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Abstract. This paper, deals with a problem of optimally coliing service rates for a
retrial service facility system. We consider aténcapacity service facility system with
Poisson arrivals and exponentially distributed isertimes. Here, the customer who sees
the server busy, joins the orbit and reattemptsfdiodity with exponential distributed
time interval. The system is formulated as MarkoecBion Process and we find the
optimum service rates to be employed at each ihgihrtime. Linear Programming
method is implemented in the context of minimizthg long-run expected cost rate.

Keywords: Single server, Service facility, Retrial queuemb&larkov Decision Process,
LPP method.

AMS Mathematics Subject Classification (2010): 90B05

1. Introduction

The main contribution of this paper is the deteation the optimal control policy that
yields the specific optimal service rate to be usgdevery possible state of the system
(i.e. server rates are functions of the numberustamer in the orbit). Queuing systems
with retrials, in which customers repeat attemptsiitain service, was originally a topic
of telecommunications research. More recently,dl®stems have served as models for
particular computer networks, which may explain therent level of activity on the
subject. As an example, the "customers" of thisugusould be a network of computers
attempting to access the same database, which mgye used by one customer at a
time.

In last two decades, many researchers in the féldetrial queuing system
contributed many results. For example, Elcan [8]yddainambi et al. [1], Dragieva [6],
Dudin et al. [7] and Artalejo et al. [3,4,5] aresclissed single server retrial queue with
returning customers are examined by balking or &dllinvacations and derived the
analysis part and solution technique using Matrigthod or generating function or
Truncation method using level dependent quasi-aintt-death process (LDQBD).

In all these systems, arrivals of customers forfhogsson process and service
times are exponentially distributed. They invedegte systems to obtain performance
measures and construct suitable cost functions

The rest of the paper is organized as follows. \Wwvide a formulation of our
Semi - Markov Decision model in the next sectionalysis part of the model is given in
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section 3. In section 4, we present a procedumaptement long—run Expected cost rate
criteria to get the optimal service levels of tlgstems.

2. Problem formulation
In this paper we assume the following
« customers arrive the service facility according t®oisson process with raté>0)
» An arriving customer when see server idle entegsthver, gets service and leave
the system
« An arriving customer who finds a server busy idgdal to leave the service area
and enter an orbit, whose capacity is limited &ximum N
e Customer in the orbit reattempts for getting serdften an exponential time at
rate j@(>0). (j -number of customer in the orbit)
» Service times of customers are independent of ether and have a common
exponential distribution with parame)‘@Jr.

« Eachp, (1< j <k)can be chosen from given set of k val§@s,, 5,...5,}

Whereﬂj depends on number of customer in oritywhen N(t)=0, the service

rate becomeB, =0,

Arrival (3. > 0)

Departure
B=0

Customers who

Find Server busy Cosmezs

Rearriving from
Orbit (j6 > 0

Orbit
j customers

Figure 1.

3. Analysis

Let X(t) and N(t) denotes the status of the searel number of customers in the orbit at

time t, respectively.

Then {(X(t),N(t)):t= O}is a two dimensional continuous time Markov pracesth state

space k x E;, where, E={0, 1}, (0 denotes the idle server and 1 denttesbusy

server) and & {0,1,2,...,N}

The infinitesimal generator A of the Markov procéss entries of the for (Lm))
i.J)

where (al({,T)) denote the transition rate from state (i,j) tdestm).

Some of the state transitions are explained agviist!
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From state (0, j) only transitions into the follmgistates are possible:
(i) (1, )) with rated for j=0, 1, 2, 3....N (customer arrival).
(i) (1, j-1) with rate 19, for j=1, 2...N (Customer arrive from an orbit).
From state (1, j) only transitions into the follogistates are possible:
(i) (1, j+1) with rateld (customer arrival).
(i) (0, j) with rate 8 (Service completion), where j=0, 1, 2,...N
The corresponding continuous time MDP is obtaingddnsidering the following five
components,
() Decision epochs: The decision epochs are randomgoints as time line at each
service completion.
(i) State space: Esk E, where , E={0, 1} and &={0,1,2,...,N}
(iii) Action set:
Let A denote the set of actions taken when the systeitnsisite] 1S .

The augmented actions set is giwenh= U A
i0s

where
A ={B)}if SDE={(,n/j=0andr= g
A ={BB...B} it SDE={(.n/j#0r=

Then the controlled process is a Markov processwghationary policy1 is adopted.
(iv) Transition probability :

(@)
A transition probability from stategYito state (I,m) is given b9("l) .

(v) Cost: Cost accrued when action ‘a’ is taken aediig) is given by
c"((I,m)/(i.j),a)
The long-run expected (average) cost rate wheticyperis adopted is given by
C'=qw +¢ & Q)
where, ¢ denotes the waiting cost/customer/unit timedenotes the service cost

— _
/customelV denotes the mean waiting time for a customer Andenotes the service
completion rate

3.1. Steady state analysis
Let f denote the stationary policy, which is Detanistic time invariant and Markovian
policy (MD). From the assumptions made in our systeodel, it can be seen that

{X(t),N(t):t>0} as the controlled proce¢x (t), N '(t): t =0} when policy f is adopted.
Since the proce$s '(t), N '(t) : t >0} is a Markov process with finite state space E. The

process is completely Ergodic, if every stationppoficy gives rise to an irreducible
Markov chain. It can be seen that for every statipmpolicyl1 the Markov process is

completely Ergodic and also the optimal stationpojicy I exists, because the state
and action spaces are finite.
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Our objective is to find an optimal polidy * for which c" <c" for every MR policy
inM“?For any fixed MR policyl1"*and (i,j),(I,m)J E ,define

P (bm, )= pr{X" (1) =1, N"(t) =m/ X" (0) =i,N" (0) = j}; i, }), (L, m) T E

Now pi? (I,m, t) satisfies the Kolmogorov forward differential ecoat P(t)=P(H)A,
where A is an infinitesimal generator of the Markecesg(X T(t), N \(t)): t >0}

For each MR polic{! , we get a Markov chain with state space E andactet A which
are finite, p"(l,m)=lim (L m;t) exists and is independent of initial state

(i,jconditions.
The balance equations are obtained by using thehfaictransition out of a state is equal
to transition into a state.

AP"(0,0)= 3 P' (1,0) (2)
(A+jOP"(0,)=4P" (L)) ;0<jN 3
A+PB)P"'(1,0=1PF (0,016 P (0,2 (4
A+BPTLD=AP (0, AP" L I+ G W P (04 1% § N1 (5
BPT(L,N)=AP (O,N¥A P (LN 1), (6
together with total probability condition (%E:E Riﬂ =L ()

l
we get the steady state solutigﬁ )a.iye , uniquely.

3.2. System performance measur es
Mean waiting time in the orbit is given by

E

8
The service completion rate is given by
—n N '
S =) B"FP'(0,))
©)
The long run expected cost rate is given by
N H N
c"= QZ(%Jw(ly D+ BT F(0,))
j=1 ,3 j=1 (10)

4. Linear programming problem

4.1. For mulation of L PP

In this section we propose a LPP model within a M2ifhework.

First we define the variables,D(i,j,a) as a coodil probability expression
D(,j,a)= Pr{decisionis‘ al stateis (i, )
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Since 0< D (i,j,a) < 1, this is compatible with Randomized time invatidarkovian
policies. Here, the Semi-Markovian decision probleem be formulated as a linear
programming problem.

Hence
0<D(,j)s®Bnd) DG,ja)=1i=0,1L0k j<N
alA

For the reformulation of the MDP as LPP, we definether variable y(i,j,a) as follows.
y(,j,2)=D(,jaP" (i,]) (11)
From the above definition of the transition prolitibs

P"(i,j)=>_y(i.j.a).(,)0E,ad A={0,1,2.N }
adA (12)

Expressing Fi,j) in terms of y(i,j,a), the expected total coste functions(10) is
Obtained and the LPP formulation is of the form
Minimize

C'=q > zN‘,(L]Fﬁ(LDJfQ(/?) > ZN‘,/?”F“(O, )

o
al(0,1,2,3...k) j= 1 B al(0,1,2,3..k)j= 1 (13)

Subiject to the constraints,
()y(i.j,2) 203, ) OE,ad A | = 0,5 A ={ B} A ={B.B,85.-B}
Y, > > yija)=1
1=0,1 (i,)0E a0A

And the balance equation (2)-(6) obtained by reptac
P (i, )by > ¥ j, ).

aldA

Lemma 4.3. The optimal solution of the above Linear Prograngrnoblem yield a
deterministic policy.
Proof: From the equations (11) and (12)

DGjia)=- Y ap k=012.N

N

2V A)
k=0
P"(i,j) =2 ¥i.i.a).(,j) OE

(14)

(15)

Since the decision process is completely ergodaryebasic feasible solution to the
above Linear Programming problem has the propertyat t for each

(i) UE,y(@.j.a)> 0 for exactly onead A
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Hence, for eachi- ) U E. D (i, j,a)=1, for a unique a zero values of a. Tigise the
number of customers in the orbit, we have to chdbseservice raté for which D
(i,j-a)=1. Hence the basic feasible solution of tR® yields a deterministic policy .

5. Numerical illustration and discussion
In this section we consider a service facility eystto illustrate the method described in
section 4, through numerical examples. We impleaiORA software to solve LPP

by simplex algorithm.

The following table describes the solution for LP@®blem by varying the
arrival (Poisson) rates from 2 to 5 and an expaakservice rates from 1 to 7. The
expected cost is computed by taking waiting costcpstomer is 0.5 and the service cost
per customer is 0.8.

Arrival rate: -
_ A=2 A=3 A=4 A=5
Service rate!
B=1 1.949¢ 2.0734t 2.1314¢ 2.3129¢
B=2 0.98432 1.072: 1.10344. 1.04219!
B=3 1.026: 1.01216 0.986711 0.96865
B=4 1.3571: 1.2680! 1.1616: 1.091:
B=5 1.7785! 1.6823: 1.499¢ 1.3617¢
B=6 2.225; 2.175¢ 1.9446¢ 2.4923:
B=7 2.685¢ 2.705¢ 2.4577. 2.1908¢

Table 1. The Expected total cost

3

25

N
1.5 }

1

0.5

0 .

P=1p=2p=3p=4p=5p=Gp=7

Figure 1: The Expected cost for different service rate

From the above table, (a) The minimum expected foosdrrival rate 2 will be obtained
by adjusting the service rate u=2 as per unit tifbe.The minimum expected cost for
arrival rate 3, 4 and 5 will be obtained. (¢c) Thdyoparameters that have appreciable
effect on the service rates are the arrival r&ie waiting time cost per customer, service
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cost per customer, the number of customers inybem see fig.1). The following table
2 shows that to increase the waiting time costqustomer will increase the expected
total cost (see figure - 2). The following tablsi®ws that the service cost per customer
affects the expected total cost (see figure - 3).

(waiting cost per customer, Expected

the service cost per customer), @) total cost
(0.5, 0.8 0.9843.

(1,0.8 1.63168.
(1.5,0.8 2.2790!
(2,0.8 2.9264.

Table 2. The Expected total cost for varying waiting cost pgestomer

(waiting cost per customer, the service cost  Expected
per customer) (¢ ) total cos
(0.5,0.8 0.9843:
(005, 1.6 1.3212¢
(05,24 1.6582:
(0.5,3.2 1.9951¢

Table 3: The expected total cost for varying service costcpgtomer

Expected total Expected total c

2 /
1

Figure2: The expected cost for varyingrigure 3: The expected cost for varying
waiting cost per customer service cost per customer

4
3
2
1

6. Conclusions and futureresearch

Analysis of service control at retrial service fagisystem is fairly recent. In most of
previous works, optimal ordering policies or systgmerformance measures are
determined. We approached the problem using semkdwadecision process tocontrol
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the optimum service rates in service facility sgst&he optimal control policy to be

employed is found using linear —programming metkodhat the long-run expected cost
rate is minimized. In future we would like to extetihis model to general distribution for
arrival of customers in retrial service facilitystggm as a semi-markov decision problem.

10.
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