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1. Introduction
Denote by h(G) the number of chains of subgroups @ which ends inG .This

actually represents the distinct number of the yugabgroups ofG . Suppose that
M,,M,,...,M, are the maximal subgroups & The method of computindn(G) is

based on the application of the Inclusion-Excludtsimciple. This had been extensively
discussed in our article[1] Following our papenfi¢ following equation(*) based on the
usual Inclusive-Exclusive technique is appliied :

t
h(Mrl n Mrz) +-t (_1)t_1h (ﬂ Mr)

r=1

t
h(G) =2 z h(M,) —
r=1

1<r <r,st

(1)

For more algebraic structures see [7-10].

2. The Cartesian product of the quasidihedral groupf order 2" and a cyclic group
of order 2

The Quasidihedral (otherwise known as the semidétpdroup of order2" has the
general structure of the form given by:

S, =(X, y|x2n_1 =y?=1, yxy= x‘mH), n>3
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There also exist seven distinct maximal subgroopshis structure.
Since 823 U D23 , we begin from the case) = 4.

Set G= 824 xC,.

%h(G) = h(Zy X Z,3) + 4h(S,4) + h(Dy3 X Cy) + h(Q,3 X Cy) — 4h(Z,3)

— 2h(Zy X Zy2) — 4h(Q,3) — 4h(D,3) + 8h(Z,2)
=2%+4(3)(2%) + 432+ 176 — 4(16) — 4(32)
h(S,e X Cy) =2 %X 816 = 1632.

3. Number of fuzzy subgroup for $" x Cz in general
h(S,, xC,) = 2[2" +4N(S,) +h(D ,, XC,) +h(Q,, X C,) — (3)2" ]

n-3
+2°73(4n=5) = 2" + 271 ) "2m
k=1

- n-3 - n-3
= 22“(§ L 5) *20Y 2 = 22“(—6+ on 5) 2y 2
2 4 = 4 =
— 22n—2 (6n +1+ 1) _ 2n+l — 22n—2 (6n + 2) _ 2n+l
- 22n—l(3n + 1) _ 2n+l

Theorem 1. Let G be a nilpotent group of the quasidihedral groupraer 2" and a
cyclic group of order 2, that is G = SD2n xC,. Then, the number of distinct fuzzy

subgroups ofG is given by

h(G) = 2*"*(3n+1)-2"", for n>3
Proof: While 2° of the maximal subgroups are isomorphic Sgn, each of the
remaining three is isomorphic toszzzn_l, Dzn_lXCz, and QZHXCZ,

respectively.Using this on equation(3.2.1), we hiesfollowing:

h(SDZ“ xC,) = 2[2" + 4h(82n) + h(Dzn—l xC,) + h(an_l xC,) - (3)22(n_1)]
- 22n—l(3n +1) _ 2n+1’

Alternatively, set F(n) =h(S.D2n xC,), and by assuming the truth of

F(K) = h(SDk X Cp) = 2K+1 + 8h(SD ik + 2h(SDyk1 X C3)

+2h(Q -1 X Cp) — 3.22k"D 4 1,
we show the truth of F(k+1).

Thus,
F(k+1) = h(SD,ks1 X Cy) = 2K%2 4+ 8h(SDykr1 + 2h(SD,k X C3)
+2h(Q,k X C;) — 3.2%k+1
= 22k+1(3k + 4) — 2%*2 which is true.
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