Intern. J. Fuzzy Mathematical Archive Vol. 17, No. 1, 2019, 61-67 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 23 June 2019 <u>www.researchmathsci.org</u> DOI: http://dx.doi.org/10.22457/201ijfma.v17n1a6

International Journal of **Fuzzy Mathematical** Archive

Multiplicative Kulli-Basava Indices

V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585106, India e-mail: vrkulli@gmail.com

Received 1 June 2019; accepted 20 June 2019

Abstract. A topological index is a numeric quantity from the graph structure of a molecule. In this paper, we introduce the multiplicative total Kulli-Basava index, multiplicative modified first Kulli-Basava index, multiplicative *F*-Kulli-Basava index, general multiplicative Kulli-Basava index of a graph. We compute these indices for regular graphs, wheel, gear and helm graphs.

Keywords: Multiplicative *F*-Kulli-Basava index, general multiplicative Kulli-Basava index, regular, wheel, gear helm graphs

AMS Mathematics Subject Classification (2010): 05C05, 05C12, 05C35

1. Introduction

In this paper, *G* denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex set and the edge set. Let $d_G(v)$ denote the degree of a vertex *v*. The degree of an edge e = uv in a graph *G* is defined by $d_G(e) = d_G(u) + d_G(v) - 2$. Let $S_e(v)$ denote the sum of the degrees of all edges incident to a vertex *v*. For undefined term and notation, we refer [1]. Topological indices have their applications in various disciplines of Science and Technology.

The modified first Kulli-Basava index was introduced in [2], defined as

$$KB_{1}^{*}(G) = \sum_{u \in V(G)} S_{e}(u)^{2}.$$

In [3], Kulli introduced the total Kulli-Basava index and *F*-Kulli-Basava index of a graph, defined as

$$TKB(G) = \sum_{u \in V(G)} S_e(u),$$

$$FKB(G) = \sum_{u \in V(G)} S_e(u)^3.$$

Recently, the hyper Kulli-Basava indices [4], connectivity Kulli-Basava indices [5], square Kulli-Basava index [6], multiplicative Kulli-Basava and multiplicative hyper Kulli-Basava indices [7] were introduced and studied.

We introduce the following multiplicative Kulli-Basava indices:

The multiplicative total Kulli-Basava index of a graph G is defined as

V.R.Kulli

$$TKBII(G) = \prod_{u \in V(G)} S_e(u).$$

The multiplicative modified first Kulli-Basava index of a graph *G* is defined as $KB_1^* H(G) = \prod_{u \in V(G)} S_e(u)^2.$

The multiplicative *F*-Kulli-Basava index of a graph *G* is defined as

$$FKBII(G) = \prod_{u \in V(G)} S_e(u)^3.$$

The multiplicative Kulli-Basava zeroth order index of a graph G is defined as

$$KBZII(G) = \prod_{u \in V(G)} \frac{1}{\sqrt{S_e(u)}}.$$

The multiplicative Kulli-Basava inverse degree of a graph G is defined as

$$KBIDII(G) = \prod_{u \in V(G)} \frac{1}{S_e(u)}$$

The multiplicative modified inverse first Kulli-Basava index of a graph G is defined as

$$^{m}KB_{1}^{*}II(G) = \prod_{u \in V(G)} \frac{1}{S_{e}(u)^{2}}.$$

The general multiplicative Kulli-Basava index of a graph G is defined as

$$KB^{a}II(G) = \prod_{u \in V(G)} S_{e}(u)^{a}$$
⁽¹⁾

where *a* is a real number.

In recent years, some multiplicative topological indices were studied, for example, in [8, 9, 10, 11, 12].

In this study, we compute explicit formulas for computing the multiplicative total Kulli-Basava index, multiplicative modified first Kulli-Basava index, multiplicative *F*-Kulli-Basava index, multiplicative zeroth order index, multiplicative Kulli-Basava inverse degree, multiplicative modified inverse first Kulli-Basava index and general multiplicative Kulli-Basava index of regular, complete, cycle, wheel, gear and helm graphs.

2. Results for regular graphs

A graph *G* is an *r*-regular graph if the degree of each vertex of *G* is *r*.

Theorem 1. Let G be an r-regular graph with n vertices. Then the general multiplicative Kulli-Basava index of G is

$$KB^{a}II(G) = [2r(r-1)]^{an}.$$
(2)

Proof: Let G be an r-regular graph with n vertices. Then $S_e(u) = 2r (r - 1)$ for every vertex u of G. Thus

$$KB^{a}II(G) = \prod_{u \in V(G)} S_{e}(u)^{a} = [2r(r-1)]^{an}.$$

Multiplicative Kulli-Basava Indices

Corollary 1.1. If G is an r-regular graph with n vertices, then

(i)
$$TKBII(G) = [2r(r-1)]^n$$
. (ii) $KB_1^*II(G) = [2r(r-1)]^{2n}$.
(iii) $FKBII(G) = [2r(r-1)]^{3n}$. (iv) $KBZII(G) = \left[\frac{1}{2r(r-1)}\right]^{\frac{n}{2}}$.

(v)
$$KBIDII(G) = \left[\frac{1}{2r(r-1)}\right]^n$$
. (vi) ${}^m KB_1^* II(G) = \left[\frac{1}{2r(r-1)}\right]^n$

Proof: Put $a = 1, 2, 3, -\frac{1}{2}, -1, -2$ in equation (2), we obtain the desired results.

Corollary 1.2. If K_n is a complete graph with *n* vertices, then

- (i) $TKBII(K_n) = [2(n-1)(n-2)]^n$.
- (ii) $KB_1^*H(K_n) = 4^n [(n-1)(n-2)]^{2n}$.
- (iii) $FKBII(K_n) = 8^n [(n-1)(n-2)]^{3n}$.

(iv)
$$KBZII(K_n) = \left[\frac{1}{2(n-1)(n-2)}\right]^{\frac{n}{2}}$$

(v)
$$KBIDII(K_n) = \left[\frac{1}{2(n-1)(n-2)}\right]^n$$

(vi)
$${}^{m}KB_{1}^{*}II(K_{n}) = \left\lfloor \frac{1}{2(n-1)(n-2)} \right\rfloor^{2n}$$

Proof: Put r = n - 1 and $a = 1, 2, 3, -\frac{1}{2}, -1, -2$, in equation (2), we get the desired results.

Corollary 1.3. If C_n is a cycle with *n* vertices, then

(i) $TKBII(C_n) = 4^n$. (ii) $KB_1^*II(C_n) = 16^n$. (iii) $EKPII(C_n) = 64^n$ (iv) $KPZII(C_n) = \begin{bmatrix} 1 \end{bmatrix}^n$

(iii)
$$FKBII(C_n) = 64^n$$
.
(iv) $KBZII(C_n) = \lfloor \frac{1}{2} \rfloor^n$.
(v) $KBIDII(C_n) = \lfloor \frac{1}{4} \rfloor^n$.
(vi) ${}^m KB_1^* II(C_n) = \lfloor \frac{1}{16} \rfloor^n$.

Proof: Put r = 2, and $a = 1, 2, 3, -\frac{1}{2}, -1, -2$ in equation (2), we obtain the required results.

3. Results for wheel graphs

V.R.Kulli

A wheel W_n is the join of C_n and K_1 . Clearly W_n has n+1 vertices and 2n edges. The vertices of C_n are called rim vertices and the vertex of K_1 is called apex. A graph W_n is presented in Figure 1.

Figure 1: Wheel W_n

Let W_n be a wheel graph with n+1 vertices and 2n edges. Then W_n has two types of vertices as given in Table 1.

$S_e(u) \setminus u \in V(W_n)$	<i>n</i> (<i>n</i> +1)	<i>n</i> +9
Number of vertices	1	п

Theorem 2. Let W_n be a wheel graph with n+1 vertices. Then the general multiplicative Kulli-Basava index of W_n is

$$KB^{a}II(W_{n}) = n^{a}(n+1)^{a}(n+9)^{an}.$$
(3)

Proof: From equation (1) and by using Table 1, we have

$$KB^{a}II(W_{n}) = \prod_{u \in V(W_{n})} S_{e}(u)^{a} = n^{a}(n+1)^{a}(n+9)^{an}$$

Corollary 2.1. If W_n is a wheel graph with n+1 vertices, then

(i)
$$TKBII(W_n) = n(n+1)(n+9)^n$$
.

(ii)
$$KB_1^* II(W_n) = n^2 (n+1)^2 (n+9)^{2n}$$

(iii)
$$FKBII(W_n) = n^3 (n+1)^3 (n+9)^{3n}$$

(iv)
$$KBZII(W_n) = \frac{1}{\sqrt{n(n+1)(n+9)^n}}$$

(v)
$$KBIDII(W_n) = \frac{1}{n(n+1)(n+9)^n}.$$

Multiplicative Kulli-Basava Indices

(vi)
$${}^{m}KB_{1}^{*}H(W_{n}) = \frac{1}{n^{2}(n+1)^{2}(n+9)^{2n}}.$$

Proof: Put $a = 1, 2, 3, -\frac{1}{2}, -1, -2$ in equation (3), we get the required results.

4. Results for gear graphs

A gear graph G_n is a graph obtained from W_n by adding a vertex between each pair of adjacent rim vertices. Clearly G_n has 2n+1 vertices and 3n edges. A gear graph G_n is shown in Figure 2.

Figure 2: Gear graph G_n

A gear graph G_n has three types of vertices as given in Table 2.					
$S_e(u) \setminus u \in V(G_n)$	<i>n</i> (<i>n</i> +1)	<i>n</i> +7	6		
Number of vertices	1	n	n		

Table 2: Vertex partition of G_n

Theorem 3. Let G_n be a gear graph with 2n+1 vertices. Then the general multiplicative Kulli-Basava index of G_n is

$$KB^{a}II(G_{n}) = 6^{an}n^{a}(n+1)^{a}(n+7)^{an}.$$
(4)

Proof: By using equation (1) and Table 2, we deduce

$$KB^{a} II(G_{n}) = \prod_{u \in V(G_{n})} S_{e}(u)^{a} = [n(n+1)]^{a}(n+7)^{an} 6^{an}$$
$$= 6^{an} n^{a}(n+1)^{a}(n+7)^{an}.$$

Corollary 3.1. If G_n is a gear graph with 2n+1 vertices, then

(i)
$$TKBII(G_n) = 6^n n(n+1)(n+7)^n$$

(ii)
$$KB_1^* II(G_n) = 6^{2n} n^2 (n+1)^2 (n+7)^{2n}$$
.

(iii) $FKBII(G_n) = 6^{3n} n^3 (n+1)^3 (n+7)^{3n}$.

V.R.Kulli

(iv)
$$KBZII(G_n) = \frac{1}{\sqrt{6^n n(n+1)(n+7)^n}}.$$

(v)
$$KBIDII(G_n) = \frac{1}{6^n n(n+1)(n+7)^n}$$

(vi)
$${}^{m}KB_{1}^{*}II(G_{n}) = \frac{1}{6^{2n}n^{2}(n+1)^{2}(n+7)^{2n}}.$$

Proof: Put a = 1, 2, 3, $-\frac{1}{2}$, -1, -2 in equation (4), we obtain the required results.

5. Results for helm graphs

A helm graph H_n is a graph obtained from W_n by attaching an end edge to each rim vertex. Clearly H_n has 2n+1 vertices and 3n edges. A helm graph H_n is shown in Figure 3.

Figure 3: Helm graph H_n

Number of vertices 1 n n	$S_e(u) \setminus u \in V(H_n)$	<i>n</i> (<i>n</i> +2)	<i>n</i> +17	3
	Number of vertices	1	п	п

Table 3: Vertex partition of H_n

Theorem 4. Let H_n be a helm graph with 2n+1 vertices and 3n edges. Then the general multiplicative Kulli-Basava index of H_n is

$$KB^{a}II(H_{n}) = 3^{an}n^{a}(n+2)^{a}(n+17)^{an}.$$
(5)

Proof: By using equation (1) and Table 3, we derive

$$KB^{a}II(H_{n}) = \prod_{u \in V(H_{n})} S_{e}(u)^{a} = n^{a}(n+2)^{a}(n+17)^{an} 3^{an}.$$

Multiplicative Kulli-Basava Indices

Corollary 4.1. Let H_n be a helm graph with 2n+1 vertices and 3n edges. Then

(i)
$$TKBII(H_n) = 3^n n(n+2)(n+17)^n$$

(ii)
$$KB_1^* II(H_n) = 3^{2n} n^2 (n+2)^2 (n+17)^{2n}$$
.

(iii)
$$FKBII(H_n) = 3^{3n} n^3 (n+2)^3 (n+17)^{3n}$$
.

(iv)
$$KBZII(H_n) = \frac{1}{\sqrt{3^n n(n+2)(n+17)^n}}$$

(v)
$$KBIDII(G_n) = \frac{1}{3^n n(n+2)(n+17)^n}.$$

(vi)
$${}^{m}KB_{1}^{*}II(H_{n}) = \frac{1}{3^{2n}n^{2}(n+2)^{2}(n+17)^{2n}}.$$

Proof: Put a = 1, 2, 3, $-\frac{1}{2}$, -1, -2 in equation (5), we get the desired results.

REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. B.Basavanagoud, P.Jakkannavar, Kulli-Basava indices of graphs, *Inter. J. Appl. Engg. Research*, 14(1) (2018) 325-342.
- 3. V.R.Kulli, New Kulli-Basava indices of graphs, submitted.
- 4. V.R.Kulli, Some new topological indices of graphs, *International Journal of Mathematical Archive*, 10(5) (2019) 62-70.
- 5. V.R.Kulli, New connectivity topological indices, *Annals of Pure and Applied Mathematics*, 20(1) (2019) 1-8.
- 6. V.R.Kulli, Some new Kulli-Basava topological indices, submitted.
- 7. V.R.Kulli, Multiplicative Kulli-Basava and multiplicative hyper Kulli-Basava indices of some graphs, submitted
- 8. V.R.Kulli, On multiplicative F-indices and multiplicative connectivity F-indices of chemical networks, *International Journal of Current Research in Science and Technology*, 5(2) (2019)1-10.
- 9. V.R.Kulli, Multiplicative connectivity KV indices of dendrimers, *Journal of Mathematics and Informatics*, 15(2019) 1-7.
- 10. V.R.Kulli, Multiplicative neighborhood, indices, *Annals of Pure and Applied Mathematics*, 19(2) (2019) 175-181.
- 11. V.R.Kulli, Multiplicative KV and multiplicative hyper KV indices of certain dendrimers, *International Journal of Fuzzy Mathematical Archive*, 17(1) (2019) 13-19.
- 12. V.R.Kulli, B.Chaluvaraju and T.V.Asha, Multiplicative product connectivity and sum connectivity indices of chemical structures in drugs, *Research Review International Journal of Multidisciplinary*, 4(2) (2019) 949-953.