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Abstract.In this paper, we study the Successive Over-Ratax§8OR) method to solve a
fuzzy system of linear equations (FSLE). This mdthehich is followed by the
convergence theorem is discussed in detail andgétell iteration scheme is derived. The
applicability of this iteration scheme is shownatgh supporting theorems and some
numerical examples are illustrated by using tkigation scheme.
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1. Introduction

Systems of linear equations have a major contobutin various fields such as
mathematics, physics, statistics, economics, ergimgand social sciences. Since in many
applications at least some of the system’s parasatel measurements are represented by
fuzzy numbers rather than crisp numbers, it is i to develop mathematical models
and numerical procedures that would appropriatelgttgeneral fuzzy linear systems and
solve them. Fuzzy systems of linear equations erigp coefficients and fuzzy right-hand
side vectors are mathematical models that comhiispress and fuzziness in a linear
system of equations. The presence of fuzzineskdrright-hand side vector introduces
uncertainty and imprecision into the problem, mgkih more challenging to solve.
Traditional methods for solving crisp linear systeare not directly applicable to fuzzy
systems.

The concept of fuzzy numbers and arithmetic opamatiwith these numbers was
first introduced and investigated by Zadeh. Dubaigl Prade investigated various
operations on fuzzy numbers. A general model fovirsp ann x n FSLE in which the
coefficient matrix is crisp and the right-hand sislean arbitrary fuzzy number vector was
first proposed by Friedman et al. [1]. Allahviranlf8, 5] investigated various numerical
methods for solving FSLE, which are based on nurakiterative methods such as
Jacobi's method, Gauss-Seidal's method and the ®@hod. Senthilkumar and
Rajendran [12] proposed some algorithms to soh&yfuinear systems. Inearat and
Qatanani [10] discussed the efficiency of fuzzytiohs in these iterative methods.
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Different authors have investigated and inventdteint procedures to solve
fuzzy systems of linear equations. Cong-Xing anadvii7] introduced the embedding
method for fuzzy number space. Friedman et al8[115] proposed a general model to
solve a fuzzy system of linear equations by using ¢mbedding approach. Wang et al.
invented an iterative method for solving a systétimear equations of the forth = AX +
B. Asady et al. developed different methods of eegafuzzy system using embedding
concepts. Vroman et al. [17] solved the generatyfuinear systems using a parametric
form of a fuzzy number. Ezzati [20] developed a neethod for solving fuzzy linear
systems by using the embedding method and repkaeed n fuzzy linear system with
two n X n crisp linear systems. Dehghan and Hashemi [9]sitiyated various iterative
methods for solving FSLE. For fuzzy linear systeigng and Zheng [18] developed
block iterative methods and Miao et al. [13] depeld block SOR methods.

In this paper, we focus on developing a solutiothm@ology for fuzzy systems of
linear equations using the Successive OverrelaxdB8®R) method. The SOR method is
an iterative numerical technique commonly used dolving crisp linear systems of
equations. This paper aims to extend the applitalof the SOR method to solve fuzzy
systems of linear equations and provide an efficaard accurate solution. To do so,
theoretical and conceptual assistance are taken ffarious textbooks [2, 4, 21]. By
addressing the challenges posed by fuzziness inighehand side vector, we strive to
provide an effective and efficient solution thahanhance the analysis and decision-
making processes in fuzzy systems.

The paper is organized as follows. In Sectlorwe introduce the paper and its
objective. In Sectiorz, we recall the preliminary concepts required teedigp the result.
In Section3, we discuss the SOR Method in the crisp systelimeér equations and the
implementation of the SOR Method in FSLE to detive proposed iteration scheme. In
Section4, we illustrate some numerical examples by usimgitaration scheme, varying
degrees of fuzziness and system sizes. At lasedticdh 5, we discuss the conclusion of
this paper.

2. Preliminaries

In this section, we recall the basic notations ofjuzumbers, their arithmetic operations,
triangular fuzzy numbers, fuzzy systems of lineguations, and some theorems and
concepts related to them. We start by definingulaey number.

2.1. Fuzzy number
A fuzzy number is a fuzzy set defined on the seeaf number® like w: R - [0,1]
which satisfies:
1. wuis upper semi-continuous, i.e., for a chosen0 there exist$ > 0 such that
u(x) —u(xy) < e whenevelx — xy| < 8, Vx,x, € R,

2. uis fuzzy convex, i.ey(Ax + (1 — D)y) = min{u(x),u(y)},Vx,y E R, 1 €
[0,1],

3. uisnormal, i.e., there existg € R for whichu(x,) = 1,

4.  supp(u) = {x € Riu(x) > 0} is the support of u, and its closutésupp(w)) is
compact.
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Parametric form of a fuzzy number

The parametric form of a fuzzy numheris an ordered pa(@, ﬁ) of the functions
(g(r),ﬂ(r)), 0 < r <1, which satisfies the following requirements:

1. wu(r) is a bounded monotonically increasing left cordimsi function ovef0,1],
2.  u(r) is a bounded monotonically decreasing left comtirsufunction ovef0,1],
3. u)<su@),0<sr<1

For example, the fuzzy numbeis+ 2r, 4 — r) is shown in Figuré. A crisp number
is simply represented y(r) =u(r) =a,0<r < 1.

A fuzzy number

Let E be the set of all real fuzzy numbers which aresagemi-continuous, normal,
convex and compactly supported fuzzy sets. By apjate, the fuzzy number space
{u(r),u(r)} becomes a convex coRewhich is isomorphically and isometrically into a
Banach space.

Triangular fuzzy number
A triangular fuzzy number (TFN) is a fuzzy numbédrigh is denoted by a triplet, i.e.,

A = (a,b,c) and it is defined by its membership functjor(x) which is described as
follows:
(O, ifx<a

a .
,Jfa<x<bh

Triangular fuzzy numbdia, b, ¢)

The graph of the membership function of a triangfilazy number is triangular as
shown in Figure.

M ean-spread representation of TFNs

Triangular fuzzy numbed = (a, b, c) can also be written ab=< m, a, § >, wherem

is the centre point or mean valueandp are called left and right spreads respectively.
Thatis,b =m,a=b—a,Bf =c—b.

If « = B, then TFN is called symmetric.

Triangular fuzzy number in mean-spread represetiati
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Conversion rule between variousformsof TFN
The triplet representation of a TRMN, b, ¢) can be written as the parametric form

(g(r),ﬁ(r)) = (a+ (b — &)r,c — (c — b)r), wherer € [0,1].

The mean-spread representation of a TFN can b&ewats the parametric form
(g(r),ﬁ(r)) = ((m —a)+tar,(m+p) — ,Br), wherer € [0,1].

Conversely, the parametric form of a TR+ ar,c — fr), where

r € [0,1], can be written as the triplet representatiom + «a, c) or

(a,c — B, c). The parametric form of the same can be writtethasnean-spread
representatiorc a + a,a,f >or<c—pf,a,f >.

Identification of a TFN from its parametric form

The parametric form of a fuzzy number does not sssmdly indicate it to be a TFN.
Let (a + ar,c — Br), wherer € [0,1], be the parametric form of an arbitrary fuzzy
number. This fuzzy number will be considered t@E-N ifa + 8 = ¢ — a.

If « + B # c — a, then this fuzzy number is not a TFN.

Arithmetic of parametric TFNs
Letx = (x(),%()),y = (X(r),y(r)) € E,r € [0,1] and arbitraryc € R. Then

1. x=yifandonlyifx(r) = X(r) andx(r) = y(r)
2. x4y =(x0)+yMEO) +30)

3 x-y=(20)-FO.F) - y)

(kg(r), kf(r)),ifk >0

4, kx =
(kz(r), kg(r)),ifk <0
2.2. Fuzzy system of linear equations
In a system of linear equations, fuzziness ocaursany different ways. The right-hand
vectorY may be fuzzy, along with coefficient matixand variable vectak are crisp.
Alternately,A andY are fuzzyX is crisp.A is fuzzy,X andY are crisp. All4, X andY are
fuzzy matrices. Am X n linear system igdX =Y or it can be written as

A11X1 T QX+ FA1pnXy = Y,

a21x1 + a22x2+. . +a2nxn = yz,

(1)

Ap1X1 + ApaXo+... FapnXn = Yy,

where the coefficient matrix4 = (a;;),1<i,j<n is an nxn matrix, X =
(x1, %5, ..., %)t andY = (y1,¥,,...,¥,)". Here we consided is a crisp matrix whileX
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andY are fuzzy matrices, wherg € E, y; € E for 1 < i < n. This system of equations is
referred to as a fuzzy system of linear equations.

2.3. Solution M ethodology of FSLE
A fuzzy number vectofx,, x5, ..., x,,)t is given byx; = (xi(r),x_i(r)), 1<i<n,0<
r < 1, is said to be a solution of the FSLE (1) if

j=1 j=1
n n
Z ainj = Z al'ij = y]
j=1 j=1

Let us consider thah equation of the systerf-GLE]) be:

Aj1X1 + AjpXp + 0+ QX+t QX =Y
Thatisas (0 77) + aiz (32, %) .- +ai (30 7) +. o +tin (30, ) = (30,7500

Then we obtain:

Xy + AppXpt.. . tapXit . X, = yi(r),

ap Xy + apXpt... +ayXi+.. +ax, = yi(r),
1<is<n0<r<1L

From the above system, we have two crisg n linear systems for all that can be
extended t@d2n) x (2n) crisp linear system as follows:

SX=Y

s sl -
—{=|= 2
[52 Silly Y @)
wheresS is the extende{@n) x (2n) matrix,S; andS, aren x n matrices with elements
being the corresponding non-negative and non-pesiiements of the matrik

This can be written as

t
respectivelyX = (ﬁ&x_n) X =0, %g,.. %)Y = (&&Ln) Y =
OLY2 - Yt

Thus the FSLE (2) can be extended to a crisp sysfdimear equation, wheré = S; +
S,.

Therefore, equation (2) can be written as follows:
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SIX+S5,X=Y
- = 3)(
525 + SlX = Y
If we observe equation (3) in details, we can eggem the(2n) x (2n) linear system:
S11X1 + S12X2+. . +S1nXn + S1 X1 SpneaXate . FS120Xn = Y1

S21X1 + S22XaF. .. +S20Xn + S2n41%1 + SpnaaXate . FS220Xn = Va2,

Sn1X1 + SpaXpF . FSunXn + Spni1Xy + Spne2Xo e FSponXn = Yno
sn+1,1x_1 + sn+1,2&+- . +sn+1,nx_n + Sn+1,n+1x1 + sn+1,n+2x2+- . +sn+1,2nxn =Y

Sn+2,1%1 T Sny22X2t . FSnponXn T Snione1X1 T Snpzne2Xo e FSni22nXn = Y2,

SZn,lﬁ + 52n,2x_2+- e +52n,nx_n + SZn,n+1x1 + SZn,n+2x2 +... +52n,2nxn =Ynr

wheres;; is determined as follows:

aij =0 thensij = 4ij, Sit+n,j+n = Aij,
a;j <0 thensi,j+n = Qij, Sitn,j = Qij,
forl<i<nl<j<n
Therefore, in this way, using matrix notation weait,
SX =Y, whereS = (s;;),1 < i,j < 2n,
X = [X,X5, 0 Xy, X1, X2y e, X |©
and
Y= VY2, Y0 Y1 Y2 = Ynl"

Theorem 1. A matrixS is non-singular if and only if the matric8g+ S, andS; — S,
are both non-singular.

“;2], whereS,; ands,
1

aren X n matrices with elements being the correspondingmegative and non-positive
elements of the matrig respectively.

Let S be a non-singulai2n) x (2n) matrix of the forms = [‘;1
2

By adding thegn + i)th row ofS to itsith row for1 < i < n, we obtain

S1+S8, 51+85;

S = s, s ] = B(say)

Next, we subtract thgh column ofS, from its(n + j)th column forl <j < n, we
obtain
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[51+52 51+52] [51+52 0
S$1—=35;

= C(say)
It is clear that|S| = |B| = |C]| = |S1 + S;|1S; — S, |.

ThereforelS| # 0 if and only if|S; + S,| # 0 and|S; — S,| # 0.

This completes the proof.

2.4. Fuzzy Solution of FSLE
LetX = {(xl-(r),x_i(r)),l < i < n} denote the unique solution of the FSLE. The fuzzy

number vectol/ = {(ﬂ(r),u_i(r)),l < i < n} defined by
() = min{x; (), % (r), x; (1)}
W (r) = max{x(r), 5 (1), (1)}

is called the fuzzy solution 6f¥ =Y.

If (ﬁ(r),x_i(r)), 1 <i < n, are all triangular fuzzy numbers, then
ﬂ(r) = ﬁ(r), u;(r) =x;(r), 1 <i <nandU is called a strong fuzzy solution.

OtherwiseU is a weak fuzzy solution.

3. Solution of FSLE using the SOR method

In this section, we study the modified versiontaf Gauss-Seidel iteration method known
as the Successive Over-Relaxation (SOR) methodaMgestudy the implementation of

this method in FSLE, the derivation of the iteratstheme to obtain the solution of FSLE
using the SOR method and some theorems relatad\Wei start by describing the SOR

method in a crisp system of linear equations agd the extend this to FSLE.

3.1. SOR method in crisp system of linear equations
Assume that all numbets;, y; are real for all < i,j < n. Then theth equation
Z}‘zl a;jxj =y;,i=12,...,n, can be written as

i— n

1
aijxj+2aijxj=yi (4)
=1 =i

Like Gauss-Seidel iteration method, for the solutio

k+1 k+1 k+1 k k k
(040, 4D, 1D 200 50 00)

rerny ll 4 i l+1""

the equation (4) becomes

-1

Z “‘*”+Zau =y, )
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The residual at thagh equation is then can be computed as

i-1 n
k k
=Y - Z aij x]( = Z ajj x ]( ) (6)
j=1 j=i

Letd®™ = x**1 — x® denote the differences of at two consecutive.
In the Successive Over-Relaxation (SOR) methodasgeme that

a;; di(k) =wrn, i=12,...,n (7

wherew is a suitable factor, which is known as the reliaxefactor.
Using (6) in (7) we obtain,

i-1 n
k+1 k k+1 k
aii(xi( + )_xl( )) =w yi—Zaijxj( + )—Zau ]( )
j:]_ ]=l
i-1 n
or,aiixl-(kﬂ) — al-l-xl-(k) =wy; — Wz agj Xj(k+1) — Wz a;j Xj(k)
=1 =
That is
k+1 k+1
2y )+Wzau D = (1 - wyage® —w Z a0 +wy;, ®
j=i+1

i=12,....m;k=012,...
t
and(xfo),xgo), ..,x,(lo)) is the initial solution.
The method is repeated until the desired accusaaghieved.

The method is called the over-relaxation methodnwhe& w < 2, and is called the under-
relaxation method wheb < w < 1. Whenw = 1, the method becomes the Gauss-Seidal
iteration method.

3.2. Implementation of the SOR method in FSLE
Recalling the concept of FSLE discussed in thamiehry section, we that in the equation

8), {(a;;):1<i<n1<j<n} are crisp numbers angl € E, i.e.,y; are real fuzzy
numbers foi = 1,2,...,n

Without loss of generality, we can extend the equab and we can convert equation (8)
in the matrix form as follows

DX®HD 4 wLx*+D) = (1 —w)DX® —wUx® +wy

or,(D + wL)X®*+D = (1 —w)DX® —wux® + wy (9
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whereD = [%1 Dl] with D; = diag(a4,az3,...,any), L is strictly lower triangular
matrix defined as = [él 0] with L, being strictly lower triangular matri¥} is
2
strictly upper triangular matrix defined Hs= [0 U ] with U; being strictly upper
X(k+1)] W _ [X(k)]
X andY = [ ]
k+1 k
X( ) S )g( )
LetS; = D; + L, + U; and such thaf = [ ! SZ]'

2 1
D1 0 ] D1 + WLl
2 L1

0 Dl tw WSZ D1 + WLl]
Now, from equation (9), it follows

triangular matrix X +1) =

Now, D +wL=[

D1 + WL1 ] -X(k+1)
WSZ Dl + wlL —(k+1)

X(k) U1 X(k)
=1-w —(k) W[o ]—(k) +W

(Dy + wLy)X*+D

or, —(k+1)

wS,X*+1D 4 (D, + le)X
[(1 — W)Dl (k)

wU, X + ws, X ]
1- W)D1 ( )

—(k)
wU X

—(k
(D; + wL)X®D = (1 —w)D; X —wy, X® — wSZX( o wY,
or,
—(k+1 —(k —(k —
wS,X*+D 4 (D, + le)X( W 1- w)DlX( ) WU1X(  pwy
—(k
Dy +WLDXEHD = (1 = w)D,X® — wi; X® —ws, X +wy,

or, (10)

—(k+1 —(k —(k —
0y + wLDX Y = (1 = wD, T — WU, T - ws,x D 1 w7

From equation (10), it also follows that
—(k
(1 —w)D; X® —wu, x — wszx( 'y wY

—(k —
(1—-w)Dy X " wle( ) wS,X*+D 4+ wy

(Dy + wLy)X*+D

—(k+1)
(D; + wL)X

That is
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(D; +wLy) XUt = [(1 —w)D; —wU, —wS X0
1 V| —wS, - W)D1 WU1 (")
or xUern [(01 +wL)7 (1 — w)D; —wU,] —(Dy +wLy)T'wS, ] X
kD —(Dy +wLy)"'wS, (D1 +wL) (1 —w)Dy —wU ] [5®
(D1 + WL1)_1WX]
(Dl + WLl)_1W7
Finally,
x&+D) = px(®) 4 ¢ (12)
where
pP= [(D1 +wL) (1 —w)D; — wU] — (D1 +wL)7'wS,
_(Dl + WL]_) WSZ (D]_ + WLl)_l[(l - W)Dl - WU].] ,

_ [(D1 + WL1)_1WX]
Dy +wL)wY|

We note that, matrix forms like equation (10) andation (11) are used for the sake of
analytical proof of the theorems. But, for compigtadl purpose we must express these to
iterative scheme.

Thus from equation (10), it follows

i-1
SiXi (k1) 4 WZS (D = (1 — w)s”xl( ) —w Z Sij x]( ) — WZSUMJC]( )+ Wy,
j=1 j=i+1 1—1
i-1
—(k+1) —(k+1) (k)
SiiX; +w ) s X =(1 w)s”xl -w Sij xj -w s”+n x] )+ wy;,
Jj=1 j=i+1

wherei = 1,2,...,n; k=0,1,2,...

This is the iteration scheme for the solution & BESLE using the SOR method.
The stopping criterion of this method with toleraac> 0 is

—(k+1) —()
|| XD = [1X 9| X =Xl

<€,
X 7

€ k=01,2,..

We will illustrate some numerical examples of FSlding the SOR method in Section 4.
But, first, we discuss some theorems related to it.

Theorem 2. If the SOR method is convergent, thed w < 2.
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Definition 1. (P-regular Splitting)

LetA,B,C € L(R™). Thend = B — C is a P-regular splitting ofl if B is non-singular
andB + C is positive definite.

Theorem 3. (Stein’s Theorem)
LetH € L(R™) andA € L(R™) be a symmetric positive definite matrix such that
HT AH is positive definite. Thes(H) < 1.

Let A be any eigen value & andu # 0 be a corresponding eigen vector. Thému
anduf (A — HT AH)u are real and positive.
Thereforeu Au > u HT AHu = (Aw)? A(Au) = |A|?u* Au, in such a way thdfl|? < 1.

This completes the proof.

Theorem 4. (P-regular Splitting Theorem)
LetA € L(R™) be symmetric positive definite aAd= B — C be a
P-regular splitting. Thep(B~1C) < 1.

By Stein’s theorem, it is sufficient to show tifat= A — (B~1C)TAB~C is positive
definite.
SinceB~1C =1 — B™'A, then we have

Q =B ATA+AB'A-(B1A)TAB 1A
= (B 'A)T(B+BT —A)B~ 1A

ButB + BT — A = BT + C is positive definite wittB + C. ThereforeQ is positive
definite.

This completes the proof.

Theorem 5. (Ostrowski-Reich Theorem)

LetA € L(R™) be a symmetric positive definite matrix @anet w < 2. Then the SOR
method converges for any choice of initial appratienvectorx (©).

Proof: By fundamental theorem of linear iterative methst=e [2, pp. 118-119]) and P-
regular splitting theorem (i.e., Theorel it is sufficient by using the equation (9) to
show that

A=w1(D+wlL)—w (1 -w)D—wlU]

is a P-regular splitting of.

Since the diagonal elementsAfre positiveD is positive definite an® + wL is non-
singular.

Moreover, the symmetric part 8f+ C is

B+BT—A =wD+L+wD+LT—wD-L+wD-D-U
=2w D -D+U-U[~U=1LT]
=2w™ D -D
=w1(2-w)D
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which is positive definite, sindd< w < 2.
Hence the SOR method converges for any choiceitélinpproximate vectax ().

4. Numerical examples
In this section, we illustrate some numerical exl@spf FSLE using the SOR method. To
solve these FSLE, we use the iteration schemeugdtem (12) as derived in Secti8n

Example 1. Let us consider th2 x 2 FSLE

xl - x2 == (0,1,2)
x1 +3x, = (4,5,7)

If we recall from SectioR, the conversion method from triplet form to foradFN,

012 =0O+@-0r,2—R2-1Dr),re[0,1]
=(r2-r),rel01]

and

457 =@G+G6G-4r,7—(7-5)r),re€[0,1]
=(4+r7-2r),re€[01]

Therefore th& x 2 FSLE now becomes

X1 —x,=(r2-71)
X1 +3x,=@4+1r7-2r)

1 0 0 -1
. ._11 3 0 o0
The extended x 4 matrix isS = 0 -1 1 0
O o0 1 3
Tr
Also,Y = 4+
2—71
7 —2r

Let the value of the relaxation facter= 1.1.
Thus from the equation (12), the iteration scheone&SOR method is as follows:

x = 0120 41150 + 117
= _01x® 41140 +1102-1)
3x P+ 112 = —03 57 +11(4+7)

370 41170 = —03%) +1.1(7 - 21)

wherek = 0,1, 2, ...
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Letx; @ =% = %, = %” = 0 and the tolerance b®3.
Then the detailed calculations are shown in thieviehg table:

X1 X1 X %
0 0 0 0
1.100r 2.200-1.100r 1.467-0.037r 1.760-0.330r
1.936+0.627r 3.593-1.030r 0.610+0.140r 1.073-0.323r
0.987+0.683r 2.512-0.842r 1.044+0.102r 1.538-0.392r
1.594+0.600r 3.097-0.903r 0.778+0.136r 1.277-0.363r
1.246+0.641r 2.746-0.860r 0.932+0.118r 1.432-0.382r
1.451+0.616r 2.951-0.884r 0.842+0.129r 1.342-0.371r
1.331+0.630r 2.831-0.870r 0.895+0.123r 1.395-0.377r
1.401+0.622r 2.901-0.878r 0.863+0.126r 1.363-0.374r
1.360+0.627r 2.860-0.873r 0.882+0.124r 1.382-0.376r
1.384+0.624r 2.884-0.876r 0.871+0.125r 1.371-0.375r
1.370+0.626r 2.870-0.874r 0.877+0.125r 1.377-0.375r
1.378+0.625r 2.878-0.875r 0.874+0.125r 1.374-0.375r
1.373+0.625r 2.873-0.875r 0.876+0.125r 1.376-0.375r
1.376+0.625r 2.876-0.875r 0.875+0.125r 1.375-0.375r
1.374+0.625r 2.874-0.875r 0.875+0.125r 1.375-0.375r
16 1.375+0.625r 2.875-0.875r 0.875+0.125r 1.375-0.375r

© o ~NOoO oW NPEFE oW

e i o
oM WN RO

Therefore the solution is:
X, = (xl,x_l) = (1375 + 0.6257, 2.875 — 0.8757) = (1.375,2.000,2.875)

X, = (x_ZE) = (0.875 + 0.125r,1.375 — 0.375r) = (0.875,1.000,1.375)

Example 2. Let us consider thg x 3 FSLE
9x; + 2x, + 4x3 = (19.5,20,20.6)
x1 + 10x, + 4x3 = (5,6,6.6)
2x; — 4x, + 10x3 = (—15.5,—15,—14.4)

(19.5,20,20.6) = (19.5 + 0.57,20.6 — 0.67)
(5,6,6.6) =(5+1,6.6—0.61)

(—=15.5,—15,-14.4) = (—15.5+ 0.5r,—14.4 — 0.671)
for r € [0,1].

Therefore th& x 3 FSLE now becomes
9x; + 2x, + 4x3 = (19.5 + 0.57,20.6 — 0.67)

X1+ 10x, + 4x3 = (5+71,6.6 —0.61)
2x, — 4x, + 10x3 = (—=15.5 4+ 0.5, —14.4 — 0.61)
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The extende® x 6 matrix is

@ 2 4 0 0 0

1 10 4 0 0 0]

c_[2 0 100 -4 o0

00 0 9 2 4

0 0 0 110 4

0 -4 0 2 0 10
19.5 + 0.57
[ 5+4r ]
_|-15.5 + 0.5r]
Also.Y =1 06— 06r |
|l6.6—0.6rJ|
—14.4 — 0.67

Let the value of the relaxation facter= 1.01.
Thus from the equation (12), the iteration scheone&SOR method is as follows:

92, K41 = —0.092,®) — 1.01 (22,%) + x;,) + 1.01(19.5 + 0.57)

9%, % = —0.09%;® — 1.01 (Zx 5" + z(")) +1.01(20.6 — 0.67)

102540 + 1010, *HD = —0.1x,®) — 4.04x3,® + 1.01(5 + 1)

10—("“) +1. 01—("“) -0. 1—(") 404" + 1.01(6.6 — 0.67)

102640 + 2,02, %+ = —o. 1x3(k) +4.045% +1.01(=15.5 + 0.57)

10%; =0 4o 02x; D _ ~0.1%5" + 4.042,%9 + 1.01(~14.4 — 0.67)
wherek =0,1,2,...

0) (0)

Letx, @ = T @ =x,© =3 = 0 and10~3 be the tolerance.
Then the detailed calculations are shown in thleiohg table:

=x (0)_g
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k x1 El xz Ez x3 73

0 |0 0 0 0 0 0

1 | 2.188+0.0561 2.312-0.067r 0.284+0.095r 0.4334x.05-2.008+0.039r| -1.921-0.047

2 | 3.004+0.017¢ 3.054-0.033r 1.010+0.083r 1.130&r.0B-1.977+0.025r| -1.937-0.015

=

2.819+0.026n 2.897-0.052r 1.009+0.087r 1.145-0.0491.659+0.030r| -1.612-0.017

-

2.678+0.02311  2.749-0.048r 0.895+0.086r 1.029-0.0491.627+0.026r | -1.586-0.015

=

5 | 2.691+0.0251 2.765-0.049r 0.882+0.087r 1.0189r.04-1.677+0.026r| -1.636-0.016

6 | 2.716+0.0251 2.790-0.049r 0.899+0.087r 1.0354r.04-1.686+0.025r| -1.645-0.015

7 | 2.716+0.0251 2.790-0.049r 0.903+0.087r 1.0394r.04-1.679+0.026r| -1.638-0.015

=

8 | 2.712+0.0251 2.786-0.049r 0.900+0.087r 1.0374r.04-1.677+0.025r| -1.636-0.015

9 | 2.712+0.0251 2.786-0.049r 0.900+0.087r 1.0369r.04-1.678+0.025r| -1.637-0.015

-

Therefore the solution is:
X, = (xlx_l) = (2.712 + 0.0257,2.786 — 0.049r) = (2.712,2.737,2.786)

X, = (x_2 E) = (0.900 + 0.087r,1.036 — 0.049r) = (0.900,0.987,1.036)
X3 = (xg,x—3) = (—1.678 + 0.025r,—1.637 — 0.0157) = (—1.678,—1.653, —1.637)

5. Conclusion

In conclusion, this paper has explored the solutibfuzzy systems of linear equations
using the Successive Over-Relaxation (SOR) methbatoughout this paper, a
comprehensive review of the relevant literature basn conducted to understand the
theoretical foundations of fuzzy systems and th&® ®@thod. The SOR iteration scheme
is adapted and extended to handle fuzzy numbdwmyiayy for the representation and
manipulation of uncertain data in the context néér equations. The proposed approach
is implemented and tested using some numerical pleamnThe results demonstrate the
viability of the SOR method in solving fuzzy systewf linear equations, as it provide
accurate solutions while maintaining computatioefficiency. The fuzzy nature of the
system is appropriately considered, and the itamacheme has effectively dealt with the
imprecision and uncertainty inherent in fuzzy nursbe

Moreover, the paper has addressed the convergaatsia of the SOR method for fuzzy
systems, providing insights into its stability as@hvergence properties. The convergence
criteria are established, ensuring the reliabiityhe numerical solutions obtained. While
this paper has achieved its objectives and prowddaiable contributions, there are still
avenues for further research. Future work couldoegghe extension of the SOR method
to solve more complex fuzzy systems, including bigtimensional systems and systems
with nonlinear relationships. Additionally, invegditions into the application of the SOR
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method in real-world scenarios and comparisons wfitler existing solution techniques
would be beneficial to further validate its effeethess and performance.

Overall, this paper has successfully addressedsdhdion of fuzzy systems of linear
equations using the SOR method, offering a valuabhgribution to the field of fuzzy
mathematics and computational techniques. Therfgsdpresented here provide a solid
foundation for future research and practical appidns in various domains where
uncertainty and imprecision are prevalent.
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