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Abstract. In this paper, we proposed a method for solving unconstrained optimization 
problems by Newton’s method with single-valued neutrosophic triangular fuzzy number 
coefficients. Also, some numerical examples demonstrate the effectiveness of the 
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1. Introduction 
The concept of neutrosophic set (NS) was first introduced by Smarandache, which is a 
generalization of fuzzy sets. Zadeh’s classical concept of a fuzzy set is a strong 
mathematics tool to deal with the complexity generally arising from uncertainty in the form 
of ambiguity in the recent scenario. In 1965, Zadeh invented the “Fuzzy sets”, which play 
a significant role in dealing with ambiguity and impreciseness. In 1970, Bellman and Zadeh 
developed “a method for making decisions in a fuzzy environment”. In 1983, Atanassov 
introduced his intuitionistic fuzzy set.  Hepzibah et al. (2017) investigated neutrosophic 
multi-objective linear programming problems [17]. This paper, deals with the fuzzy 
Steepest Descent method and Fletcher Reeves method with single-valued neutrosophic 
triangular coefficient to solve unconstrained optimization problems. This paper is 
organised as follows. The second section provides some background information on this 
research topic. Several strategies for solving unconstrained optimization problems in a 
Neutrosophic fuzzy environment are proposed in section three. In section 4, some 
illustrative cases are offered to demonstrate this method. 
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2. Preliminaries 
This section provided an introduction to fuzzy unconstrained optimization models and 
stressed the importance to considering the topics like linear and nonlinear optimization 
problems in the fuzzy environment using arithmetic operations, and provided certain 
definitions which are related to this research work. In this section, the concept of single-
valued neutrosophic numbers, single-valued trapezoidal neutrosophic numbers and single-
valued triangular neutrosophic number with operations are introduced. 
 
Definition 1. [7] Let �� = ��, ��	
��: � ∈ ��	
�� ∈ �0,1�� is a fuzzy set. The first element � in the pair  ��, ��	
���  belongs to the classical set A, whereas the second element ��	
�� ,  belongs to the interval �0,1� known as membership function, indicated by �� =���	
�� \�: � ∈ �, ��	
�� ∈ �0,1��. 
 
Definition 2. [7] Let ℜ be the set of real numbers and ��: ℜ  → �0,1� be a fuzzy set then we 

say that �� is a fuzzy number that contains the following properties: 
(i) 0 is normal, i.e., there exist �� ∈ ℜ such that  ��
���=1; 

(ii)   �� is convex, i.e., ��
�� + 
1 − �� ≥ min%��
��, ��
 �&, where �,  ∈  ℜ and � ∈ �0,1�. 
(iii)  ��
�� is upper semi-continuous on ℜ, i.e., ' (�	
�� ≥ )* is a closed subset of ℜ 

for each ) ∈ �0,1�. 
 
Definition 3. [7] Let us take a fuzzy number +,  on  ℜ is said to be a triangular fuzzy number 

(TFN) or linear fuzzy number if its membership function +,: ℜ  → �0,1� meets the following 

features. It is a fuzzy number represents with three points as follows +, = 
-., -/, -0�. The 
following conditions apply to this representative, which is regarded as membership 
functions: 

(i) -. �1 -/ is increasing function 
(ii)  -/ �1 -0 is decreasing function. 
(iii)  -. ≤  -/ ≤ -0 

 

�+, 
��  =  
⎩⎪⎨
⎪⎧ � − -.-/ − -.  for -. ≤ � ≤ -/ -0 − �-0 − -/  for -/ ≤ � ≤ -00                     Otherwise

 

The TFN is  diagrammatically shown below.                
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Let  @
ℜ� to denote the set of all TFNs. The α level set of +, is defined as +,B �
�
-/ � -.�) � -., -0 � 
-0 � -/�)�. 
 
Definition 5. [18 Let G be a universe. A Neutrosophic Set(NS)  A in G is characterised by 
a truth-membership function C�, a indeterminacy-membership function  D�, and a falsity 
membership function  @�. C�
x�; D�
x� and @�
��   are real standard elements of [0,1]. It 

can be written as � � %�, 
C�
x�; D�
x�@�
��� I: � ∈ J, C�
x�, D�
��, @�
�� ∈
� 0,1� �.   

K
 

L There is no restriction on the sum of C�
��: D�
�� MNO @�(x) , so on 0L 2
PQRC�
�� � PQRD�
�� � PQR@�
�� 2 3K. 
 
Definition 6. [18] Let G be a universe. A single valued Neutrosophic Set (SVNS) A, which 
can be used I a real scientific and engineering applications, in G is characterised by a truth 
membership function C�, an indeterminancy- membership function D� and a falsity 
membership function @�. C�
��; D�
�� MNO @�
��, are real standard elements of [0,1] . It 

can be written as A � �U x, �C�
��, D�
��, @�
��� I: � ∈ V, C�
��, D�
�� MNO @� ∈ �0,1�. 
Thereis no restriction on the sum of C�
��, @�
��MNO D�
��, so 0 2 C�
�� � D�
�� �
@�
�� 2 3.  
 
Definition 7. [18] Let WXY , ZXY , [XY ∈ �0,1� be any real numbers. A single valued 
neutrosophic number MY � 
P., O., \., ].�; WXY �, 
P/, O/, \/, ]/�; ZXY �, 
P0, O0, \0, ]0�; [XY ��, 
is defined as a special single valued neutrosophic set on the set of real numbers R, whose 
truth-membership function �XY : ^

 
→ �0, WXY �, a determinancy-membership function _XY : ^

 
→ �0, ZXY � and a falsity-membership function `XY : ^

 
→ �0, [XY � as given by 
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�XY 
�� =   
⎩⎪⎨
⎪⎧    \ab
��,   
P. ≤ � ≤ O.�  WXY , 
O. ≤ � ≤ \.�    \ac
��, \. ≤ � ≤ ].� 0, otherwise  

�XY 
�� =   ⎩⎨
⎧ \db
�� ,   
P0 ≤ � ≤ O0� ZXY , 
O0 ≤ � ≤ \0� \dc
��, \0 ≤ � ≤ ]0� 1, otherwise  

  

�XY 
�� =   ⎩⎨
⎧\eb
�� ,   
P/ ≤ � ≤ O/�  [XY , 
O/ ≤ � ≤ \/� \ec
��, \/ ≤ � ≤ ]/� 1, otherwise  

 
2.2. Arithmetic Operations of single valued triangular neutrosophic numbers 
Let MY = 

P., O., \.�; WXY , ZXY , [XY �� MNO f	 = 

P/, O/, \/�; Wg	 , Zg	 , [g	 �� be two single 
valued triangular  neutrosophic numbers .  Then 
 
Addition [18] MY + f	 = 

P. + P/, O. + O/, \. + \/�; 
 WXY ⋀Wg	 , ZXY ⋁Zg	 , [XY ⋁[g	 �� 
 
Subtraction [18] MY − f	 = 

P. − \0, O/ − O., \0 − P., �; 
 WXY ⋀Wg	 , ZXY ⋁Zg	 , [XY ⋁[g	 �� 
 
Multiplication MY. f	 = 
jP.. ^�f	�, O.. ^�f	�, \.. ^�f	�k ; 
 WXY ⋀Wg	 , ZXY ⋁Zg	 , [XY ⋁[g	 �) , where ̂ �f	� =

P/ + O/ + \/� × 
2 + Wg	 + Zg	 − [g	 ��/8 
 
Division MY/f	 = 

P./^�f	�, O./^�f	�, \./^�f	��; 
 WXY ⋀Wg	 , ZXY ⋁Zg	 , [XY ⋁[g	 �) here ̂ �f	� = 

P/ +O/ + \/� × 
2 + Wg	 + Zg	 − [g	 ��/8 
 
Scalar Multiplication pMY = 

pP., pO., p\.�; WXY , ZXY , [XY �� qℎsts p > 0 pMY = 

p]., p\., pO.�; WXY , ZXY , [XY �� qℎsts p < 0. 
 
Definition 8. [18] Let MY = 

P., O., \.�; WXY , ZXY , [XY ��  be a single valued triangular 
neutrosophic number. Then S(MY� = 

P. + O. + \.� × 
2 + WXY − ZXY − [XY ��/8 and 
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A(MY� = 

P. + O. + \.� × 
2 + WXY − ZXY − [XY ��/8 are called score and accuracy degrees 
of MY respectively. 
 
3. Neutrosophic fuzzy steepest descent and fuzzy conjugate gradient method 
3.1. Method of  neutrosophic fuzzy steepest descent 
Now we consider an unconstrained \
�., �/, … �v�
(w,(x,…(y,�∈z{|v  has a local minimizer to be 

referred just as minimizer. The n tuple � = 
�., �/, … �v,� ∈ ^v will called the design 
vector and \
�� the corresponding objective function. Gradient based techniques are 
motivated by the fact that f decreased most rapidly at a point P in ̂v in the direction of −∇f
P�. consequently, the iteration procedure of the form  �̅
�K.� = �̅� + ` ,�O̅
�̅�� 
where as �̅� is the current estimate of �̅∗, )
�� is the step length parameter and O̅
�� =O̅
�
��� is the search direction in the space  ^v of design variables. 
If we take O̅
�� = −]̅
�� ≡ −∇\
�
���,  we get the method of steepest descent. We have �̅
�K.� = �̅� − )�
]̅
��� , ]̅
�� ≡ ∇\
�
��� 
Where ̀  ,
��  is the minimizer of the function ��` ,� = \
�
�� − ` ,]̅
��� 

We can use any of the 1-dimensional searches to determine the )
��. Initial 
approximation  �̅� is carefully selected to start the iteration procedure, as it is problem 
depended. 
 
3.2. Convergence of neutrosophic fuzzy steepest descent method for quadratic 
function  
To Illustrate convergence properties of gradient base methods, a convenient function will 

be a quadratic function of the form \�
�� = ./ �Y���Y = ./ ⟨��Y, �Y⟩ where Q is positive 

definite. If f has a minimum at �Y∗ = 0 with \�(�Y∗�=0, ]Y = ∇\�
�Y� = ��Y and ∇/\�
�Y� = �.  
Then  ��` ,� = \�
�Y  − ` ,]Y � = 12 ⟨��	 − 2` ,�/� + ` ,/�0� ��,�  �Y⟩ 
This gives  

` , = ⟨�/� �,�  �Y⟩⟨�0� �,�  �Y⟩ = ⟨� , �,� � , �Y⟩⟨� , 
� , ��,� � , �Y⟩ = ⟨],�  ]Y⟩⟨� , ],�  ]Y⟩ 
Hence the steepest descent iteration procedure for the quadratic function takes the form �Y
�K.� = �Y
�� −  �]Y�, ]Y���� , ]Y�, ]Y�� ]Y� 

Using the above formulation and the fact that  \�
�Y
�K.�� = \�
�Y
��� − 12 ��]Y�, ]Y���/�� , ]Y� , ]Y��  
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This gives \���Y
��� − \�
�Y
�K.��\�
�Y
��� = ��]Y� , ]Y���/�� , ]Y� , ]Y��⟨]Y� , �L.]Y� , ⟩
 

And hence  
\���Y
�K.�� � 
1 − p��\�
�Y
��� 

where p� = ���Y�,�Y���x�� ��Y�,�Y����Y�, ��w�Y��. 
 
Theorem 3.3. Let \� be the Neutrosophic fuzzy quadratic function of the forms gives  by \�
�� = ./ �Y���Y = ./ ⟨��Y, �Y⟩ and ��Y
���fs �ℎs ��stM�sP generated by the procedure  given 

by   �Y
�K.� = �Y
�� − �]Y� , ]Y���� , ]Y� , ]Y�� ]Y� 

Starting from any initial approximation �Y�. Then �Y
�� converges linearly to the minimizer �Y∗ = 0. 
Proof: 
Let  \���Y
�K.�� = 
1 − p���\���Y
��� 

This give \���Y
��� = ∏ 
1 − p���\�
�Y���L.|��  ��Y
��� converges to �Y∗ = 0	  if and only if \���Y
���  →  0 and in the view the above 

equation, this is possible if and only if   ∏ 
1 − p����|�� = 0, which is true, because  
1 − p��� ≤ d , ���Ld , ��yd , ��� ≤ 1. 

As �Y∗ = 0 and \�
�Y  � = ./ ⟨� , �,�  �Y⟩, Rayleigh inequality gives 
d��y

/
��Y
�K.� � �Y
���

/
2

\�
�Y
�K.� � �Y
∗� � \�
�Y
�K.��. 

Similarly 
d���

/
��Y
�� � �Y
∗��

/
≥ \�
�Y
�� � �Y
∗� � \�
�Y
���. 

Consequently, we get  
d , ��y/ ��Y
�K.� − �Y
���/ ≤ \�
�Y
�K.� = 
1 − p���\���Y
��� ≤d , ���Ld , ��y/ ��Y
�� − �Y
∗��/. 

This gives 
�(Y
��w�L(Y
∗�� 

�(Y
��L(Y
∗�� ≤ �d , ���Ld , ��yd��� . 
As �d , ���Ld , ��yd , ��� > 0 ,  �� implies that the convergence of  �Y
�� to �Y
∗� �P  linear. 

 
3.3. Algorithm for neutrosophic  fuzzy  steepest descent method 
Algorithm 3.3. 
Step 1:  Consider the unconstrained optimization problem with intuitionistic fuzzy 

triangular coefficient ]Y� j�Y
���k. 
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Step 2: Input �Y
���, ∈ let �  ← 0 

Step 3: Calculate ¡�|�
 at ¢	|�

 by  ¡�|� = ∇]Y|� where ]Y� = �	��Y� 

Step 4: (i) Calculate `�, � by using  ̀ �, � = £�Y�¤, �Y�¤¥
£� �¤�Y�¤,�Y�¤¥ where � , �]Y|� , = ∇]Y|�.(or) 

(ii) Find hessian for ]Y|�
�� then Calculate ̀�, � by using  ̀ �, � = ¦��¤
¦��¤�§¦��¤ ,̈�¤
¦��¤�§ 

where � , �]Y|� = ∇]Y|�. 
Step 5: Find the  
�Y
�K.��� = 
�Y
���� − 
`�, ]Y��� then �  ← � + 1 

Step  6: Repeat the process until �
�Y
���� − 
�Y
�K.���� <∈. Then stop the process or go 
to step 3. 
Step 7: Check the optimum. 
 
3.4. Neutrosophic fuzzy fletcher and  reeves method (neutrosophic fuzzy conjugate 
gradient method) 
In Steepest Descent method, the search direction Step 5: Find the  
O�
��� = −]Y��  then 
gives rise to iterates { �Y
��}which converge to the minimizer  �Y∗ in a zig zag way. So, there 
is need to generate new search direction  O�
�� which well make the iterates { �Y
��} converge 

faster to �Y∗. We take a quadratic function \�
�� = ./ �Y���Y = ./ ⟨��Y, �Y⟩ with Q positive 

definite. We shall generate O�
�� as mutually conjugate direction with respect to Q ��O�©, O�©� = 0, � ≠ «. 
The procedure for conjugate direction generation is 
 O�� = −]Y� = −∇
\� 
�Y
��� = −�
�Y
��� with 
�Y
��� being initial guess.  

Then �Y
�K.� = �Y� − )Y�
O�
���, we get )Y� = − �¬	�,�Y���� �¬	�,¬	��. 
This )� minimizes the function �	
)� = \�
�Y  − )YO�� � 
And hence ]Y�K. 

is orthogonal to O�� ,  for )Y  that minimizes the equation is given by �	 ­
)� = �∇\�
�Y  − )YO�� �, O�� ⟩ = 0 which is same as �]Y�K. , O�� � = 0. The next conjugate 

direction O��K. is given by O��K. = −]Y�K. + ®	�O��  where ®	�  is so chosen that O�� is  

conjugate to O��K. with respect to �.,  This gives ®	� = ��Y��w,�	 ¬	��� ¬	�,� �¬	�� .  
To evaluate � O�� , ]Y�� � O�� , ]Y�� = −� ]Y� , ]Y�� + ®	�L.� O��L., ]Y��=−� ]Y� , ]Y�� 
As ]Y� ⊥ O��L. and hence  )Y� = − � �Y�,   �Y���� �¬	�,¬	��. 
 
Theorem 3.7. The Neutrosophic fuzzy Gradient Vector {]Y�} are mutually orthogonal 
and the direction search fuzzy vectors {O��}  are mutually fuzzy Q-Conjugate. 
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Proof: The Result is true for k = 1, since O�
�� and O�
.� are Q-conjugate by the choice of ®
��. Also ]Y� = −O�� 
 Is orthogonal to ]Y.. Then prove by induction. In case O�
��, O�
.�, … , O�
�L.� are mutually 
Q-conjugate and ]Y
��, ]Y
.�, … , ]Y
�L.� are mutually orthogonal for some � ≥ 2.  
For � = � − 1, then ]Y
�� = ]Y
�L.� + )Y
�L.��O�
�L.�. And hence �]Y
��, ]Y
|�� = �]Y
�L.�, ]Y
|�� + �)Y
�L.����]Y
��, ]Y
|�� = )Y
�L.���]Y
��, ]Y
|�� = 0,                0 ≤ � ≤ � − 2 
As O�
��, O�
.�, … , O�
�L.� are Q-conjugate. Taking inner product  with �O�
|�, then �O�
��, �O�
|�� = −�]Y
��, �O�
��� + �®	
�L.���O�
�L.�, �O�
��� = −�]Y
|�, �]Y
|�� = 0,0 ≤ � ≤� − 2. 
Then, �O�
|� = �Y
��w�L�Y
��B�
�� . 
And hence we have �O�
��, �O�
|�� = ⟨�Y
�� ,�Y
��w�L�Y
��⟩B�
�� . 

Taking inner product with ]Y
��, then ⟨]Y
��, ]Y
�L.�⟩ = ⟨]Y
��, O�
�L.�⟩ −�®	
�L/�� ⟨]Y
��, O�
�L/�⟩ = �®	
�L/�� ⟨]Y
��, O�
�L/�⟩. ⟨]Y
��, ]Y
�L.�⟩ = �®	
�L/�� ⟨]Y
��, O�
�L/�⟩+)Y
�L.���O�
�L.�, O�
�L/�� = 0	. 
As ]Y
�L.� is orthogonal to O�
�L/�, and O�
�L.� and O�
�L/� are Q-Conjugate Also, O�� is 
defoned from O�
�L.� in such a way that  �O�
��, �O�
��� = 0. Combining the result we have ⟨]Y
��, ]Y
|�⟩ = 0 = �O�
��, �O�
���, 0 ≤ � ≤ � − 1. 
 
3.5. Algorithm for neutrosophic fuzzy steepest descent method 
Algorithm 3.4. 
Step 1:  Consider the unconstrained optimization problem with  intuitionistic  fuzzy 

triangular  coefficient ]Y� j�Y
���k. 
Step 2: Input �Y
���, ∈ let �  ← 0 

Step 3: Calculate ¡�|�
 at ¢	|�

 by  ¡�|� = ∇]Y|� where ]Y� = �	��Y� 

Step 4: (i) Calculate `�, � by using  ̀ �, � = ��Y��w,�Y��w�� �Y�,�Y�� (or) 

(ii) Calculate Hessian matrix A from the given  ]Y|�, then ̀ �, �
=

∇�Y�¤§∇�Y�¤
¦��¤�¦��¤§  

Step 5: Find the  O�
�K.�� = ]Y
�K.�� + `�, �O�� then �  ← � + 1. 

Step 6: Repeat the process until �
�Y
���� − 
�Y
�K.���� <∈. Then stop the process or go 
to step 3. 

Step 7: Check the optimum   �� 
∗��  ← �Y
���
 

 
4. Numerical illustrations 
Some numerical examples are provided here to check the robustness of the proposed 
algorithms. 
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Example 1: 
Case (i) 
Let us consider the unconstrained optimization problem with Neutrosophic triangular fuzzy 
coefficients., ±	
�,  � = 
0.5,1,1.5�; 
0.68,0.51,0.55�� − 
0.5,1,1.5�; 
0.67,0.54,0.54� +
1.5,2,2.5�; 
0.69,0.51,0.52�� + 
1.5,2,2.5�; 
0.7,0.65,0.72��/ +
0.5,1,1.5�; 
0.67,0.5,0.51� /.  
 
Solving this problem by the algorithm proposed in section 3.4,3.8, the MATLAB outputs 
are tabulated here. 

 
 
 

Iteration 
·¸, ¹¸� 

 


·¸Kº, ¹¸Kº� 

(Algorithm 3.4) 


·¸Kº, ¹¸Kº� 

(Algorithm 3.4) 
1 (0,0,0); 

(0.65,0.51,0.55) 

(0,0,0); 
»
−1.5, −1, −0.5�;
0.67,0.54,0.55�
0.5,1,1.5�;
0.67,0.54,0.55� ¼ »
−1.5, −1, −0.5�;
0.67,0.54,0.55�
0.5,1,1.5�;
0.67,0.54,0.55� ¼ 
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(0.65,0.51,0.55) 

2. 

 »
−1.5, −1, −0.5�;
0.67,0.54,0.55�
0.5,1,1.5�;
0.67,0.54,0.55� ¼ »
−1.5, −1, −0.5�;
0.67,0.54,0.55�
0.75,1.5,2.25�;
0.67,0.54,0.55��¼ »
−1.5, −1, −0.5�;
0.67,0.54,0.55�
0.75,1.5,2.25�;
0.67,0.54,0.55� ¼ 

 
Example 2: 
Case (i) 
Let us consider the unconstrained optimization problem  with Neutrosophic triangular 
fuzzy coefficients., ±	
�,  � = 
0.5,1. ,1.5�; 
0.8,0.75,0.6��/ + 
0.5,1.0,1.5�; 
0.7,0.65,0.75� / +
1,2,3�; 
0.74,0.75,0.68��   
Solving this problem by the algorithm proposed in section 3.4 and 3.8, the MATLAB 
outputs are tabulated here. 
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4. Conclusion 
In this paper, a new strategy for solving fuzzy unconstrained optimization issues was 
proposed. In addition, triangular fuzzy number coefficients, as well as triangular 
intuitionistic fuzzy number coefficients, are used. For tackling fuzzy unconstrained 
optimization problems, Steepest Descent method and Conjugate Gradient method  
approach is employed, and the validity of the proposed methods is tested using numerical 
examples and MATLAB programme outputs. In addition, we conducted a comparison 
study of fuzzy, and intuitionistic fuzzy Steepest Descent method and fuzzy Fletcher Reeves 
Method (Conjugate Gradient method) with unconstrained optimization problems and 
found that our suggested method converges quickly. 
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