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Abstract. This paper, deals with a problem of optimally controlling service rates for a 
retrial service facility system. We consider a finite capacity service facility system with 
Poisson arrivals and exponentially distributed service times. Here, the customer who sees 
the server busy, joins the orbit and reattempts the facility with exponential distributed 
time interval. The system is formulated as Markov Decision Process and we find the 
optimum service rates to be employed at each instant of time. Linear Programming 
method is implemented in the context of minimizing the long-run expected cost rate. 
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1. Introduction 
The main contribution of this paper is the determination the optimal control policy that 
yields the specific optimal service rate to be used for every possible state of the system 
(i.e. server rates are functions of the number of customer in the orbit). Queuing systems 
with retrials, in which customers repeat attempts to obtain service, was originally a topic 
of telecommunications research. More recently, these systems have served as models for 
particular computer networks, which may explain the current level of activity on the 
subject. As an example, the "customers" of this queue could be a network of computers 
attempting to access the same database, which may only be used by one customer at a 
time. 
 In last two decades, many researchers in the field of retrial queuing system 
contributed many results. For example, Elcan [8], Arivudainambi et al. [1], Dragieva [6], 
Dudin et al. [7] and Artalejo et al. [3,4,5] are discussed single server retrial queue with 
returning customers are examined by balking or Bernoulli vacations and derived the 
analysis part and solution technique using Matrix method or generating function or 
Truncation method using level dependent quasi-birth-and-death process (LDQBD). 
 In all these systems, arrivals of customers form a Poisson process and service 
times are exponentially distributed. They investigate the systems to obtain performance 
measures and construct suitable cost functions  

The rest of the paper is organized as follows. We provide a formulation of our 
Semi - Markov Decision model in the next section. Analysis part of the model is given in 
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section 3. In section 4, we present a procedure to implement long–run Expected cost rate 
criteria to get the optimal service levels of the systems. 

 
2. Problem formulation 
In this paper we assume the following 

• customers arrive  the service facility according to a Poisson process with rateλ (>0) 
• An arriving customer when see server idle enters the server, gets service and leave 

the system 
• An arriving customer who finds a server busy is obliged to leave the service area 

and enter an orbit, whose capacity is limited  to maximum N  
•  Customer in the orbit reattempts for getting service often an exponential time at 

rate jθ (>0). (j -number of customer in the orbit) 
• Service times of customers are independent of each other and have a common 

exponential distribution with parameterjβ . 

• Each jβ (1 )j k≤ ≤ can be chosen from given set of k values { }1 2 3, ... kβ β β β  
where jβ

 
depends on number of customer in orbit,0β ,when N(t)=0, the service 

rate become 0 0β = . 

 
Figure 1: 

3. Analysis  
Let X(t) and  N(t) denotes the status of the server and number of customers in the orbit at 
time t, respectively. 
Then {(X(t),N(t)):t 0≥ }is a two dimensional continuous time Markov process with state 
space E1  x E2,  where, E1= {0, 1}, (0 denotes the idle server and 1 denotes the busy 
server) and E2= {0,1,2,…,N} 
The infinitesimal generator A of the Markov process has entries of the form( )(l,m)

(i, j)a
 

where ,
(i, j)(a )l m  denote the transition rate from state (i,j) to state (l,m). 

Some of the state transitions are explained as follows: 
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From state (0, j) only transitions into the following states are possible: 
(i) (1, j) with rateλ for j=0, 1, 2, 3….N (customer arrival). 
(ii)  (1, j-1) with rate jθ , for j=1, 2…N (Customer arrive from an orbit). 

From state (1, j) only transitions into the following states are possible: 
(i) (1, j+1) with rateλ (customer arrival). 
(ii)  (0, j) with rate β  (Service completion), where j=0, 1, 2,…N 

The corresponding continuous time MDP is obtained by considering the following five 
components, 

(i) Decision epochs: The decision epochs are random time points as time line at each 
service completion. 

(ii)  State space: E=E1 x E2  where , E1= {0, 1}   and E2= {0,1,2,…,N} 
(iii)  Action set:     

Let Aj denote the set of actions taken when the system is at statej S∈ . 

               The augmented actions set is given by , j
j s

A A
∈

=∪
 

where  

{ } { }0 (j, r) / j 0and r 0sA if s Eβ= ∈ = = =

 { } { }1 2... , (j, r) / j 0, r 0s kA if s Eβ β β= ∈ = ≠ ≠  

Then the controlled process is a Markov process when stationary policy Π  is adopted. 
(iv) Transition probability : 

            A transition probability from state (i,j) to state (l,m) is given by
( , )
( , ) (a)l m
i jp

. 
(v) Cost: Cost accrued when action ‘a’ is taken at state (i,j) is given by  

((l,m) / (i. j),a)cΠ  
The long-run expected (average) cost rate when   policy π is adopted is given by 

1 2C c w c S
ΠΠ Π= +                                                       (1) 

where, c1 denotes the waiting cost/customer/unit time, c2denotes the service cost 

/customerw
π

denotes the mean waiting time for a customer and SΠ
denotes the service 

completion rate 
 
3.1. Steady state analysis 
Let f denote the stationary policy, which is Deterministic time invariant and Markovian 
policy (MD). From the assumptions made in our system model, it can be seen that 

{X(t),N(t):t ≥0} as the controlled process {x (t), N (t) : t o}f f ≥ when policy f is adopted. 

Since the process{x (t), N (t) : t o}f f ≥ is a Markov process with finite state space E. The 
process is completely Ergodic, if every stationary policy gives rise to an irreducible 
Markov chain. It can be seen that for every stationary policyΠ  the Markov process is 
completely Ergodic and also the optimal stationary policy *Π exists, because the state 
and action spaces are finite. 
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Our objective is to find an optimal policy *Π  for which 
*

C CΠ Π≤  for every MR policy 

in MRΠ For any fixed MR policy MRΠ and (i,j),(l,m) E∈ ,define  
(l, m, t) pr{X (t) , (t) m/ X (0) i, N (0) j}; (i, j), ( l, m) Eijp l NΠ Π Π Π Π= = = = = ∈  

Now (l,m, t)ijpΠ satisfies the Kolmogorov forward differential equation. P’(t)=P(t)A, 

where A is an infinitesimal generator of the Markov process {(X (t), N (t)) : t 0}R R ≥  

For each MR policyΠ , we get a Markov chain with state space E and action set A which 
are finite, (l,m) lim (l,m; t)ijt

p pΠ Π

→∞
=  exists and is independent of initial state 

(i,j)conditions. 
The balance equations are obtained by using the fact that transition out of a state is equal 
to transition into a state. 

(0,0) P (1,0) (2)

( ) (0, j) P (1, j) ;0 j N (3)

( )P (1,0) P (0,0) P (0,1) (4)

( )P (1, j) P (0, j) (1, j 1) (j 1) P (0, j 1);1 j N 1 (5)

P (1, N) P (0, N) P (1, N 1), (6)

P

j P

P

λ β
λ θ β
λ β λ θ
λ β λ λ θ

β λ λ

Π Π

Π Π

Π Π Π

Π Π Π Π

Π Π Π

=

+ = ≤ ≤
+ = +

+ = + − + + + ≤ ≤ −

= + −

 

together with total  probability condition                     
(i, j) E

1, (7)ijP Π

∈

=∑  

we get the  steady state solution EjiijP ∈
Π

),()(
 , uniquely.  

 
3.2. System performance measures 
Mean waiting time in the orbit is given by 

1

(1, j)
N

j

j
W P

β
Π Π

Π
=

 =  
 

∑
                                                                                               (8)

 

The service completion rate is given by  

1

(0, j)
N

j

S Pβ
Π Π Π

=
=∑

                                                                                                 (9) 

The long run expected cost rate is given by 

       
1 2

1 1

(1, j) (0, j)
N N

j j

j
C c P c Pβ

β
Π Π Π Π

Π
= =

 = + 
 

∑ ∑
                                                            (10) 

 

4. Linear programming problem 

4.1. Formulation of LPP 

In this section we propose a LPP model within a MDP framework. 

First we define the variables,D(i,j,a) as a conditional probability expression 

}{(i, j,a) Pr ' '/ stateis (i, j)D decisionis a=
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Since 0 ≤ D (i,j,a) ≤ 1, this is compatible with Randomized time invariant Markovian 

policies. Here, the Semi-Markovian decision problem can be formulated as a linear 

programming problem.     

Hence 
0 ( , ) 1 ( , , ) 1, i 0,1;0 .

a A

D i j and D i j a j N
∈

≤ ≤ = = ≤ ≤∑
 

 For the reformulation of the MDP as LPP, we define another variable y(i,j,a) as follows. 
y( , , ) (i, j,a) (i, j)i j a D PΠ=                                                                                  (11)

 
From the above definition of the transition probabilities 

            
( , ) (i, j,a),(i, j) E,a A {0,1,2... }

a A

P i j y NΠ

∈

= ∈ ∈ =∑
                                             (12)  

Expressing P∏(i,j) in terms of y(i,j,a), the expected total cost rate functions(10) is  

Obtained and the LPP formulation is of the form 

Minimize 

1 2
(0,1,2,3...k) 1 (0,1,2,3...k) 1

(1, j) ( ) (0, )
N N

a j a j

j
C c P c P jβ β

β
Π Π Π Π

Π
∈ = ∈ =

 = + 
 

∑ ∑ ∑ ∑
                   (13) 

Subject to the constraints, 
{ } { }0 0 1 1 2 3(i) y(i, j,a) 0;(i, j) E,a A , 0,1; A , , , ,... .l kl Aβ β β β β≥ ∈ ∈ = = =

0,1 (i, j) E

) (i, j,a) 1,
ll a A

ii y
= ∈ ∈

=∑ ∑ ∑
 

And the balance equation (2)-(6) obtained by replacing 
(i, j)by (i, j,a).

a A

P yΠ

∈
∑

 
 

Lemma 4.3. The optimal solution of the above Linear Programming Problem yield a 

deterministic policy. 

Proof: From the equations (11) and (12) 

     0

(i, j,a)
D(i, j,a) , , 0,1,2,...

(i, j, )
kN

k
k

y
a k N

y
β

β
=

= = =
∑

                                                          (14)

 

(i, j) (i, j,a),(i, j) E
a A

P yΠ

∈

= ∈∑
                                                                            (15) 

Since the decision process is completely ergodic every basic feasible solution to the 

above Linear Programming problem has the property that for each 
( i , j ) E , y ( i , j , a ) 0∈ >  for exactly one a A∈
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Hence, for each ( i , j ) ,E∈ D (i, j,a)=1, for a unique a zero values of a. Thus give the 

number of customers in the orbit, we have to choose the service rate β  for which D 

(i,j.a)=1. Hence the basic feasible solution of the LPP yields a deterministic policy . 

 

5. Numerical illustration and discussion 

In this section we consider a service facility system to illustrate the method described in 

section 4, through numerical examples. We implemented TORA software to solve LPP 

by simplex algorithm. 
 The following table describes the solution for LPP problem by varying the 
arrival (Poisson) rates from 2 to 5 and an exponential service rates from 1 to 7. The 
expected cost is computed by taking waiting cost per customer is 0.5 and the service cost 
per customer is 0.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The Expected total cost 

 

 
Figure 1: The Expected cost for different service rate 

From the above table, (a) The minimum expected cost for arrival rate 2 will be obtained 
by adjusting the service rate µ=2 as per unit time. (b) The minimum expected cost for 
arrival rate 3, 4 and 5 will be obtained. (c) The only parameters that have appreciable 
effect on the service rates are the arrival rate, the waiting time cost per customer, service 

Arrival rate: → 
λ = 2 λ = 3 λ = 4 λ = 5 

Service rate: ↓ 

β = 1 1.9498 2.07346 2.13148 2.31299 

β = 2 0.98432 1.0723 1.103441 1.042195 

β = 3 1.0263 1.01216 0.986711 0.96865 

β = 4 1.35712 1.26805 1.16163 1.0911 

β = 5 1.77853 1.68233 1.4995 1.36179 

β = 6 2.2257 2.1758 1.94466 2.49231 

β = 7 2.6859 2.7055 2.45772 2.19088 
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cost per customer, the number of customers in the system see fig.1). The following table 
2 shows that to increase the waiting time cost per customer will increase the expected 
total cost (see figure - 2). The following table 3 shows that the service cost per customer 
affects the expected total cost (see figure - 3). 
 

(waiting cost per customer, 
the service cost per customer) (c1, c2)

 

Expected 

total cost 

(0.5, 0.8) 0.98432 

(1, 0.8) 1.631682 

(1.5, 0.8) 2.27905 

(2, 0.8) 2.92642 
Table 2: The Expected total cost for varying waiting cost per customer

  
 
 
 
 
 
 
 
 
 

Table 3: The expected total cost for varying service cost per customer 
 

1

2

3

4

Expected total cost

1

2

3

Expected total cost

 
Figure 2: The expected cost for varying   Figure 3: The expected cost for varying 
waiting cost per customer                           service cost per customer 

 

6. Conclusions and future research 

Analysis of service control at retrial service facility system is fairly recent. In most of 

previous works, optimal ordering policies or system performance measures are 

determined. We approached the problem using semi-Markov decision process tocontrol 

(waiting cost per customer, the service cost 
per customer) (c1, c2)

 

Expected 

total cost 

(0.5, 0.8) 0.98432 

(005, 1.6) 1.32126 

(0.5, 2.4) 1.65821 

(0.5, 3.2) 1.99516 
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the optimum service rates in service facility system. The optimal control policy to be 

employed is found using linear –programming method so that the long-run expected cost 

rate is minimized. In future we would like to extend this model to general distribution for 

arrival of customers in retrial service facility system as a semi-markov decision problem. 
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