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1. Introduction 
Denote by )(Gh  the number of chains of subgroups of G  which ends in G .This 

actually represents the distinct number of the fuzzy subgroups of G . Suppose that 

tMMM ,,, 21 …  are the maximal subgroups of G  The method of computing )(Gh  is 

based on the application of the Inclusion-Exclusion Principle. This had been extensively 
discussed in our article[1] Following our paper[1] the following equation(*) based on the 
usual Inclusive-Exclusive technique is appliied :  

ℎ(�) = 2 ���
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(1) 
For more algebraic structures see [7-10]. 

 

2. The Cartesian product of the quasidihedral group of order n2  and a cyclic group 
of order 2 

The Quasidihedral (otherwise known as the semidihedral) group of order n2  has the 
general structure of the form given by:  
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There also exist seven distinct maximal subgroups for this structure. 
Since 3232

DS ≅ , we begin from the case, 4=n . 

Set 242
= CSG × . 12 ℎ(�) = ℎ(Z� × Z��) + 4ℎ( �!) + ℎ("�� × #�) + ℎ($�� × #�) − 4ℎ(Z��)− 2ℎ(Z� × Z��) − 4ℎ($��) − 4ℎ("��) + 8ℎ(Z��)= 2& + 4(3)(2() + 432 + 176 − 4(16) − 4(32) ∴   ℎ( �! × #�) = 2 × 816 = 1632. 

 
3. Number of fuzzy subgroup for S2n × C2 in general 
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Theorem 1.  Let G  be a nilpotent group of the quasidihedral group of order n2  and a 
cyclic group of order 2, that is , .= 22

CSDG n ×  Then, the number of distinct fuzzy 

subgroups of G  is given by  

,21)(32=)( 112 +− −+ nn nGh  for 3>n   

Proof: While 22  of the maximal subgroups are isomorphic to ,
2nS  each of the 

remaining three is isomorphic to ,122 −× nZZ  ,212
CD n ×−  and ,212

CQ n ×−  

respectively.Using this on equation(3.2.1), we have the following:  
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 Alternatively, set F(n) = ),( 22
CSDh n ×  and by assuming the truth of  

F(k) = ℎ( "�- × #�) = 2./� + 8ℎ( "�- + 2ℎ( "�-0� × #�)          +2ℎ($�-0� × #�) − 3. 2�(.��) + 1,  
we show the truth of F(k+1). 
 
Thus,  

F(k+1) = ℎ( "�-4� × #�) = 2./� + 8ℎ( "�-4� + 2ℎ( "�- × #�)               +2ℎ5$�- × #�6 − 3. 2�./�               = 2�./�(37 + 4) − 2./�, which is true.  
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