| < �,   C = 0, 1, 2, …  
We will illustrate some numerical examples of FSLE using the SOR method in Section 4. 
But, first, we discuss some theorems related to it. 

Theorem 2.  If the SOR method is convergent, then 0 < a < 2. 
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Definition 1.  (P-regular Splitting) 

Let �, �, Z ∈ h(ℝI). Then � = � − Z is a P-regular splitting of � if � is non-singular 
and � + Z is positive definite. 

Theorem 3.  (Stein’s Theorem) 
Let s ∈ h(ℝI) and � ∈ h(ℝI) be a symmetric positive definite matrix such that � −st�s is positive definite. Then u(s) < 1. 

Let ! be any eigen value of s and � ≠ 0 be a corresponding eigen vector. Then �v�� 
and �v(� − st�s)� are real and positive. 
Therefore �v�� > �vst�s� = (!�)v�(!�) = |!|G�v��, in such a way that |!|G < 1. 

This completes the proof. 

Theorem 4.  (P-regular Splitting Theorem) 
Let � ∈ h�ℝI� be symmetric positive definite and � = � − Z be a 
P-regular splitting. Then u��]FZ� < 1. 

By Stein’s theorem, it is sufficient to show that w = � − ��]FZ�t��]FZ is positive 
definite. 
Since �]FZ = x − �]F�, then we have w = ��]F��t� + ��]F� − ��]F��t��]F� = ��]F��t�� + �t − ���]F�  

But � + �t − � = �t + Z is positive definite with � + Z. Therefore w is positive 
definite. 

This completes the proof. 

Theorem 5.  (Ostrowski-Reich Theorem) 
Let � ∈ h�ℝI� be a symmetric positive definite matrix and 0 < a < 2. Then the SOR 
method converges for any choice of initial approximate vector ����. 
Proof: By fundamental theorem of linear iterative methods (see [2, pp. 118-119]) and P-
regular splitting theorem (i.e., Theorem 4), it is sufficient by using the equation (9) to 
show that � = a]F�g + ah� − a]F��1 − a�g − a[� 
is a P-regular splitting of �. 
Since the diagonal elements of � are positive, g is positive definite and g + ah is non-
singular. 
Moreover, the symmetric part of � + Z is � + �t − � = a]Fg + h + a]Fg + ht − a]Fg − h + a]Fg − g − [ = 2a]Fg − g + [ − [�∵ [ = ht� = 2a]Fg − g = a]F�2 − a�g  
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which is positive definite, since 0 < a < 2. 
Hence the SOR method converges for any choice of initial approximate vector �(�). 
4. Numerical examples 
In this section, we illustrate some numerical examples of FSLE using the SOR method. To 
solve these FSLE, we use the iteration scheme of equation (12) as derived in Section 3. 

Example 1.  Let us consider the 2 × 2 FSLE 

 
�F − �G = (0,1,2)�F + 3�G = (4,5,7) 

 If we recall from Section 2, the conversion method from triplet form to form of a TFN,  (0,1,2) = (0 + (1 − 0)/, 2 − (2 − 1)/), / ∈ �0,1�= (/, 2 − /), / ∈ �0,1�   

and  (4,5,7) = (4 + (5 − 4)/, 7 − (7 − 5)/), / ∈ �0,1�= (4 + /, 7 − 2/), / ∈ �0,1�   

Therefore the 2 × 2 FSLE now becomes 

 
�F − �G = (/, 2 − /)�F + 3�G = (4 + /, 7 − 2/)  

The extended 4 × 4 matrix is R = {1 0 0 −11 3 0 00 −1 1 00 0 1 3 |  

Also, E = o /4 + /2 − /7 − 2/p 
 Let the value of the relaxation factor a = 1.1. 
Thus from the equation (12), the iteration scheme for SOR method is as follows:  

�F(^UF) = −0.1 �F(^) + 1.1 �G(^) + 1.1 / 

�F(^UF) = −0.1 �F(^) + 1.1 �G(^) + 1.1(2 − /)  
3 �G(^UF) + 1.1 �F(^UF) = −0.3 �G(^) + 1.1 (4 + /) 

3 �G(^UF) + 1.1 �F(^UF) = −0.3 �G(^) + 1.1(7 − 2/) 

where C = 0, 1, 2, … 
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Let xF(�) = xF(�) = xG(�) = xG(�) = 0 and the tolerance be 10]~. 

Then the detailed calculations are shown in the following table: 

� �� �� �� �� 

0 0 0 0 0 

1 1.100r 2.200-1.100r 1.467-0.037r 1.760-0.330r 

2 1.936+0.627r 3.593-1.030r 0.610+0.140r 1.073-0.323r 

3 0.987+0.683r 2.512-0.842r 1.044+0.102r 1.538-0.392r 

4 1.594+0.600r 3.097-0.903r 0.778+0.136r 1.277-0.363r 

5 1.246+0.641r 2.746-0.860r 0.932+0.118r 1.432-0.382r 

6 1.451+0.616r 2.951-0.884r 0.842+0.129r 1.342-0.371r 

7 1.331+0.630r 2.831-0.870r 0.895+0.123r 1.395-0.377r 

8 1.401+0.622r 2.901-0.878r 0.863+0.126r 1.363-0.374r 

9 1.360+0.627r 2.860-0.873r 0.882+0.124r 1.382-0.376r 

10 1.384+0.624r 2.884-0.876r 0.871+0.125r 1.371-0.375r 

11 1.370+0.626r 2.870-0.874r 0.877+0.125r 1.377-0.375r 

12 1.378+0.625r 2.878-0.875r 0.874+0.125r 1.374-0.375r 

13 1.373+0.625r 2.873-0.875r 0.876+0.125r 1.376-0.375r 

14 1.376+0.625r 2.876-0.875r 0.875+0.125r 1.375-0.375r 

15 1.374+0.625r 2.874-0.875r 0.875+0.125r 1.375-0.375r 

16 1.375+0.625r 2.875-0.875r 0.875+0.125r 1.375-0.375r 

Therefore the solution is: �F = .�F, �F0 = (1.375 + 0.625/, 2.875 − 0.875/) = (1.375,2.000,2.875)�G = .�G, �G0 = (0.875 + 0.125/, 1.375 − 0.375/) = (0.875,1.000,1.375) 
Example 2.  Let us consider the 3 × 3 FSLE 9�F + 2�G + 4�~ = (19.5,20,20.6)�F + 10�G + 4�~ = (5,6,6.6)2�F − 4�G + 10�~ = (−15.5, −15, −14.4)  

 (19.5,20,20.6) = (19.5 + 0.5/, 20.6 − 0.6/)  (5,6,6.6) = (5 + /, 6.6 − 0.6/)  (−15.5, −15, −14.4) = (−15.5 + 0.5/, −14.4 − 0.6/)  for  / ∈ �0,1�. 
Therefore the 3 × 3 FSLE now becomes 9�F + 2�G + 4�~ = (19.5 + 0.5/, 20.6 − 0.6/)�F + 10�G + 4�~ = (5 + /, 6.6 − 0.6/)2�F − 4�G + 10�~ = (−15.5 + 0.5/, −14.4 − 0.6/)  
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The extended 6 × 6 matrix is 

R =
⎣⎢⎢
⎢⎢⎡
9 2 4 0 0 01 10 4 0 0 02 0 10 0 −4 00 0 0 9 2 40 0 0 1 10 40 −4 0 2 0 10⎦⎥⎥

⎥⎥⎤ 

Also, E =
⎣⎢⎢
⎢⎢⎡

19.5 + 0.5/5 + /−15.5 + 0.5/20.6 − 0.6/6.6 − 0.6/−14.4 − 0.6/⎦⎥⎥
⎥⎥⎤ 

 Let the value of the relaxation factor w = 1.01. 
Thus from the equation (12), the iteration scheme for SOR method is as follows: 9�F(^UF) = −0.09�F(^) − 1.01 .2�G(^) + �~(^)0 + 1.01(19.5 + 0.5/)9�F(^UF) = −0.09�F(^) − 1.01 .2�G(^) + �~(^)0 + 1.01(20.6 − 0.6/)10�G(^UF) + 1.01�F(^UF) = −0.1�G(^) − 4.04�~(^) + 1.01(5 + /)10�G(^UF) + 1.01�F(^UF) = −0.1�G(^) − 4.04�~(^) + 1.01(6.6 − 0.6/)10�~(^UF) + 2.02�F(^UF) = −0.1�~(^) + 4.04�G(^) + 1.01(−15.5 + 0.5/)10�~(^UF) + 2.02�F(^UF) = −0.1�~(^) + 4.04�G(^) + 1.01(−14.4 − 0.6/)  where C = 0,1,2, . . .

 

 Let xF(�) = xF(�) = xG(�) = xG(�) = x~(�) = x~(�) = 0 and 10]~ be the tolerance. 

Then the detailed calculations are shown in the following table: 
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k �� �� �� �� �� �� 

0 0 0 0 0 0 0 

1 2.188+0.056r 2.312-0.067r 0.284+0.095r 0.433-0.054r -2.008+0.039r -1.921-0.047r 

2 3.004+0.017r 3.054-0.033r 1.010+0.083r 1.130-0.038r -1.977+0.025r -1.937-0.015r 

 2.819+0.026r 2.897-0.052r 1.009+0.087r 1.145-0.049r -1.659+0.030r -1.612-0.017r 

 2.678+0.023r 2.749-0.048r 0.895+0.086r 1.029-0.049r -1.627+0.026r -1.586-0.015r 

5 2.691+0.025r 2.765-0.049r 0.882+0.087r 1.018-0.049r -1.677+0.026r -1.636-0.016r 

6 2.716+0.025r 2.790-0.049r 0.899+0.087r 1.035-0.049r -1.686+0.025r -1.645-0.015r 

7 2.716+0.025r 2.790-0.049r 0.903+0.087r 1.039-0.049r -1.679+0.026r -1.638-0.015r 

8 2.712+0.025r 2.786-0.049r 0.900+0.087r 1.037-0.049r -1.677+0.025r -1.636-0.015r 

9 2.712+0.025r 2.786-0.049r 0.900+0.087r 1.036-0.049r -1.678+0.025r -1.637-0.015r 

      
Therefore the solution is: �F = .�F, �F0 = (2.712 + 0.025/, 2.786 − 0.049/) = (2.712,2.737,2.786)�G = .�G, �G0 = (0.900 + 0.087/, 1.036 − 0.049/) = (0.900,0.987,1.036)�~ = .�~, �~0 = (−1.678 + 0.025/, −1.637 − 0.015/) = (−1.678, −1.653, −1.637) 

5. Conclusion 
In conclusion, this paper has explored the solution of fuzzy systems of linear equations 
using the Successive Over-Relaxation (SOR) method. Throughout this paper, a 
comprehensive review of the relevant literature has been conducted to understand the 
theoretical foundations of fuzzy systems and the SOR method. The SOR iteration scheme 
is adapted and extended to handle fuzzy numbers, allowing for the representation and 
manipulation of uncertain data in the context of linear equations. The proposed approach 
is implemented and tested using some numerical examples. The results demonstrate the 
viability of the SOR method in solving fuzzy systems of linear equations, as it provide 
accurate solutions while maintaining computational efficiency. The fuzzy nature of the 
system is appropriately considered, and the iteration scheme has effectively dealt with the 
imprecision and uncertainty inherent in fuzzy numbers. 

Moreover, the paper has addressed the convergence analysis of the SOR method for fuzzy 
systems, providing insights into its stability and convergence properties. The convergence 
criteria are established, ensuring the reliability of the numerical solutions obtained. While 
this paper has achieved its objectives and provided valuable contributions, there are still 
avenues for further research. Future work could explore the extension of the SOR method 
to solve more complex fuzzy systems, including higher-dimensional systems and systems 
with nonlinear relationships. Additionally, investigations into the application of the SOR 
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method in real-world scenarios and comparisons with other existing solution techniques 
would be beneficial to further validate its effectiveness and performance. 

Overall, this paper has successfully addressed the solution of fuzzy systems of linear 
equations using the SOR method, offering a valuable contribution to the field of fuzzy 
mathematics and computational techniques. The findings presented here provide a solid 
foundation for future research and practical applications in various domains where 
uncertainty and imprecision are prevalent. 
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