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1. Introduction
The concept of neutrosophic set (NS) was firstohiiced by Smarandache, which is a

generalization of fuzzy sets. Zadeh’s classicalceph of a fuzzy set is a strong
mathematics tool to deal with the complexity gelgeising from uncertainty in the form
of ambiguity in the recent scenario. In 1965, Zaeknted the “Fuzzy sets”, which play
a significant role in dealing with ambiguity andgreciseness. In 1970, Bellman and Zadeh
developed “a method for making decisions in a fuzmyironment”. In 1983, Atanassov
introduced his intuitionistic fuzzy set. Hepzibahal. (2017) investigated neutrosophic
multi-objective linear programming problems [17]hi§ paper, deals with the fuzzy
Steepest Descent method and Fletcher Reeves meittodingle-valued neutrosophic
triangular coefficient to solve unconstrained ojitiation problems. This paper is
organised as follows. The second section providezeshackground information on this
research topic. Several strategies for solving ositained optimization problems in a
Neutrosophic fuzzy environment are proposed ini@ecthree. In section 4, some
illustrative cases are offered to demonstraterttéthod.
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2. Preliminaries

This section provided an introduction to fuzzy umstpained optimization models and
stressed the importance to considering the togkeslihear and nonlinear optimization

problems in the fuzzy environment using arithmeterations, and provided certain
definitions which are related to this research wdmkthis section, the concept of single-
valued neutrosophic numbers, single-valued trapletoieutrosophic numbers and single-
valued triangular neutrosophic number with operstiare introduced.

Definition 1. [7] Let A = {x, uz(x): x € uz(x) € [0,1]} is a fuzzy set. The first element
X in the pair (x,u,;(x)) belongs to the classical set A, whereas the seetement
uzi(x), belongs to the intervdDd,1] known as membership function, indicated by
{na(x) \x:x € A, uz(x) € [0,1]}

Definition 2. [7] LetR be the set of real numbers ahidR — [0,1] be a fuzzy set then we

say thatd is a fuzzy number that contains the following Endies:

® 0 is normal, i.e., there exist, € R such thatd(xy)=1;
(ii) Ais convex, i.e. A(tx + (1 — t)y = min{A(x), A(y)}, wherex,y € R and
t € [0,1].

(i)  A(x) is upper semi-continuous b, i.e.,{ﬁ > a} is a closed subset &
for eacha € [0,1].

Definition 3.[7] Let us take a fuzzy numbdr on R is said to be a triangular fuzzy number
(TFN) or linear fuzzy number if its membership ftion A: R — [0,1] meets the following

features. It is a fuzzy number represents withetlpints as follow& = (a,, a,, a3). The
following conditions apply to this representatiwghich is regarded as membership
functions:

® a, to a, is increasing function

(i) a, to as is decreasing function.

(i) a, < a; <as

x_al
( fora, <x <a,
a, —aq
~(x) = a3 —x
Ha(x) ——fora, <x <as
az — dy

0 Otherwise
The TFN is diagrammatically shown below.
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Figure 1.1 Triangular Fuzzy number

Let F(R) to denote the set of all TFNs. Thdevel set ofd is defined adl, =
[(a; —a)a+aq,as; — (az — ay)al.

Definition 5.[18 Let G be a universe. A Neutrosophic Set(NS) A iis Gharacterised by
a truth-membership functiofy, a indeterminacy-membership functiah, and a falsity
membership functionF,. T4(x); I,(x) and F,(x) are real standard elements of [0,1]. It
can be written as A= {x, (TA(x);IA(x)FA(x)) >:1x € G, Ty(x), [4(x), Fu(x) €
170,1[*}. There is no restriction on the sum Bf(x): I4(x) and F4(x) , SO on0~ <
supT,(x) + suply(x) + supF,(x) < 3*.

Definition 6. [18] Let G be a universe. A single valued Neutrosof8igic(SVNS) A, which
can be used | a real scientific and engineerindjeaijons, in G is characterised by a truth
membership functiorl,, an indeterminancy- membership functign and a falsity
membership functio,. T, (x); I4(x) and F4(x), are real standard elements of [0,1] . It
can be written ad = {< x, (T4 (x), [1(x), Fa(x)) >:x € E, Ty(x), I, (x) and F, € [0,1].
Thereis no restriction on the sum Bf(x), Fy(x)and I,(x), s00 < T4(x) + L,(x) +
F,(x) <3.

Definition 7. [18] Let 45, %4, 94 € [0,1] be any real numbers. A single valued

neutrosophic number = (sy, dy, f1, 91); 7a), (S2, A2, f2, 92); #a), (53, d3, f3, 93); Ga)),
is defined as a special single valued neutrosagtion the set of real numbers R, whose

truth-membership functiop;: R — [0, 73], a determinancy-membership functign R

- [0, £;] and a falsity-membership functidg: R — [0, g4] as given by
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fﬂz(x). (s1=x<d,)
Far di=x<f1)
fur, fi < x < g1)
k 0, otherwise
(fu(), (s5<x<ds)
‘le(X) — ikd' (d3 <x= f3)

pa(x) =

far(X), f3 < x < g3)
1, otherwise

(Fa(), (s, x < dy)

_ ) %a (dy=x<f3)
= 4 % )
t 1, otherwise

2.2. Arithmetic Operations of single valued triangular neutrosophic numbers

Letd = ((s1,dy, 1); Far #a Ga)) and b = ((S2,dz, f2); 75, 5. 45)) be two single
valued triangular neutrosophic numberBhen

Addition [18]
a+b=((sy+s2dy+dofi + £2); (GalNds £V g 42V a5))

Subtraction [18]

a—b=((s1— fzdy — du, f3 — 51,); (7alNip: #aV 5 42V a5))
Multiplication
ab= ((sl.R(E), di.R(b), f-R(B)); (jal\ip, £aVHp 4aVap)) , wherer(B) =
((s2+dz + ) X (2 +j5+ 45— a5))/8
Division
/b = ((s1/R(b),d1/R(b), f1/R(D)); (7al\ip #aV s daVap)) hereR(b) = ((s, +
dy+ ) X2 +75+#5—a5))/8

Scalar Multiplication
va = ((ysuvdy,vf1)i4a #a da)) wherey > 0
va = ((v91,vf1,vd1); ja #a» 4a)) wherey < 0.

Definition 8. [18] Let a = ((s1,d4, f1); 7a.%a 9a)) be a single valued triangular
neutrosophic number. Then &(= ((s; +d,+ fi) X 2+ 44 — %5 — 95))/8 and
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A(@) =((s;+d+ f1) X2+ 43 — %5 — g5))/8 are called score and accuracy degrees
of d respectively.

3. Neutrosophic fuzzy steepest descent and fuzzy conjugate gradient method
3.1. Method of neutrosophic fuzzy steepest descent
Now we consider an unconstrairl(c;gxll_.xn")"égf(xl,xz, ... Xp) has a local minimizer to be
referred just as minimizer. The n tupte= (x;,x;, ...x,) € R™ will called the design
vector andf(x) the corresponding objective function. Gradienteldatechniques are
motivated by the fact that f decreased most rapdllgt point P irR™ in the direction of
—V£(P). consequently, the iteration procedure of the form

70D = gk 4 T q(h
where astk is the current estimate &f, ) is the step length parameter attl) =
d(x®) is the search direction in the spak® of design variables.
If we taked® = —g®) = —vf(x(¥)), we get the method of steepest descent. We have
gk = gk — gk gty | g = v (x()
Wherel ™ is the minimizer of the function

$(X) = Fx® ~Tg™)
We can use any of the 1-dimensional searches ¢ordigte thex ). Initial

approximationx? is carefully selected to start the iteration pchoe, as it is problem
depended.

3.2. Convergence of neutrosophic fuzzy steepest descent method for quadratic
function
To lllustrate convergence properties of gradieselmethods, a convenient function will

be a quadratic function of the forfifx) = % ¥TQx = %(Qf, X) where Q is positive
definite. If f has a minimum &* = 0 with f(¥*)=0, § = Vf(¥) = QX andV?f(%) = Q.
Then
~ .~ 1 . e 2

¢(1)=fE -1g)=(0 - 22Q* + T Q°I%, %)

This gives
;_(@xxn_ Q0% _ (3.9
(Q3*x, %) (Q@x),Q% (Qg J)

Hence the steepest descent iteration procedutbdajuadratic function takes the form

~k ~k
S(k+1) — =(K) _ (5" g") ~k
x x =~
(@ g% g%)
Using the above formulation and the fact that

Fete) = feey — 0TI

S
@ | .
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This gives
f(E®) - fE*D) [{g" g")1?
f&®) (Q g~ g*Ng~ @ g" )
And hence
fEED) = A -y fE®)
wherey,, = Ug".g")"
k ~

Theorem 3.3. Let f be theNeutrosophic fuzzy quadratic function of the forgiges by
fx) = % ¥TQx% = %(Qf,a?) and(x")be the iterates generated by the procedure given
by
~k ~k
Fle+1) — 500 _ <~9 ,§) G~
(Q g%, g*)
Starting from any initial approximatict’. Thenz®) converges linearly to the minimizer
X =0.
Proof:
Let

fEED) = (1 -70f (™)
This givef (x™®) = TS (1 - R ()
(%) converges t&* = 0 if and only if f(¥¥)) > 0 and in the view the above
equation, this is possible if and only ff[;2,(1 — 7,) = 0, which is true, because

~ /Tmax_zmin
1-%) < S <1.

Asx* =0 andf (%) = %(597, %), Rayleigh inequality give&zs o ||z tert) — 9?(")”2 <
fEED — 5O = fgken),
Similarly)l’"%||f(k) —zO|? > FE® — 5 = FE®).

Consequently, we ge};’;‘—m [£k+D — 0||* < F0+D = (1 - ) f(x®) <

Amax_xmin ||f(k) _ x(*)
2

N A | 2 max=* mi
S < max mm'
This give o] = -

A -1 . . . .
As \/M > 0, it implies that the convergence &%) to ¥ is linear.

max

2

3.3. Algorithm for neutrosophic fuzzy steepest descent method
Algorithm 3.3.
Step 1: Consider the unconstrained optimizatioablem with intuitionistic fuzzy

triangular coefficieng’ (f(k)N).
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Step 2: Inpuk©@" € letk <0
Step 3: Calculats;" at%;" by §" = vg," wheregh = gNzV

iV N

Step 4: (i) Calculatd,” by using 1" = m whereQ " g, = vg" (on)
75t gt

¢ N T
(i) Find hessian fog'" (x) then Calculatd, " by using 7," = AWy i’H(IfES) 5
whereQ " gi" = vgi".
Step 5: Find the@**D)N = (0N — (1. g¥)N thenk « k + 1

Step 6: Repeat the process ufigE )" — (x**V)N|| <e. Then stop the process or go
to step 3.
Step 7: Check the optimum.

3.4. Neutrosophic fuzzy fletcher and reeves method (neutr osophic fuzzy conjugate
gradient method)

In Steepest Descent method, the search directiem BtFind the () = —g¥) then
gives rise to iterates¥®)}which converge to the minimizet* in a zig zag way. So, there
is need to generate new search direc&f which well make the iteratesi{®} converge

faster tox*. We take a quadratic functiof(x) =%~TQf = %(Qf,a?) with Q positive

definite. We shall generaté® as mutually conjugate direction with respect to Q
(Qd/,d’) =0,i #.

The procedure for conjugate direction generation is

d® = —G° = —V(f (%) = —QE®) with () being initial guess.

Thenz®+D = xk — gk(d®)), we getd* = —éf;f?;?,_).
This a* minimizes the functiogp(a) = f(& — @d*)
And henceg®*!is orthogonal tod®, for @ that minimizes the equation is given by
¢'(a) = (Vf(® — @d*),d* ) = 0 which is same aj***,d* ) = 0. The next conjugate
directiond**! is given byd**! = —gk*1 + gkdk wheref* is so chosen that* is
( ~k+1 Q d )

(akgadk) "

conjugate tai**! with respect t@. This givesg* =

To evaluatd d*, g*)

(d"k’g"k) — _( gk,g ) ﬁk 1( dk g"k ( )
(g%, %)

(@ ak,aky

P:"-

As g¥ L d** and hencei* = —

Theorem 3.7. The Neutrosophic fuzzy Gradient Vectgi*} are mutually orthogonal
and the direction search fuzzy vecto#&) are mutually fuzzy Q-Conjugate.
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Proof: The Result is true fdt = 1, sinced® andd® are Q-conjugate by the choice of
LO. Alsog® = —d°

Is orthogonal tgj*. Then prove by induction. In cadé®,d®, ..., d*~1 are mutually
Q-conjugate ang®, g, ..., §*=1 are mutually orthogonal for sorke> 2.
Fork =k — 1, theng® = g=1 + gD od*-1, And hence

(g(k)’g(i)> = (g(k—l)’g(i)) + (d(k—l))(Qg(R)'g(i)) - a(k—1)<Qg(k)'g(i)) =0,

0<i<k-2

Asd©®, dW, . d* -1 agre Q-conjugate. Taking inner product witi®, then
(d9),0dD) = —(§®, Qd®) + (FU-DYIk-D,0d®) = —(5®, 0g®) = 0,0 < i <
k—2.

Then d® = £°0-9%

a@®

And hence we havgl®, Qd®) = W

Taking inner product witlf®, then(g®), gk—1Dy = (5§, g k-1 —

(BUD) (500, k-D)y = (FU-D) (500, G-,

(g‘(k),g(k—l)) = (ﬁ(k—2)> (g‘(k),d'(k—z))+a(k—1)(Qd'(k—1),d(k—2)> =0.

As g*1 is orthogonal tad*=2), andd*~ andd*~2) are Q-Conjugate Alsai* is
defoned fromd*~Y) in such a way tha{d®, Qd®)) = 0. Combining the result we have
(9, g0y=0=(d®,0d®),0<i<k-1

3.5. Algorithm for neutrosophic fuzzy steepest descent method
Algorithm 3.4.
Step 1: Consider the unconstrained optimizatiooblem with intuitionistic fuzzy

triangular coefficieng™ (ic(")N).
Step 2: Input©@” € letk « 0
Step 3: Calculats;" at%," by §" = vg," wheregh = gNzV

- - ~k+1 sk+1
Step 4: (i) CaIcuIatélN by using /LN = %(m)
~N Vg N
(i) Calculate Hessian matrix A from the given”, then/LN:%
S; AS;

Step 5: Find thel®+D" = gC+D" 4 TV 3k thenk « k + 1.

Step 6: Repeat the process ufjiit )N — (¥k+D)V|| <e. Then stop the process or go
to step 3.

Step 7: Check the optimuri®” « ("

4. Numerical illustrations
Some numerical examples are provided here to clieekobustness of the proposed
algorithms.
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Example 1:

Case (i)

Let us consider the unconstrained optimization jemlwith Neutrosophic triangular fuzzy

coefficients.,
T(x,y) = (0.5,1,1.5); (0.68,0.51,0.55)x — (0.5,1,1.5); (0.67,0.54,0.54)y +
(1.5,2,2.5); (0.69,0.51,0.52)xy + (1.5,2,2.5); (0.7,0.65,0.72)x% +

(0.5,1,1.5); (0.67,0.5,0.51)y>.

Solving this problem by the algorithm proposedent®on 3.4,3.8, the MATLAB outputs

are tabulated here.

Iteration (xiy:) (Xi41,¥;44) (Xi+1:Vis1)
(Algorithm 3.3) (Algorithm 3.3)

1 (0,0,0); (—15,—-1,-05); (—1.5,—1,—0.5);
(0.65,0.51,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(0‘0,0)) (0.5,1,1-5): (0.5,1.1.5);I
(0.65.0.51.0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)

2. (—=1.5,-1,-0.5); (-01.2,-0.8,-0.4); (—01.2,-0.8,-0.4);

(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(0.5,1,1.5); (0.6,1.2,1.8); (0.6,1.2,1.8);
(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)

3 (—01.2,-0.8,-0.4); (—-1.5,—1,-0.5); (—1.5,—1,-0.5);

(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(0.6,1.2,1.8); (0.7,1.4,2.1); (0.7,1.4,2.1);
(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)

4 (—1.5—1,—1.4); (—1.44,-0.96,—0.48); (—1.44,-0.96,—0.48);

(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(0.7,1.4,2.1); (0.72,1.44,2.16); (0.72,1.44,2.16);
(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)

5 (—1.44,-0.96,—0.48); (=1.5,—-1,-0.5); (—1.488,-0.992, —0.696)
(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(0.72,1.44,2.16); (0.74,1.48,2.22); (1.144,1.488,2.232);
(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67.0.54,0.55)

6 (—1.488,—0.992, -0.69 (—1.488,-0.992, —0.69 (—1.461,—1.0001, —0.697);
6); (0.67,0.54,0.55) 6); (0.67,0.54,0.55) (0.67,0.54,0.55)
(1.144,1.488,2.232); (1.144,1.488,2.232); (0.748,1.496,2.244);

(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
Iteration (x5, ¥i) (Xi+1 Yi+1) (Xi+1, Yi+1)
(Algorithm 3.4) (Algorithm 3.4)
1 (0,0,0) (-1.5,-1,-0.5); (-1.5,-1,-0.5);
(0.65,0.51,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(O O 0) (0.5,1,1.5), (0.5,1,1.5),
B (0.67,0.54,0.55) (0.67,0.54,0.55)
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(0.65,0.51,0.5¢
2. (—=1.5,-1,-0.5); (-1.5,—-1,-0.5); (—=1.5,-1,-0.5);
(0.67,0.54,0.55) (0.67,0.54,0.55) (0.67,0.54,0.55)
(0.5,1,1.5); (0.75,1.5,2.25); (0.75,1.5,2.25);
(0.67,0.54,0.55) (0.67,0.54,0.55)) (0.67,0.54,0.55)
Example 2:
Case (i)

Let us consider the unconstrained optimization lemb with Neutrosophic triangular
fuzzy coefficients.,

7(x,y) = (0.5,1.,1.5); (0.8,0.75,0.6)x2 + (0.5,1.0,1.5); (0.7,0.65,0.75)y? +

(1,2,3); (0.74,0.75,0.68)xy

Solving this problem by the algorithm proposed éction 3.4 and 3.8, the MATLAB
outputs are tabulated here.

Iteration | (x;,y;) (*i+1. ¥iv1) (Xi41: Yiv1)
(Algorithm 3.3) (Algorithm 3.3)
1 (-10.5,-10,-9.5); (6.53,6.87,7.21); (6.53,6.87,7.21);
(0.7,0.75,0.8) (0.7,0.75,0.8) (0.7,0.75,0.8)
(95,10,105),(07,075,08) (*0.65, *0.62,*0.59): (*0.65, *0.62,*0.59)}
(0.7,0.75,0.8) / (0.7,0.75,0.8)
2. (6.53,6.87,7.21) (2.07,2.18,2.29) (207,218,
(~0.65,—0.62, —0.59); (~2.29,—2.1,—2.07); 2.29);
(0.7,0.75,0.8) (0.7,0.75,0.8) (0.7,0.75,0.8)
(—2.29,-2.18,
~2.078);
(0.7,0.75,0.8)
3 (2.07,2.18,2.29); (1.42,1.50,1.57); (1.42,1.50,1.57);
(0.7,0.75,0.8) (0.7.0.75,0.8) (0.7,0.75,0.8)
(-2.29,-2.18,-2.07); (—0.14,-0.13, (—0.14,-0.13,
(0.7,0.75,0.8) —-0.12); -0.12);
(0.7.0.75,0.8) (0.7,0.75,0.8)
4 (1.42,1.50,1.57);
(0.7,0.75,0.8)
(—0.14,—0.13,
-0.12);
(0.7,0.75,0.8)
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Iteration (xi, i) (Xit1: Yiv1) (X1, Vivr)
(Algorithm 3.4) (Algorithm 3.4)

1 (-10.5.-10.- (6.53,6.87,7.21); (6.53,6.87,7.21);
9.5):(0.7,0.75,0.8) (0.7,0.75,0.8) (0.7,0.75,0.8)
(95.10,105).(07,075,08) (—065.—062,—059): (—065,_062,—059)-

(0.7.0.75,0.8) (0.7,0.75,0.8)
2. (6.53,6.87,7.21); (0.00,0.00075,0.0001); (0.00,0.00075,0.0001);
(0.7,0.75,0.8) (0.7,0.75,0.8) (0.7,0.75,0.8)
(—0.65,—0.62,—0.59); (—0.000,—0.000,0.00); (—0.000,—0.000,0.00);
(0.7,0.75,0.8) (0.7,0.75,0.8) (0.7,0.75,0.8)

4. Conclusion

In this paper, a new strategy for solving fuzzy amstrained optimization issues was
proposed. In addition, triangular fuzzy number Goknts, as well as triangular
intuitionistic fuzzy number coefficients, are usdebr tackling fuzzy unconstrained
optimization problems, Steepest Descent method @odjugate Gradient method
approach is employed, and the validity of the psggbmethods is tested using numerical
examples and MATLAB programme outputs. In additiorg conducted a comparison
study of fuzzy, and intuitionistic fuzzy Steepestslbent method and fuzzy Fletcher Reeves
Method (Conjugate Gradient method) with unconsedioptimization problems and
found that our suggested method converges quickly.
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