Intern. J. Fuzzy Mathematical Archive Vol. 14, No. 2, 2017, 313-325 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/ijfma.v14n2a14

International Journal of **Fuzzy Mathematical Archive**

Intuitionistic Fuzzy $G_{\mathcal{F}}e$ -locally Continuous and Irresolute Functions

G. Saravanakumar¹, S. Tamilselvan² and A. Vadivel³

¹Department of Mathematics, Annamalai University Annamalainagar, Tamil Nadu-608 002, India ²Mathematics Section (FEAT), Annamalai University Annamalainagar, Tamil Nadu-608 002, India ³Department of Mathematics, Government Arts College (Autonomous) Karur, Tamil Nadu-639 005, India Email: avmaths@gmail.com

Received 15 November 2017; accepted 7 December 2017

Abstract. The purpose of this paper is to introduce the concepts of an intuitionistic fuzzy G_{δ} -e-locally neighborhood, intuitionistic fuzzy G_{δ} -e-locally quasi neighborhood, intuitionistic fuzzy G_{δ} -e-locally continuous and intuitionistic fuzzy G_{δ} -e-locally irresolute functions in intuitionistic fuzzy topological spaces. Also some interesting properties are established.

Keywords: intuitionistic fuzzy G_{δ} -*e*-locally neighborhood, intuitionistic fuzzy G_{δ} -*e*-locally quasi neighborhood, intuitionistic fuzzy G_{δ} -*e*-locally continuous, intuitionistic fuzzy G_{δ} -*e*-locally irresolute function.

AMS Mathematics Subject Classification (2010): 54A40, 54A99, 03E72, 03E99

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [10] and later Atanassov [1] generalized the idea to intuitionistic fuzzy sets. On the other hand, Coker [3] introduced the notions of an intuitionistic fuzzy topological spaces, intuitionistic fuzzy continuity and some other related concepts. The concept of an intuitionistic fuzzy e-closed set was introduced by Sobana et. al., [8]. Ganster and Relly used locally closed sets in [5] to define LC-continuity and LC-irresoluteness. Balasubramanian [2] introduced and studied the concept of fuzzy G_{δ} set in a fuzzy topological space. In this paper, the concepts of an intuitionistic fuzzy G_{δ} -e-locally quasi neighborhood, intuitionistic fuzzy G_{δ} -e-locally continuous and intuitionistic fuzzy G_{δ} -e-irresolute function are introduced and studied. Some interesting properties among continuous function are discussed.

2. Preliminaries

Definition 2.1. [1] Let X be a nonempty fixed set and I be the closed interval [0, 1]. An intuitionistic fuzzy set (IFS) A is an object of the following form

 $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}, \text{ where the mapping } \mu_A : X \to I \text{ and } \gamma_A : X \to I \text{ denote the degree of membership (namely } \mu_A(x)) \text{ and the degree of nonmembership (namely } \gamma_A(x)) \text{ for each element } x \in X \text{ to the set } A, \text{ respectively, and } 0 \le \mu_A(x) + \gamma_A(x) \le 1 \text{ for each } x \in X \text{ . Obviously, every fuzzy set } A \text{ on a nonempty set } X \text{ is an IFS of the following form, } A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}. \text{ For the sake of simplicity, we shall use the symbol } A = \langle x, \mu_A, \gamma_A \rangle \text{ for the intuitionistic fuzzy set } A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}.$

Definition 2.2. [1] Let X be a nonempty set and the IFSs A and B in the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}, B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$. Then

- 1. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;
- 2. $\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \};$
- 3. $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle : x \in X \};$
- 4. $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X \};$

Definition 2.3. [1] The IFS's 0_{\pm} and 1_{\pm} are defined by , $0_{\pm} = \{\langle x, 0, 1 \rangle : x \in X\}$ and $1_{\pm} = \{\langle x, 1, 0 \rangle : x \in X\}$.

Definition 2.4. [3] An intuitionistic fuzzy topology (IFT) in Coker's sense on a nonempty set X is a family T of intuitionistic fuzzy sets in X satisfying the following axioms:

1. $0_{i}, 1_{i} \in T$; 2. $G_{1} \cap G_{2} \in T$, for any $G_{1}, G_{2} \in T$; 3. $\bigcup G_{i} \in T$ for arbitrary family $\{G_{i} : i \in J\} \subseteq T$.

In this paper by (X,T) or simply by X we will denote the Coker's intuitionistic fuzzy topological space (IFTS). Each IFS which belongs to T is called an intuitionistic fuzzy open set (IFOS) in X. The complement \overline{A} of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.5. [3] Let (X, T) be an IFTS and $A = \{\langle x, \mu_A, \nu_A \rangle : x \in X\}$ be an IFS in X. Then the intuitionistic fuzzy closure and intuitionistic fuzzy interior of A are defined by

- 1. $IFcl(A) = \bigcap \{C : C \text{ isanIFCSin X and } C \supseteq A\};$
- 2. *IFint*(*A*) = $\bigcup \{D : D \text{ isanIFOSin } X \text{ and } D \subseteq A\};$

Proposition 2.1. [1] For any IFS A in (X, T) we have

1. $cl(\overline{A}) = \overline{int(A)}$ 2. $int(\overline{A}) = \overline{cl(A)}$

Corollary 2.1. [3] Let A, $A_i(i \in J)$ be IFSs in X, B, $B_j(j \in K)$ IFSs in Y and $f: X \to Y$ a function. Then 1. $A \subseteq f^{-1}(f(A))$ (If f is injective, then $A = f^{-1}(f(A))$). 2. $f(f^{-1}(B)) \subseteq B$ (If f is surjective, then $f(f^{-1}(B)) = B$). 3. $f^{-1}(\cup B_j) = \bigcup f^{-1}(B_j)$ 4. $f^{-1}(\cap B_j) = \cap f^{-1}(B_j)$. 5. $f^{-1}(1_j) = 1_j$. 6. $f^{-1}(0_j) = 0_j$. 7. $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.

Definition 2.6. [4] Let X be a nonempty set and $x \in X$ a fixed element in X. If $r \in I_0$, $s \in I_1$ are fixed real numbers such that $r+s \leq 1$, then the IFS $x_{r,s} = \langle x, x_r, 1-x_{1-s} \rangle$ is called and intuitionistic fuzzy point (IFP) in X, where r denotes the degree of membership of $x_{r,s}$, s denotes the degree of non membership of $x_{r,s}$ and $x \in X$ the support of $x_{r,s}$. The IFP $x_{r,s}$ is contained in the IFS $A(x_{r,s} \in A)$ if and only if $r < \mu_A(x)$, $s > \gamma_A(x)$.

Definition 2.7. [6] An IFS U of an IFTS X is called

1. neighborhood of an IFP c(a,b), if there exists an *IFOSG* in X such that $c(a,b) \in G \leq U$. 2. *q*-neighborhood of an IFP c(a,b), if there exists an *IFOSG* in X such that $c(a,b)qG \leq U$.

Definition 2.8. [3] Let X and Y be two nonempty sets and $f: X \to Y$ be a function. 1. If $B = \{\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y\}$ is an IFS in Y, then the preimage of B under f (denoted by $f^{-1}(B)$) is defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X\}$ 2. If $A = \{\langle x, \lambda_A(x), \nu_A(x) \rangle : x \in X\}$ is an IFS in X, then the image of A under f (denoted by f(A)) is defined by $f(A) = \{\langle y, f(\lambda_A(y)), (1 - f(1 - \nu_A))(y) \rangle \in X\}$.

Definition 2.9. [9] Let A be IFS in an IFTS (X, T). A is called an 1. intuitionistic fuzzy regular open set (briefly *IFROS*) if A = intcl(A)2. intuitionistic fuzzy regular closed set (briefly *IFRCS*) if A = clint(A)

Definition 2.10. [2] Let (X, T) be a fuzzy topological space and λ be a fuzzy set in X λ is called G_{δ} set if $\lambda = \sum_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$. The complement of fuzzy G_{λ} is fuzzy F_{σ}

Definition 2.11. [5] A subset A of a space (X, T) is called locally closed (briefly lc) if $A = C \cup D$, where C is open and D is closed in (X, T).

Definition 2.12. [9] Let (X, T) be an IFTS and $A = \langle x, \mu_A(x), \nu_A(x) \rangle$ be a IFS in X. Then the fuzzy δ closure of A are denoted and defined by $cl_{\delta}(A) = \bigcap \{K : K \text{ is an IFRCS in } X \text{ and } A \subseteq K \}$ and $int_{\delta}(A) = \bigcup \{G : G \text{ is an IFROS in } X \text{ and } G \subseteq A \}$.

Definition 2.13. [8] Let A be an IFS in an IFTS (X, T). A is called an intuitionistic fuzzy *e*-open set (IFeOS, for short) in X if $A \subseteq clint_{\delta}(A) \cup intcl_{\delta}(A)$

Definition 2.14. [3] Let (X,T) and (Y,S) be two IFT's and let $f: X \to Y$ be a function. Then f is said to be intuitionistic fuzzy continuous iff the preimage of each IFS in S is an IFS in T.

Definition 2.15. [8] Let (X,T) and (Y,S) be two IFT's and let $f: X \to Y$ be a function. Then f is said to be intuitionistic fuzzy e-continuous iff the preimage of each IFS in S is an *IFeOS* in T.

Definition 2.16. [7] Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said to be intuitionistic fuzzy e-locally closed set (in short, IF-e-lcs) if $A = C \cap D$, where $C = \{\langle x, \mu_C(x), \gamma_C(x) \rangle : x \in X\}$ is an intuitionistic fuzzy e-open set and $D = \{\langle x, \mu_D(x), \gamma_D(x) \rangle : x \in X\}$ is an intuitionistic fuzzy e-closed set in (X,T).

Definition 2.17. [7] Let (X, T) be an intuitionistic fuzzy topological space. Let $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space X. Then A is said to be an intuitionistic fuzzy eG_{δ} - set if $A = \bigcap_{i=1}^{\infty} A_i$, where $A_i = \{\langle x, \mu_{A_i}(x), \gamma_{A_i}(x) \rangle : x \in X\}$ is an intuitionistic fuzzy e-open set in an intuitionistic fuzzy topological space (X, T).

Definition 2.18. [7] Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy eG_{δ} -locally

closed set (in short, IF- eG_{δ} -lcs) if $A = C \cap D$, where $C = \{\langle x, \mu_C(x), \gamma_C(x) \rangle : x \in X\}$ is an intuitionistic fuzzy eG_{δ} set and $D = \{\langle x, \mu_D(x), \gamma_D(x) \rangle : x \in X\}$ is an intuitionisitic fuzzy e-closed set in (X, T). The complement of an intuitionistic fuzzy eG_{δ} -locally closed set is said to be an intuitionistic fuzzy eG_{δ} -locally open set (in short, IF eG_{δ} -loc).

Definition 2.19. [7] Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy G_{δ} -e-locally closed set (in short, IF G_{δ} -e-lcs) if $A = B \cap C$, where $B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$ is an intuitionistic fuzzy G_{δ} set and $C = \{\langle x, \mu_C(x), \gamma_C(x) \rangle : x \in X\}$ is an intuitionistic fuzzy e-closed set in (X,T). The complement of an intuitionistic fuzzy G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally closed set is said to be an intuitionistic fuzzy G_{δ} -e-locally open set (in short, IF G_{δ} -e-locally open set (in short) (IF G_{δ} -e-locally (IF G_{δ

Definition 2.20. [7] Let (X, T) be an intuitionistic fuzzy topological space. Let $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X, T). The intuitionistic fuzzy G_{δ} -*e*-locally closure of A is denoted and defined by IFG_{δ} -*e*- $lcl(A) = \bigcap \{B : B = \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X$ is an intuitionistic fuzzy G_{δ} -*e*-locally closed set in X and $A \subseteq B\}$.

Definition 2.21. [7] Let (X, T) be an intuitionistic fuzzy topological space. Let $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X, T). The intuitionistic fuzzy G_{δ} -*e*-locally interior of *A* is denoted and defined by IFG_{δ} -*e*-lint $(A) = \bigcup \{B : B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}$ is an intuitionistic fuzzy G_{δ} -*e*-locally open set in *X* and $B \subseteq A$.

Proposition 2.2. [7] Let (X, T) be an intuitionistic fuzzy topological space. For any two intuitionistic fuzzy sets $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ and

 $B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}$ of an intuitionistic fuzzy topological space (X, T) then the following statements are true.

- 1. $IFG_{\delta} e lcl(0) = 0$
- 2. $A \subseteq B \Rightarrow IFG_{\delta} e lcl(A) \subseteq IFG_{\delta} e lcl(B)$

3. $IFG_{\delta} - e - lcl(IFG_{\delta} - e - lcl(A)) = IFG_{\delta} - e - lcl(A)$ 4. $IFG_{\delta} - e - lcl(A \cup B) = (IFG_{\delta} - e - lcl(A)) \cup (IFG_{\delta} - e - lcl(B))$

Remark 2.1. [7]

1. $IFG_{\delta} - e - lcl(A) = A$ if and only if A is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set. 2. $IFG_{\delta} - e - lint(A) \subseteq A \subseteq IFG_{\delta} - e - lcl(A)$ 3. $IFG_{\delta} - e - lint(1) = 1$ 4. $IFG_{\delta} - e - lint(0) = 0$ 5. $IFG_{\delta} - e - lcl(1) = 1$

3. Intuitionistic fuzzy G_{δ} - *e* -locally continuous functions

Definition 3.1. Let (X, T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X, T). Then A is said to be an intuitionistic fuzzy G_{δ} -e-locally neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ if there exists an intuitionistic fuzzy G_{δ} -e-locally open set B in an intuitionistic fuzzy topological space (X, T) such that $x_{r,s} \in B, B \subseteq A$. It is denoted by IFG_{δ} -e-lobd.

Definition 3.2. Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \langle x, \mu_A, \gamma_A \rangle$ be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy G_{δ} -e-locally quasi neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ if there exists an intuitionistic fuzzy G_{δ} -e-locally open set B in an intuitionistic fuzzy topological space (X,T) such that $x_{r,s}qB, B \subseteq A$. It is denoted by IFG_{δ} -e-lopade.

Remark 3.1.

- 1. The family of all intuitionistic fuzzy G_{δ} -e-locally neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ is denoted by $N^{IFG_{\delta}-e-l}(x_{r,s})$.
- 2. The family of all intuitionistic fuzzy G_{δ} -*e*-locally quasi neighbourhood of an intuitionistic fuzzy point $x_{r,s}$ is denoted by $N^{IFG}\delta^{-e-lq}(x_{r,s})$.

Definition 3.3. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy mapping. Then f is said to be an intuitionistic fuzzy G_{δ} -e-locally continuous function, if for each intuitionistic fuzzy point $x_{r,s}$ in X and $B \in Nf(x_{r,s})$, there exists $A \in N^{IFG_{\delta}-e-lq}(x_{r,s})$ such that $f(A) \subseteq B$.

Theorem 3.1. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy mapping. Then the following are equivalent.

1. f is an intuitionistic fuzzy G_{δ} - e -locally continuous function.

2. $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} -*e*-locally open set in an intuitionistic fuzzy topological space (X, T), for each intuitionistic fuzzy open set A in an intuitionistic fuzzy topological space (Y, S).

3. $f^{-1}(B)$ is an intuitionistic fuzzy G_{δ} -*e*-locally closed set in an intuitionistic fuzzy topological space (X, T), for each intuitionistic fuzzy closed set *B* in an intuitionistic fuzzy topological space (Y, S).

4. $IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A))$, for each intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y, S).

5. $f^{-1}(IFint(A)) \subseteq IFG_{\delta} - e - lint(f^{-1}(A))$, for each intuitionistic fuzzy set *A* in an intuitionistic fuzzy topological space (Y, S).

Proof: (i) \Rightarrow (ii): Let A be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (Y, S). Let $x_{r,s}$ be an intuitionistic fuzzy point in an intuitionistic fuzzy topological space (X, T) such that $x_{r,s}qf^{-1}(A)$. Since f is an intuitionistic fuzzy G_{δ} -e-locally continuous function, there exists $B \in N^{IFG_{\delta}-e-lq}(x_{r,s})$ such that $f(B) \subseteq A$. Then

$$\begin{aligned} x_{r,s} \in B \\ B \subset f^{-1}(f(B)) \end{aligned} \tag{1}$$

Thus, $x_{r,s} \in B \subseteq f^{-1}(f(B)) \subseteq f^{-1}(A)$. This implies $x_{r,s} \in f^{-1}(A)$ which shows that $f^{-1}(A) \in N^{IFG} \delta^{-e-lq}(x_{r,s})$. Hence $f^{-1}(A)$ is an intuitionistic fuzzy $G_{\delta} - e^{-locally}$ open set in an intuitionistic fuzzy topological space (X, T).

(ii) \Rightarrow (i): This can be proved by taking complement of (i)

(iii) \Rightarrow (iv): Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S). Since $A \subseteq IFcl(A), f^{-1}(A) \subseteq f^{-1}(IFcl(A))$. By (iii), $f^{-1}(IFcl(A))$ is an intuitionistic fuzzy G_{δ} -e-locally closed set in an intuitionistic fuzzy topological space (X, T). Thus, IFG_{δ} -e- $lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A))$.

$$(iv) \Rightarrow (v): \text{Using (iv)}, IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A)). \text{ Then}$$

$$\overline{IFG_{\delta} - e - lcl(f^{-1}(A))} \supseteq \overline{f^{-1}(IFcl(A))}, IFG_{\delta} - lint(\overline{f^{-1}(A)}) \supseteq f^{-1}(IFint(\overline{A})), IFG_{\delta} - e - lint(f^{-1}(\overline{A})) \supseteq f^{-1}(IFint(\overline{A})) \text{ implies that } f^{-1}(IFint(\overline{A})) \subseteq IFG_{\delta} - e - lint(\overline{f^{-1}(A)}), \text{ putting } \overline{A} = A, \text{ we have } f^{-1}(IFint(\overline{A})) \subseteq IFG_{\delta} - e - lint(f^{-1}(A)).$$

 $(v) \Rightarrow$ (i): Let A be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (Y, S). Then IFintA = A. Using (v), $f^{-1}(IFint(A)) \subseteq IFG_{\delta} - e - lint(f^{-1}(A))$ implies that $f^{-1}(A) \subseteq IFG_{\delta} - e - lint(f^{-1}(A))$. But, $IFG_{\delta} - e - lint(f^{-1}(A)) \subseteq f^{-1}(A)$ implies that $f^{-1}(A) = IFG_{\delta} - e - lint(f^{-1}(A))$ that is, $f^{-1}(A)$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally open set in an intuitionistic fuzzy topological space (X, T). Let $x_{r,s}$ be any intuitionistic fuzzy point in $f^{-1}(A)$. Then $x_{r,s} \in f^{-1}(A)$. We have $x_{r,s}qf^{-1}(A)$ implies that $f(x_{r,s})qf(f^{-1}(A))$. But $f(f^{-1}(A)) \subseteq A$. Thus, for any intuitionistic fuzzy point $x_{r,s}$ and $A \in Nf(x_{r,s})$, there exists $B = f^{-1}(A) \in N^{IFG_{\delta} - e - lq}(x_{r,s})$ such that $f^{-1}(f(A)) \subseteq A$. Therefore, $f(B) \subseteq A$. Thus, f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function.

Theorem 3.2. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy bijective function. Then f is an intuitionistic fuzzy G_{δ} -e-locally continuous function if and only if $IFint(f(A)) \subseteq f(IFG_{\delta}-e-lint(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T).

Proof: Assume that f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function and A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X, T). Hence, $f^{-1}(IFint(f(A)))$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally open set in an intuitionistic fuzzy topological space (X, T). From Theorem (v) of (0.1) $f^{-1}(IFintf(A)) \subseteq IFG_{\delta} - e - lint(f^{-1}(f(A))), \quad f^{-1}(IFintf(A)) \subseteq IFG_{\delta} - e - lint(A)$. Since f is an intuitionistic fuzzy surjective function, $f(f^{-1}(IFintf(A))) \subseteq f(IFG_{\delta} - e - lint(A))$.

Conversely, assume that $IFint(f(A)) \subseteq f(IFG_{\delta} - e - lint(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, T). Let B be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (Y, S). Then B = IFint(B). Since f is an intuitionistic fuzzy surjective function, $B = IFint(B) = IFint(f(f^{-1}(B))) \subseteq f(IFG_{\delta} - e - lint(f^{-1}(B)))$.

Since f is an intuitionistic fuzzy injective function, $f^{-1}(B) \subseteq f^{-1}(f(IFG_{\delta} - e - lint(f^{-1}(B))))$. From the fact that f, is an intuitionistic fuzzy injective function, we have

$$f^{-1}(B) \subseteq IFG_{\delta} - e - lint(f^{-1}(B))$$
(3)

but

$$IFG_{\delta} - e - lint(f^{-1}(B)) \subseteq f^{-1}(B)$$
⁽⁴⁾

From (3) and (4) implies that $f^{-1}(B) = IFG_{\delta} - e - lint(f^{-1}(B))$. That is,

 $f^{-1}(B)$ is an intuitionistic fuzzy G_{δ} -*e*-locally open set in an intuitionistic fuzzy topological space (X,T). Thus, f is an intuitionistic fuzzy G_{δ} -*e*-locally continuous function.

Theorem 3.3. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy bijective function. Then f is an intuitionistic fuzzy G_{δ} -e-locally continuous function if and only if $f(IFG_{\delta}-e-lcl(A)) \subseteq IFcl(f(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T).

Proof: Assume that f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function and A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Hence, $f^{-1}(IFcl(f(A)))$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set in an intuitionistic fuzzy topological space (X,T). From Theorem (iv) of (0.1) $IFG_{\delta} - e$ - $lcl(f^{-1}(f(A))) \subseteq f^{-1}(IFclf(A))$. Since f is an intuitionistic fuzzy injective function, $IFG_{\delta} - e - lcl(A)) \subseteq f^{-1}(IFclf(A))$. Taking f on both sides, $f(IFG_{\delta} - e - lcl(A)) \subseteq f(f^{-1}(IFclf(A)))$. Since f is an intuitionistic fuzzy surjective function, $f(IFG_{\delta} - e - lcl(A)) \subseteq f(f^{-1}(IFclf(A)))$.

Conversely, assume that $f(IFG_{\delta} - e - lcl(A)) \subseteq IFcl(f(A))$, for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, T). Let B be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y, S). Then B = IFcl(B). Since f is an intuitionistic fuzzy surjective function, and by assumption $B = IFcl(B) = IFcl(f(f^{-1}(B))) \supseteq f(IFG_{\delta} - e - lcl(f^{-1}(B))), f^{-1}(B) \supseteq f^{-1}(f(IFG_{\delta} - e - lcl(f^{-1}(B))))$. Since f is an intuitionistic fuzzy injective function,

$$f^{-1}(B) \supseteq IFG_{\delta} - e - lcl(f^{-1}(B))$$
 (5)

But

$$(f^{-1}(B)) \subseteq IFG_{\delta} - e - cl(f^{-1}(B)) \tag{6}$$

From (5) and (6) implies that $f^{-1}(B) = IFG_{\delta} - e - lcl(f^{-1}(B))$. That is, $f^{-1}(B)$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set in an intuitionistic fuzzy topological space (X, T). Thus, f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function.

Theorem 3.4. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy bijective function. If f is an

intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function. Then if $A \in I^{Y}$ is an intuitionistic fuzzy closed set, then $f^{-1}(A) = IFG_{\delta} - e - lcl(f^{-1}(A))$.

Proof: Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y, S). By Theorem(iv)of (0.1).

$$IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFcl(A)) = f^{-1}(A)$$
(7)

Since A = IFcl(A). But

$$f^{-1}(A) \subseteq IFG_{\delta} - e - lcl(f^{-1}(A))$$
(8)

From (7) and (8) implies that $f^{-1}(A) = IFG_{\delta} - e - lcl(f^{-1}(A))$.

Proposition 3.1. Let (X,T), (Y,S) and (Z,R) be any three intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy G_{δ} -*e*-locally continuouus function. If $f(X) \subset Z \subset Y$ then $g:(X,T) \to (Z,R)$ where R = S/Z restricting the range of f is an intuitionistic fuzzy G_{δ} -*e*-locally continuous function.

Proof: Let *B* be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Z, R). Then B = S/Z, for some intuitionistic fuzzy closed set *A* of an intuitionistic fuzzy topological spaces (Y, S). If $f(X) \subset Z \subset Y$, $f^{-1}(A) = g^{-1}(B)$. Since $f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} -*e*-locally closed set in an intuitionistic fuzzy topological space (X, T). Hence, $g^{-1}(B)$ is an intuitionistic fuzzy G_{δ} -*e*-locally closed set in an intuitionistic fuzzy topological space (X, T). Therefore, *g* is an intuitionistic fuzzy G_{δ} -*e*-locally continuous function.

Proposition 3.2. Let $(X,T), (X_1,T_1)$ and (X_2,T_2) be any three intuitionistic fuzzy topological spaces and $P_i: X_1 \times X_2 \to X_i$ be an intuitionistic fuzzy projection of $X_1 \times X_2$ onto X_i . If $f: X \to X_1 \times X_2$ is an intuitionistic fuzzy G_{δ} -*e*-locally continuous function. Then $P_i \circ f: X \to X_i$ is also an intuitionistic fuzzy G_{δ} -*e*-locally cotinuous function.

Proof: Let A be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological spaces (X_i, T_i) $(i = 1, 2), (P_i \circ f)^{-1}(A) = f^{-1}(P_i^{-1}(A))$. Since P_i is an intuitionistic fuzzy mapping $P_i^{-1}(A)$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological spaces $X_1 \times X_2$. Hence, $f^{-1}(P_i^{-1}(A))$ is an intuitionistic fuzzy G_{δ} -e-locally closed set in an intuitionistic fuzzy topological space (X, T). Hence, $P_i \circ f$ is an intuitionistic fuzzy continuous function.

Proposition 3.3. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If intuitionistic fuzzy graph function $g: X \to X \times Y$ is an intuitionistic fuzzy

 G_{δ} -*e*-locally continuous function. Then $f:(X,T) \to (Y,S)$ is an intuitionistic fuzzy G_{δ} -*e*-locally continuous function.

Proof: Let g be an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function and $x_{r,s}$ be any intuitionistic fuzzy point in an intuitionistic fuzzy topological space (X,T). If $B \in N^{IFG_{\delta} - e - lq} f(x_{r,s})$ in an intuitionistic fuzzy topological space

$$(Y, S), X \times B \in N^{IFG_{\delta} - e - lq} g(x_{r,s})$$

in an intuitionistic fuzzy topological space $X \times Y$. Since g is an intuitionistic fuzzy G_{δ} e-locally continuous function, there exists $A \in N(x_{r,s})$ such that $g(A) \subseteq X \times B$. By Definition 0.24, we have $f(A) \subseteq B$. Therefore, f is an intuitionistic fuzzy G_{δ} -elocally continuous function.

Definition 3.4. Let (X, T) and (Y, S) be two intuitionistic fuzzy topological spaces. Let $f: (X, T) \rightarrow (Y, S)$ be an intuitionistic fuzzy mapping. Then f is said to be an

1. Intuitionistic fuzzy G_{δ} -*e*-locally irresolute function, if for each intuitionistic fuzzy G_{δ} -*e*-locally closed set A in an intuitionistic fuzzy topological space $(Y, S), f^{-1}(A)$ is an intuitionistic fuzzy G_{δ} -*e*-locally closed set in an intuitionistic fuzzy topological space (X, T).

2. Intuitionistic fuzzy weakly G_{δ} -*e*-locally continuous function, if for each intuitionistic fuzzy G_{δ} -*e*-locally closed set *A* in an intuitionistic fuzzy topological space (Y, S), $f^{-1}(A)$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (X, T).

Example 3.1. Let $X = \{a, b, c\} = Y$, and

$$A = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle,\$$

$$B = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle, A \lor B = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.3}\right), \left(\frac{a}{0.5}, \frac{b}{0.4}\right) \right\rangle,\$$

$$A \land B = \left\langle x, \left(\frac{a}{0.3}, \frac{b}{0.1}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}\right) \right\rangle, C = \left\langle x, \left(\frac{a}{0.7}, \frac{b}{0.7}\right), \left(\frac{a}{0}, \frac{b}{0.1}\right) \right\rangle$$

Now, the family $T = \{0, 1, ..., A, B, A \lor B, A \land B\}$ of IFS's in X is an IFT on X and the family $S = \{0, ..., C\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function. Now, f is an intuitionistic fuzzy $G_{\delta} - e$ -locally irresolute function, because C is an $IFG_{\delta} - e$ -locally closed set in Y, $f^{-1}(C)$ is also an $IFG_{\delta} - e$ -locally closed set in X.

Example 3.2. Let $X = \{a, b, c\} = Y$, and $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle, B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle,$ $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle, A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle,$ $C = \left\langle x, (\frac{a}{0}, \frac{b}{0.1}), (\frac{a}{0.7}, \frac{b}{0.7}) \right\rangle D = \left\langle x, (\frac{a}{0.7}, \frac{b}{0.7}), (\frac{a}{0}, \frac{b}{0.1}) \right\rangle$

Now, the family $T = \{0_{-}, 1_{-}, A, B, A \lor B, A \land B, C\}$ of IFS's in X is an IFT on X and the family $S = \{0_{-}, 1_{-}, D\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, Now, f is an intuitionistic fuzzy weakly G_{δ} -elocally irresolute function, because D is an IFG_{δ} -e-locally closed set in Y, $f^{-1}(D)$ is intuitionistic fuzzy closed set in X.

Theorem 3.5. Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy mapping. Then the following statements are equivalent

1. f is an intuitionistic fuzzy G_{δ} - e -locally irresolute function.

2. for every intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,T), $f(IFG_{\delta} - e - lcl(A)) \subseteq IFG_{\delta} - e - lcl(f(A))$.

3. for every intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y, S), $IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - e - lcl(A))$.

Proof: (i) \Rightarrow (ii): Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X, T). Suppose f is an intuitionistic fuzzy G_{δ} -e-locally irresolute function. Now, IFG_{δ} -e-lcl(f(A)) is an intuitionistic fuzzy G_{δ} -e-locally closed set in an intuitionistic fuzzy topological space (Y, S). By hypothesis, $f^{-1}(IFG_{\delta}$ -e-lcl(f(A))) is an intuitionistic fuzzy G_{δ} -e-locally closed set in an intuitionistic fuzzy topological space (X, T) and hence, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(IFG_{\delta}$ -e-(lcl(f(A)))). Now, IFG_{δ} -e- $lcl(A) \subseteq f^{-1}(IFG_{\delta}$ -e-lcl(f(A))).

That is, $f(IFG_{\delta} - e - lcl(A)) \subseteq IFG_{\delta} - e - lcl(f(A))$.

(ii) \Rightarrow (iii): Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y, S), then $f^{-1}(A)$ is an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X, T). By (ii), $f(IFG_{\delta} - e - lcl(f^{-1}(A))) \subseteq IFG_{\delta} - e - lcl(f(f^{-1}(A)))$. Since f is an intuitionistic fuzzy bijective function, $IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - e - lcl(A))$

(iii) \Rightarrow (i): Suppose A is intuitionistic fuzzy IFG_{δ} -e-locally closed set in an intuitionistic fuzzy topological space (Y, S). Then IFG_{δ} -e-lcl(A) = A. By hypothesis,

 $IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - e - lcl(A)), IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(A).$

4. Conclusion

Intuitionistic fuzzy topology is an important and a major area of mathematics. In this paper, we introduce intuitionistic fuzzy G_{δ} -*e*-locally neighborhood, intuitionistic fuzzy G_{δ} -*e*-locally quasi neighborhood, intuitionistic fuzzy G_{δ} -*e*-locally continuous and intuitionistic fuzzy G_{δ} -*e*-locally irresolute functions in intuitionistic fuzzy topological spaces are studied.

Acknowledgement. The authors express their earnest gratitude to the reviewers, editor-inchief and managing editors for their constructive suggestions and comments which helped to improve the present paper.

REFERENCES

- 1. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- 2. G.Balasubramanian, Maximal fuzzy topologies, *Kybernetika*, 31 (1995) 459-465.
- 3. D.Coker, An introduction to intuitionistic fuzzy topological spaces, *Fuzzy Set and Systems*, 88 (1997) 81-89.
- 4. D.Coker and M.Demirci, On intuitionistic fuzzy points, *Notes IFS*, 2(1) (1995) 79-84.
- 5. M.Ganster and I.L.Relly, Locally closed sets and and LC-continuous functions, *Intr.J. Math and Math. Sci.*, 12(3) (1989) 417-424.
- 6. I.M.Hanafy, Completely continuous function in intuitionistic fuzzy topological space, *Czechoslovak Math. J.*, 53 (2003), 793-803.
- 7. G.Saravanakumar, S.Tamilselvan and A.Vadivel, Intuitionistic fuzzy G_{δ} -*e*-locally closed sets, submitted.
- 8. D.Sobana, V.Chandrasekar and A.Vadivel, On fuzzy *e*-open sets, fuzzy *e*-continuity and fuzzy *e*-compactness in intuitionistic fuzzy topological spaces, *Communications in Mathematical Analysis* (in Press).
- 9. S.S.Thakur and S.Singh, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, *Fuzzy Sets and Systems*, (1998) 383-391.
- 10. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.