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1. Introduction

The classifications in finite p-grouos is fast gagnconsiderable grounds. Of recent,
various contributions have been made of which maaple, resourceful, benefita and
enriching | publications have been made. In [1§,¢hse of dihedral was considered while
[2] dealt with the generalisd quaternion. In [Bl tork was extended to the quasidihedral
(otherwise refered to as the semidihedral groum), In [4], efforts are being made to
close these aspect up by generalising the congeps the entire prime i.e including
both the even as well as the odd cases. Many wirkBCI/BCK algebras and related
algebras are available in literature, some of theendiscussed in [7-15].

The following properties for the fuzzy subgroupssofvere known.
1. The level sets of a fuzzy subset of adigigt form a chain .
2. A is afuzzy subgroup of G iff its level sets arbguoups of G’
3. The relation~ is an equivalence relation on fuzzy subgroups eff@re
for fuzzy subgroupsgt, v of G, u ~ v iff vx,y € G, (u(x) > u®)iffv(x) > v(y)).

2. Preliminaries
Suppose tha{G,-,e) is a group with identitye. Let S(G) denote the collection of all
fuzzy subsets of;. An elementl € S(G) is said to be a fuzzy subgroup 6fif the
following two conditions are sat.

1. A(ab) =€ {A(a),A(b)}, V a,b€G;

2. A(a™! = A(a) foranya €G.
And, since(a™1)"! = a, we have thai(a™!) = A(a), for anya € G.
Also, by this notation and definitiord,(e) = supA(G). [Marius [5]].

Now, concerning the subgroups, the B&{G) possessing all fuzzy subgroups of
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G forms a lattice under the usual ordering of fugeyinclusion. This is called the fuzzy
subgroup lattice ofs.

In what follows, the method that will be used irunting the chains of fuzzy
subgroups of an arbitrary finite-group G is described. ( See [2] and [3] ) Suppose that
M;, M,, ..., M, are the maximal subgroups 6f Let h(G) denote the number of chains of
subgroups ofG which ends inG. The method of computing(G) is based on the
application of the Inclusion-Exclusion Principlé.A is the set of chains i of type
C,cC,c--cC,=G,andA’ represents the set of chainsAfwhich are contained in
M., r=1,..,¢t.

Then we have:

|A] =1+ |4"| = |U7=1 4/l
=1+ Zf’:l |Ar] — lerlsrzst |Ar1 n Ar2| +t (_1)t_1|n£=1 Arl
Observe that, for every <w <t and1<r, <r, <--<m, <t, the setN, 4,
consists of all chains of” which are included iM}.; M,,. We have that

-1
|ﬂ‘i”=1 Ar,-| = 2h(ﬂ‘i/l;l Mri)
Al =1+Xi; h(M) —1) — Yisry<ryst (h(My, N M;,) — 1)

++ (DI 2R(NE, M) — 1)

= 22ty h(My) = Sasryaryze KMy, O M) + 4 (D R(NEL, M)+ C
And
C=1+ Zf’:l (_1) - 21 sr <r,st (_1) +--t (_1)t_1(_1)
=(1-1)t=0
we have that:
h(G) = 2(21{:1 h(M,) — 215r1<r25t h(Mr1 n Mrz)

+ 4 (DTN M) (3)
In [6], (3) was used to obtain the explicit formulaf h(D,,) for some positive integers
n. (Also see [1]) and [2]

Theorem 2. [5] The number of distinct fuzzy subgroups of a fimtgroup of orderp™
which have a cyclic maximal subgroup is:

h(Zyn) = 27

h(Dyn) = 22771

h(pyn) = 22772

h(S,n) = 3.2%173

h(Zy X Zyn-1) = h(Mpn) = 2712 + (n — 1)p]

agrownPE

3. Thenilpotent 2-group of theform M,» X C,
Recall that

Mpn = (x,y]x?" =y? =1, y~lxy=x1+2"")
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Sincen = 3 is not defined for this particular structure, wegin by taking the case,
n = 4. We have:
My = (x,y|x® = y? =1, y~lxy = x°)

6 .7

2 3 4 5
1,x,x%x°,x%x°,x°,x",y,xy,

x%y, x3y, x*y, x>y, x%y,x7y
1,x,x2,x3,x%, x°,x8,x7,y, xy,
From hereM,+ X C, = x {1,a}
XZ 3 4 5 6 7
XY, XY, X"y, X"y, X"y

((1,1),(1,a), (x,=1), (x,a), (x%,1), (x%,a), (x3,1), (x3,a), (x*, 1), (x*,a),
(x> 1), (x%a), (1), (x4, @), (x,7, 1), (x7,a), (v, 1), v, @), (xy, 1), (xy, @),
(y, 1), (x*y,0), (*y, 1), (x*y, @), (x*y, 1), (x*y, ), (x°y, 1), (x°y, @),

\(x°y, 1), (x%y,@), (x"y, 1), (x"y,a)

We have the maximal subgroups fd+ x C, as follows:

M1 =
1D, 1 @), (6 D), (x,a), (%, D), (%, a), (% 1), (°, @), (x*, 1), (x*, @),

(x5, 1), (x5 a),(x,1),(x%,a),(x,7,1), (x7,a),
MZ =
(1,1, (x,1), (x%,1), (x3,1), (x*, 1), (x>, 1), (x5,1), (x7, 1), }

1), (xy, 1), (x2y, 1), (x3y, 1), (x*y, 1), (x°y, 1), (x®y,1), (x"y, 1)

M3 =
(1,1), (x, 1), (x%,1), (x3,1), (x*, 1), (x>, 1), (x%, 1), (x7, 1), }

0, @), (xy, @), (x*y, ), (x*y, ), (x*y, @), (x°y, @), (x°y, @), (x"y,a)

M, =
1D, (@), (6%, 1), (2%, @), (¢, D), (x°, @), (x°, 1), (7, @),

M5 =
(1,1), (x,a), (x2,1), (x3,a), (x*, 1), (x°,a), (x°,1), (x7, a),

—~—~ e @ —

. @), (xy, 1), (x?y, @), (x3y, 1), (x*y, @), (x°y, 1), (x®y, @), (x”y, 1)}

1), (xy, a), (x*y, 1), (xy, a), (x*y, 1), (x°y, a), (x®y, 1), (x"y,a

M6=
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(1,1),(1,a), (x%,1), (x%,a), (x*, 1), (x*, ), (x°,1), (x°, a),

0, D, (v, a), (x%y, 1), (x*y,a), (x*y, 1), (x*y, @), (x°y, 1), (x®y, @)

M, =
(LD, (1, 0), (% 1), (x%, @), (x*, 1), (x*, @), (x°, 1), (x°, @),

(xy,1), (xy, @), (x3y, 1), (x*y, @), (x°y, 1), (x°y, @), (x”y, 1), (x"y, @)

From here M; = Z, X Z,3,
M, =M; =M, =M =M, =M,
And, Mg = 7y X Zy X Zy2.
By making the application of equation (c), we have,
~h(Mys X Cp) = [2h(Zy X L) + 4h(Ms) + h(Zy X Ty X L2)]
—3[h(Zy3) + h(Zy X Ly2) + 20(Zp3) + 2h(Zy X T.p2)]
+[28h(Zy2) + 2h(Z,3) + h(Zy X Zy2) + 2h((Zy3)
+2h(Zy X Z,2)] — 35h(Zy2) + 21h(Z,2) — Th(Z2) + h(Z,2)
= 2h(Zy X Zy3) + 4h(My4) + h(Zy X Zy X Zy2)
—8h(Z,3) — 6h(Zy X Tp2) + 8h(Z,2)
= 4(64) + 2(64) + 304 — 8(8) — 6(24) + 8(4)
=320+304+32— 144
= 512.
v h(Mya X C;) = 2 X 512 = 1024.

The number of fuzzy subgroups of the nilpotent group : M,s X C;
1
Eh(MZS X C3) = [2h(Zy X Zys) + 4h(My5) + h(Zy X Zy X Zy3)]

—3[R(Zys) + h(Zy X Lyz) + 2R(Zya) + 21(Zy X T3)]
+[28h(Zy3) + 2h(Zys) + h(Zy X Ly3) + 2h(Zps) + 2h(Zy X T,3)]
—35h(Zy2) + 21h(Zy3) — Th(Z,3) + h(Zy2)

= 2h(Zy X Tys) + 4h(Mys) + h(Zy X Ty X T3)

—8R(Zys) — 6h(Zy X Ly3) + 8h(Z,3)

= h(Z, X T X L,3) + 2(160) + 4(160) — 8(16) — 6(64) X 8(8)
= h(Zy X Ty X Ly3) + 512

= 1024 + 512 = 1536

. h(Mys X C) = 2 x 5136

= 3072.

4. The number of fuzzy subgroups of the nilpotent group: Moy X C,
In general, for any positive integar> 4
2h(Zy X Zyn-1) + 4h(Myn) + h(Zy X Zy X Zoyn-2))
h(Myn X C;) =2
—8h(Zyn-1) — 6h(Zy X Zyn-2) + 8h(Zyn-2)
= 2h(Zy X Ly X Lpn-2) + 2" (3n + 1)
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=2"3n? —n—6)+2"1(3n+1)

h(Myn X C;)) =2"(3n? +5n—4), n>4
2

—on 3\ _73 —

=2 [3(n+6) 12]’ p=2

5. Conclusion

Finally, the classification for the nilpotent 2-gpms of the specified modular structure
given by : M,n» X C, is thus hereby clearly made with the number ofiris fuzzy
subgroups explicitly computed for the prime= 2 and every non zero integar> 3
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