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Abstract. Connectivity indices are applied to measure the chemical characteristics of 
chemical compounds in Chemical Sciences, Medical Sciences. In this study, we introduce 
the multiplicative ABC neighborhood Dakshayani index, multiplicative GA neighborhood 
Dakshayani index and multiplicative AG neighborhood Dakshayani index of a molecular 
graph. We compute these multiplicative connectivity neighborhood Dakshayani indices 
of POPAM dendrimers. Also we determine the multiplicative sum connectivity 
neighborhood Dakshayani index and multiplicative product connectivity neighborhood 
Dakshayani index of POPAM dendrimers. 
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1. Introduction 
Chemical Graph Theory is a branch of Mathematical Chemistry which has an important 
effect on the development of Chemical Sciences, Medical Sciences. Numerous 
topological indices or graph indices have been considered in Theoretical  Chemistry, 
especially in QSPR/QSAR study, see [1, 2]. 
 Let G be a finite, simple, connected graph with vertex V(G) and edge set E(G). 
The degree dG(v) of a vertex v is the number of vertices adjacent to v. The set of all 
vertices which adjacent to a vertex v is called open neighborhood of v and denoted by 
NG(v). The closed neighborhood set of a vertex v is the set NG[v] = NG(v)∪{ v}. The set 
NG[v] is the set of closed neighborhood vertices of v. Let ( ) ( ) ( )

( )∈
= + ∑

G

G G G
u N v

D v d v D u

 

be the degree sum of closed neighborhood vertices of v. We refer [3] for undefined 
definitions and notations. 
 The first and second neighborhood Dakshayani indices of a graph were 
introduced by Kulli in [4], defined as  

 ( ) ( ) ( )
( )

1 ,
∈

 = + ∑ G G
uv E v

ND G D u D v  ( ) ( ) ( )
( )

2 .
∈

= ∑ G G
uv E v

ND G D u D v  

 Recently, some novel variants of neighborhood Dakshayani indices were 
introduced and studied such as F-neighborhood Dakshayani index [5], square 
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neighborhood Dakshayani index [6], sum and product connectivity neighborhood 
Dakshayani indices [7]. 
 In [8], Kulli introduced the first and second multiplicative neighborhood 
Dakshayani indices, first and  second multiplicative hyper Dakshayani indices, 
multiplicative sum and product connectivity neighborhood Dakshayani indices,  
reciprocal multiplicative neighborhood Dakshayani index, general first and second 
multiplicative neighborhood Dakshayani indices of a graph, defined as  

( ) ( ) ( )
( )

1 .G G
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ND II G D u D v
∈
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where a is a real number. 
 We introduce the multiplicative atom bond connectivity (ABC) neighborhood 
Dakshayani index of a graph G, defined as 

 ( ) ( ) ( )
( ) ( )( )

2
.G G

G Guv E G

D u D v
ABCNDII G

D u D v∈

+ −= ∏
                             (3)

 

 We now propose the multiplicative geometric-arithmetic (GA) neighborhood 
Dakshayani index, defined as  

 ( )
( ) ( )

( ) ( )( )

2
.G G

G Guv E G

D u D v
GANDII G

D u D v∈
=

+∏
                                       (4)

 

 Also we introduce the multiplicative arithmetic-geometric (AG) neighborhood 
Dakshayani index of a graph, defined as  

 ( ) ( ) ( )
( ) ( )( )

.
2
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uv E G G G

D u D v
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+= ∏
   (5)
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 Recently some new multiplicative indices were studied for example, in [9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 15, 26]. 
 In this study, the multiplicative sum and product connectivity neighborhood 
Dakshayani indices, ABC, GA, AG neighborhood Dakshayani indices of POPAM 
dendrimers were determined. 
 
2. Results for POPAM Dendrimers 
We consider the family POPAM dendrimers, which is symbolized by POD2[n], where n 
is the steps of growth in POPAM dendrimers. A graph of POD2[2] is presented in Figure 
1. 

 
Figure 1: Graph of POD2[2]. 

 
 Let G be the graph of a POD2[n] dendrimer. By calculation, G has 2n+5– 11 
edges. The edge partition of G based on the degree sum of closed neighborhood vertices 
of each vertex is obtained in given in Table 1. 
 

Table 1: Edge partition of POD2[n] 

DG(u), DG(v) \ uv∈E(G) (3, 5) (5, 6) (6, 6) (6, 7) (7, 9) 

Number of edges 2n+2 2n+2 1 3×2n+2  – 6 3×2n+2 – 6 

 
Theorem 1. The general first multiplicative neighborhood Dakshayani index of a 
POD2[n] is  

( ) ( ) ( )2 2 2 22 2 3 2 6 3 2 6
1 2 8 11 12 8 16 .

n n n na a a a a aND II POD n
+ + + +× − × −  = × × × ×   (6) 

Proof: Let G = POD2[n]. By using equation (1) and Table 1, we obtain 

[ ]( ) ( ) ( )
( )

1 2
aa

G G
uv E G

ND II POD n D u D v
∈

 = + ∏  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 22 2 3 2 6 3 2 6
3 5 5 6 6 6 6 7 7 9

n n n na a a a a+ + + +× − × −= + × + × + × + + +  

( ) ( )2 2 2 22 2 3 2 6 3 2 68 11 12 13 16 .
n n n na a a a a+ + + +× − × −= × × × ×  
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 We obtain the following results by using Theorem 1.  
Corollary 1.1. If POD2[n] is a graph of POPAM dendrimer, then 

i) [ ]( ) 2 2 2 22 2 3 2 6 3 2 6
1 2 8 11 12 13 16 .

n n n n

ND II POD n
+ + + +× − × −= × × × ×  

ii) [ ]( ) 3 3 2 22 2 2 6 2 12 6 2 12
1 2 8 11 12 13 16 .

n n n n

HND II POD n
+ + + +× − × −= × × × ×  

iii) [ ]( )
2 2 2 22 2 3 2 6 3 2 6

2
1 1 1 1 1

.
48 11 12 13

n n n n

SNDII POD n

+ + + +× − × −
         = × × × ×                

 

Proof: Put a = 1, 2, – ½ in equation (6), we get the required results. 
 
Theorem 2. The general second multiplicative neighborhood Dakshayani index of 
POD2[n] is  

( ) ( ) ( )2 2 2 22 2 3 2 6 3 2 6
2 2 15 30 36 42 63

n n n na a a a a aND II POD n
+ + + +× − × −  = × × × ×   

(7) 

Proof: Let G be a graph of POD2[n]. By using equation (2) and Table 1, we deduce 
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Corollary 2.1. Let POD2[n] be a graph of POPAM dendrimer. Then  
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iv) [ ]( ) ( ) ( ) ( ) ( )
22 2 23 2 22 2 3 2 6

2 15 30 42 63 .
nn n n

RNDII POD n
++ + +× − × −

= × × ×  

Proof: Put a = 1, 2, – ½, ½ in equation (7), we obtain the desired results. 
 
Theorem 3. The multiplicative atom bond connectivity neighborhood Dakshayani index 
of POD2[n] is given by  

[ ]( )
2 2 22 2 3 2 6 3 2 62

2
2 3 5 11 2

.
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+ + ++ × − × −
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n n nn

ABCNDII POD n  

Proof: Let G be a graph of POD2[n]. From equation (3) and by using Table 1, we deduce  
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Theorem 4. The multiplicative geometric-arithmetic neighborhood Dakshayani index of 
POD2[n] is given by 

[ ]( )
2 22 2

2
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Proof: Let G be a graph of POD2[n]. From equation (4) and by using Table 1, we derive  
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Theorem 5. The multiplicative arithmetic-geometric neighborhood Dakshayani index of 
POD2[n] is 

[ ]( )
2 2 2 22 2 3 2 6 3 2 6

2
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Proof: Let G = POD2[n]. By using equation (5) and Table 1, we obtain 
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