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1. Introduction  
Let h(G) be the number of chains of subgroups of G which ends in G. This actually 
represents the distinct number of the fuzzy subgroups of G (see [5]). Suppose that M1, M2, 
..., Mt are the maximal subgroups of G The method of computing h(G) is based on the 
application of the Inclusion-Exclusion Principle. This had been extensively discussed in 
our article [1]. Following our paper [1] (Also see [3] and [4]) the following equation (x) 
based on the usual Inclusive-Exclusive technique is applied :   

 
 
The fuzzy subgroup for the nilpotent group of the form: Mpn × Cp. 

We approach this particular concept from two distinct perspectives namely; when p = 2 
and in the subsequent case, p > 2. And, of course, p is a prime. 
 
The nilpotent 2-group of the form M2n ×C2.  
This case was already settled in one of our papers. 
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The derivation of h(Mpn × Cp) for p > 2 
We begin with the case p = 3 and n = 3 By theorem (γ), there exists 13 distinct maximal 
subgroups for M33 × C3. 
By (x), we have:     
 

       
 
          - 27h( ℤ�� ) −12h( ℤ� � ℤ�)+27h( ℤ�) 
 ∴     h(M33×C3) = 420+2h( ℤ� � ℤ� � ℤ��,)  = 736. 
  
2. Determination of h(Mpn × C2) 
Following a careful analysis and subsequent operations on the maximal subgroups, we have 
in general, an estimate given by: 

 
 
Theorem 1. Let G = Mpn×C2, the modular nilpotent group formed by taking the cartesian 
product of the modular p-group of order pn and a cyclic group of order p, where p is a prime. 
Then, the number of distinct fuzzy subgroups of G for n > 4 is given by: 
  ℎ
��
� 
 2� �3 �� � 56� � 7312 � , � � 2

2����� 
1 � ��� � �
3 � � � 4� �� � 
7� � 3� � 3� � 4�" � 4��,   for � & 2 

 
Proof: For all values of p, there exist only one maximal subgroup which is isomorphic to 
the abelian type: ℤ' � ℤ' � ℤ'()�  ,  p of the maximal subgroups are isomorphic to : ℤ' � ℤ'()*   , while  p2   of them are isomorphic to Mpn. We have : 

 
We now have h(Mpn×C2) = 2n−1[p(p+1)(np+2)−p3]+2n−1[(3n−5)p+(n2−5)p2 + (n2 − 5n + 8)p3 

+ 4] − 4p3 = 2n−1[p2(1 + p)n2 + p(3 + p − 4p2)n 
+(7p3 −3p2 −3p+4)]−4p3. And h(M2n ×C2) = 2n(3n2 +5n−4),for n > 4,p = 2 
 
3. Conclusion 
Finally, the general classification for the nilpotent p-groups of the specified modular 
structure given by: Mpn × Cp is thus hereby clearly made with the number of distinct fuzzy 
subgroups explicitly computed for all prime p and every non zero integer n ≥ 3. 
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