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Abstract. In this paper, we introduce the F-ve-degree ind&xa amolecular graph.
Considering the F-ve-degree index, we define tiveJdegree polynomial of a graph. We
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networks and regular triangulate oxide networks.
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1. Introduction
A molecular graph is a simple graph related to gtvacture of a chemical compound.
Each vertex of this graph represents an atom ofrtblecule and its edges to the bonds
between atoms. Chemical graph theory is a brancGraph Theory whose focus of
interest is to finding topological indices of maldar graphs, which correlate well with
chemical properties of the chemical molecules. @dwuepological indices have been
considered in Theoretical Chemistry, especiall@BPR/QSAR study, see [1].

Let G be a finite, simple connected graph with verteX46) and edge sdi(G).
The degreals(v) of a vertexv is the number of vertices adjacentoThe set of all
vertices which adjacent tis called open neighborhood wfand denoted bi(v). The
closed neighborhood set ofis the seiN[v] = N(v) O {v}. Let S, denote the sum of the
degrees of all vertices adjacent to a verexhellali et al. [2] defined the ve-degree
concept in graph theory as follows:

The ve-degreé, (V) of a vertexv in a graphG is the number of different edges
that incident to any vertex from the closed neighbod ofv.

The first ve-degree Zagreb beta index of a gaphdefined as

Vei(G): z [Q/e( L)+ Q/e( ﬂ

uE( G)
The second ve-degree Zagreb index of a gfaphdefined as
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Ve (G)= 2, de(Y de( ¥
wJE Q)
The above two ve-degree Zagreb indices were pegpbyg Ediz in [3]. Recently,
some ve-degree topological indices were studiedexample, in [4, 5, 6, 7, 8, 9].
The forgotten topological index or F-index wasdétd by Furtula and Gutman in
[10] and it is defined as
FE)= Y do(u’= ¥ [ds(y+ (V7]
uv(G) wJE §
The F-index was also studied, for example, in 2,13, 14, 15, 16, 17, 18, 19,
20, 21].
Motivated by the definition of the F-index and #&gplications, we introduce the
F-ve-degree index and-Fe-degree index of a graghas follows:
The F-ve-degree index of a gra@hs defined as
Fe(G)= ¥ [dve( 0% + dy \ﬂ. )
al={e)
The R-ve-degree index of a graghis defined as

Fve(GQ = > de( V.
uv(G)

Considering the F-ve-degree index, we propose the-eflegree polynomial of a
graphG as

Fe(G,X) = ARECALS A
al={e)

We consider the families of dominating oxide natgoand regular triangulate
oxide networks [4]. In this paper, we obtain exaxpressions for the F-ve-degree index
and F-ve-degree polynomial of dominating oxide reeks (OOX) and regular triangulate
oxide networksRTOX.

()

2. Resultsfor dominating oxide networ ks DOX(n)
The family of dominating oxide networks is symbetliz by DOX(n). The molecular
structure of a dominating oxide network is preseémieFigure 1.

In [4], Ediz obtained the partition of the edgathwespect to their sum degree of
end vertices of edges for dominating oxide netwdamkBable 1.
(S, S) (8,12 (8,14 (12,12 (12,14 (14,16 (16, 16
Numberof  12n 12n-12 6 12n-12  24n-24 54n"—114n+6C
edges

Tablel:
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Figure 1. The structure of a dominating oxide network

Also he obtained the ve-degree partition of thel eertices of edges for
dominating oxide networks in Table 2.

(dvg(u), (7,100 (7,12 (10,10) (10,12) (12, 14) (14, 14)
dve(V))
Number of  12n 12n-12 6 12n-12  24n-24 54n°- 114n+6C
edges
Table 2. The ve-degree of the end vertices of edge®€K networks

In the following theorem, we compute the F-ve-éegndex oDOX(n).

Theorem 1. The F-ve-degree index of a dominating oxide nefvi®X(n) is given by
F.{DOX(n)) = 211687 — 29496 + 11316.

Proof: Let G be the molecular graph of a dominating oxide nekwOX(n). By using

equation (1) and Table 2, we deduce

Fe(DOX(M)= 3 [dve( Y2+ dd ﬂ
al=(e)
= (7P+10°)12n+(7%+12)(12n-12)+(16+109)6+(10+12)(12n — 12)
+(1224+14°)(24n — 24) +(14+149)( 54n° =114 + 60)
= 211687° — 294964 + 11316.

In the following theorem, we calculate the F-vepde polynomial oDOX(n).

Theorem 2. The F-ve-degree polynomial of a dominating oxidgwork DOX(n) is

given by

F.{DOX(N), X) = 12nx"° + (12 — 12)%% + 6% (1n — 12)* + (241 — 24)3*° + (5477
— 114 + 60)°%,

Proof: Let G be the molecular graph of a dominating oxide nekwOX(n). By using

equation (2) and Table 2, we derive

3
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Fo(DOX(1), )= 3 X +od¥]
val={e
— 1onK 710 +(12n— 12 7 +12) + e 18 ( 1 1)2)((1& 13
1(24n— 24 %12%142) +( 54— 114+ 6b)£1&+ 14)
=12nx*° 4+ (12n— 12 x*+ 6x°°+( 1 1P x**
+(24n— 24 X" + (547~ 114+ 6DX

3. Resultsfor regular triangulate oxide networ ks RTOX(n)
The family of regular triangulate oxide network denoted byRTOXn), n=3. The
molecular structure of a regular triangulate oxigévork is shown in Figure 2.

X XXX
XX XXX
vV VvV V V V V

Figure 2: The structure of a regular triangulate oxide nekiRTOX5)

Ediz [4] obtained the patrtition of the edges wigéspect to their sum degree of
end vertices of edges for regular triangulate oxielisvorks in Table 3.

(s.S) (6,6) (6,12) (8,12) (8,14) (12,12) (12,14) (M1 (14,16) (16, 16)
Number 2 4 4 6n-8 1 6 6n-9 6n-12 3n*-
of edges 12n+12

Table 3:

Also he obtained the ve-degree partition of the eerdices of edges for regular
triangulate oxide networks in Table 4.

(dve(w),dve(v)) (5,50 (5,10 (7,10 (7,12 (10,10 (10,12 (12,12 (12,14 (14,14

Number of 2 4 4 6n-8 1 6 6n-9 6n-12 3n—
edges 12n+12

Table 4: The ve-degree of the end vertices of edgeRTa®Xnetworks
In the following theorem, we determine the F-vergée index o ROXn).

Theorem 3. TheF-ve-degree index of a regular triangulate oxidevogt TROXNn) is
F.{TROXn)) = 11767* + 22 — 652.
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Proof: Let G be the molecular graph of a regular triangulate@®xetworkTROXn). By
using equation (1) and Table 4, we deduce

Fe(TROX(D)= 3 [ de( 07+ dd ﬂ
al=(e)
= (5459 2+(5+10)4+(7+10°)4+(7°+129)(6n — 8)+(1G+10°)
+ (10 + 1296 + (12 + 12)(6n — 9) + (12 + 14) (6n-12) +(14+14%)(3n?
—12n + 12)
= 11767 + 22h — 652.

In the following theorem, we calculate the F-vepge polynomial oTROXn).
Theorem 4. The F-ve-degree polynomial of a regular triangutatide networkl ROXn)
is given by
Fve(TRO)(I’I), X) — 2(50 + 4X125 + 4Xl49 + (a,.] _ 8>(193 + X200+ 6X244+ (6n _ 9>(288 + (a,.] _

1203+ (3% — 1 + 12)3%
Proof: Let G be the molecular graph of a regular triangulate@®xetworkTROXn). By
using equation (2) and Table 4, we obtain

Fve(TROX( n, )): z Ldve(u)%dve(\oz}

Val={e)
_ 2X(52+52) + 4%52+102) + 4% 72 16) +(6n— 8 *ﬁ 19 + >((16+ 18
1+6x19117) 4 (6n— 9 X218 4 (6n— 12 % W 1 (3% 120 1p k™ B
— 2X50 + 4X125+ 4X149+(6n— 8 X193+ X200+ 6X24
+(6n—9) 5% +(6n— 12 P+ ( 3n*— 120+ 1D X%
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