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Abstract. Connectivity indices are applied to measure themita characteristics of
chemical compounds in Chemical Sciences, Medidan8es. In this study, we introduce
the multiplicativeABC neighborhood Dakshayani index, multiplicati®é neighborhood
Dakshayani index and multiplicativdG neighborhood Dakshayani index of a molecular
graph. We compute these multiplicative connectivigighborhood Dakshayani indices
of POPAM dendrimers. Also we determine the multiplicativeams connectivity
neighborhood Dakshayani index and multiplicativedurct connectivity neighborhood
Dakshayani index dPOPAMdendrimers.
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1. Introduction
Chemical Graph Theory is a branch of Mathematidar@istry which has an important
effect on the development of Chemical Sciences, id&dSciences. Numerous
topological indices or graph indices have been idensd in Theoretical Chemistry,
especially in QSPR/QSAR study, see [1, 2].

Let G be a finite, simple, connected graph with ver#s) and edge sdf(G).
The degreals(v) of a vertexv is the number of vertices adjacent\oThe set of all
vertices which adjacent to a vertexs called open neighborhood wfand denoted by
Ng(V). The closed neighborhood set of a venas the setNg[v] = Ng(v)O{Vv}. The set
Ng[V] is the set of closed neighborhood vertices.dfet Dg (v) = dg (V) + >’ Dg(u)

uONg (V)

be the degree sum of closed neighborhood verti€es @e refer [3] for undefined
definitions and notations.

The first and second neighborhood Dakshayani @sdiof a graph were
introduced by Kulli in [4], defined as

ND(G)= > [Ds(u+Ds(W], ND(G)= > Dy(u) Ds(V.

uwOE(Y uwOE(Y

Recently, some novel variants of neighborhood Bakani indices were

introduced and studied such dSneighborhood Dakshayani index [5], square
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neighborhood Dakshayani index [6], sum and prodoehnectivity neighborhood
Dakshayani indices [7].

In [8], Kulli introduced the first and second niplicative neighborhood
Dakshayani indices, first and second multiplioatihyper Dakshayani indices,
multiplicative sum and product connectivity neightmod Dakshayani indices,
reciprocal multiplicative neighborhood Dakshayandex, general first and second
multiplicative neighborhood Dakshayani indices gfraph, defined as

ND I (G) = [ Dg (u) + Dg (V) |
wIE(Q
ND, Il (G) = Dg (u) Dg (V).
TVal=qe)

HND I (G) = |‘I [Dg (u) + Dg (V).
TVa[=(e)

HND, Il (G) = |‘l [Dg (u) Ds (V.
wWIE(Q

1

SNDII(G) = .
uwlE G)\/DG (u) + DG(V)

PND(G) = _
ME!@ Dg (u) Dg (V)

RNDII(G) = VD (u) D5 (V).

uE(Q)
ND2II (G) = [Dg (u)+ D (W,
uE(G) D

ND2II (G) = |‘! [Dg (u) D (W T,
Tval=q¢)

2
wherea is a real number.
We introduce the multiplicative atom bond connetti (ABC) neighborhood
Dakshayani index of a graph G, defined as

ABCNDII(G) = \/
Tyal={c)

Dg (u) + Dg (V) -2
Dg (u)Dg(v) 3)

We now propose the multiplicative geometric-arighim (GA) neighborhood
Dakshayani index, defined as

GANDII(G) = 2/Dg (W) Dg (V)
wiele Do (u)+Dg (V) (4)

Also we introduce the multiplicative arithmeticegeetric AG) neighborhood
Dakshayani index of a graph, defined as

Dg (u) + Dg (V)
WOE Q) 2 DG (U) DG (V)

AGNDII(G) =
(5)
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Recently some new multiplicative indices were &ddor example, in [9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23184 26].

In this study, the multiplicative sum and prodwcinnectivity neighborhood
Dakshayani indicesABC, GA, AG neighborhood Dakshayani indices BIOPAM
dendrimers were determined.

2. Resultsfor POPAM Dendrimers

We consider the familiPOPAM dendrimers, which is symbolized BYOD;[n], wheren
is the steps of growth IROPAMdendrimers. A graph d?OD,[2] is presented in Figure
1.

H,N NH,
H.N § NH,
g\—N N__/_/
HN \ < } NH,
N\./\’N N
HN """ A ([ V\"N\/\,NH
N ~""N
H;Nf\/\ « i
J/N’\/-\M N,\/\N/\f‘NH
o { ; NH-
N N
Tl -
HN NH,

Figure 1: Graph ofPOD,[2].

Let G be the graph of &0D,[n] dendrimer. By calculation has 2°- 11
edges. The edge partition Gfbased on the degree sum of closed neighborhooidegrt
of each vertex is obtained in given in Table 1.

Table 1. Edge partition o0POD,[n]
De(u), De(v) \UMIE(G) (3,5) (5,6) (6,6)  (6,7) (7,9)

Number of edges g o™ 1 3x*?_6 3x2%_6

Theorem 1. The general first multiplicative neighborhood Diaégani index of a
POD,[N] is

NDla” I:PODz(n)] :8a2"+2 xllazw % 1?)( g&zuz_é % 1é ¥ o2 6 (6)
Proof: Let G=POD,[n]. By using equation (1) and Table 1, we obtain

ND2II (POD,[n]) = |‘! [Ds(W+ s (V]
wlE(G)

=(3+ 5)a2"*2 x(5+ 6)a2m2 x( 6+ eax( 6+ 76‘32“2—@ +( 7 96(3 72— ¢
=882 11827 x 1P x 1 AHZ-8  1d32-8
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We obtain the following results by using Theorem 1
Corollary 1.1. If POD,[n] is a graph oPOPAMdendrimer, then

i) ND, Il (POD,[n]) =87 x 187" x 12x 187" 6x 1§ 2" ©
i) HND, Il (POD,[n]) =87 12" x 12x 182"~ 12x 16 2"~ 12

2

1 2m2 1 2 1 1 XxI"?-6 13?2—6
i SNDII{ PO = —= — — — = .
) (ponl )] () {@lE )
Proof: Puta=1, 2, — % in equation (6), we get the requiesiilts.

Theorem 2. The general second multiplicative neighborhood dbalyani index of
POD,[N] is

NDZ11[POD,(n)]=152" x 367" x 36'x 424*Z™-0x 4328 (7)
Proof: Let G be a graph oPOD,[n]. By using equation (2) and Table 1, we deduce

ND21I (POD,[n]) = |‘l [Ds (W) D5 (V]
wJE(G)

:(3X5 :312’”2)((5>< 6)a2”+2x(®< 6a+( 6< 7&&2\&_@)(( 7( 96(32*2—6
=152 x 3072 x 36 x 4?‘3‘2”‘9 x 6é3<2”-é

Corollary 2.1. LetPODy[n] be a graph odPOPAMdendrimer. Then
i) ND,Il (POD,[n]) =15 x 307" x 36x 43Z"~6x 32"~ ¢
i) HND, Il (POD,[n]) =15 x 3" x 3¢x 452"~ 12« & 2"~ 12

et ] 5] A A
v) RNDII(POD[A)=(vI5)" x(v30) x(vad™™ “x(ye3™* °

Proof: Puta=1, 2, — %, ¥ in equation (7), we obtain the rdekiesults.

Theorem 3. The multiplicative atom bond connectivity neighthood Dakshayani index
of POD,[N] is given by

ABCNDII( PODB[ 1) = @)z x(\/%)zm x\/%x (\/%ZJMQ_GX(\@ e 6.

Proof: Let G be a graph oPOD,[n]. From equation (3) and by using Table 1, we deduc

B Dg (u) + DG(V)_2
ABCND( POD[ 1) ~ A G)\/ Dg (u) Dg (v)

2n+2 2n+2 1
_( /3+5—2] x(/5+6—2] x(/e-r& zj
3x5 5x 6 6x 6
3x2"2-6 X 2?-6
[6+7-2 [7+9- 2
X X
6x7 7% 9

80




Multiplicative ABC, GA andAG Neighborhood Dakshayani Indices of Dendrimers

2n+2 2n+2 3<21+2_6 3 2+2_ 6
) ) s A
= — X J— X [— X JR— X —_ .
5 10 18 42 9

Theorem 4. The multiplicative geometric-arithmetic neighbookloDakshayani index of

POD;,[n] is given by
@jz x[z\/?ojz x(z\/4—2j3><2" _6x(3/_7j3<?_6

GANDII (POD; [ r’])z( . m 0 5

Proof: Let G be a graph oPOD,[n]. From equation (4) and by using Table 1, we deriv

GANDII(POD,[ ) = 2/Dg (u) Dg (V)

wiele Do (u)+Dg (V)

YO R EETNE L2 NE'CS S o

3+5 5+ 6 6+ 6 6+7 7+9
ome o2 Xx2*2-6 x22-¢
15 A5 AT A
4 11 13 8

Theorem 5. The multiplicative arithmetic-geometric neighbookioDakshayani index of
POD,[N] is

AGNDIl(PODg[f’]):(\/%TMX(zj%)jzmx(% MH_GX( ;7]32“2_ }

Proof: LetG = PODy[n]. By using equation (5) and Table 1, we obtain
Dg (u) + Dg (V)

wiete 24 Dg (u) Dg (V)
RO E

= X X X X| —
2/3x5 2/5¢ 6 2/ & /6% 7 7x 9

V15 2/30 3/ 4 97
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