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Abstract: In this paper, we introduced new class of continuous maps called fuzzy αrω-
continuous maps in fuzzy topological spaces and studied some of their basic properties. 
Also we introduce fuzzy αrω-irresolute functions in fuzzy topological spaces and studied 
some of their properties. 
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1. Introduction 
Chang [6] introduced fuzzy topological spaces. Several topologists extended the concepts 
in topological spaces to fuzzy topological spaces. The study of continuity and its weaker 
forms constitutes an established branch of investigation in general topological spaces. 
Recently some researchers extended to these studies to the broader framework of fuzzy 
topological spaces. Fuzzy semi continuity, fuzzy almost continuity has been introduced 
and studied by Azad [1], fuzzy strong semi continuity and fuzzy pre-continuity has 
been introduced and studied by Shahna [5]. We introduce Fαrω-continuous and Fαrω-
irresolute mappings and study some of their fundamental properties. 
 
Definition 1.1.  A fuzzy set A of (X,τ) is called 
1. Fuzzy semi open (in short, Fs-open) [1]  if A≤ Cl(Int(A)) and a fuzzy semi-closed (in 

short, Fs-closed) if  Int(Cl(A))≤A  or  if  and only if  there exist exists a fuzzy open 
set V in X such that  V ≤A≤cl(V). 

2. Fuzzy pre-open (in short, Fp-open)[5] if A≤ Int(Cl(A)) and a fuzzy pre-closed (in 
short, Fp-closed) if Cl(Int(A)) ≤A  

3. Fuzzy α-open (in short, Fα-open)[5] if A≤ Int(Cl(Int(A))) and a fuzzy α-closed (in 
short, Fα-closed) if Cl (Int(Cl(A)))≤A  

4. Fuzzy semi-pre-open (in short, Fsp-open)[20]  if A≤ Cl(Int(Cl(A))) and a fuzzy semi-
pre-closed (in short, Fsp-closed) if Int(Cl(Int(A))) ≤ A  

5. Fuzzy regular-open set of X if  int(cl(�) = �. 
6. Fuzzy regular-closed set of  X  if  cl(int(�)) = �. 
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Definition 1.2.  A fuzzy set A of (X,τ ) is called 
1. fuzzy rw-closed[4] if cl(λ)≤ μ whenever λ ≤ μ &  μ is fuzzy regular semi-open in X. 
2. fuzzy gp-closed [7 ] if  pcl(λ)≤ μ whenever λ ≤ μ and  μ   is fuzzy open in X. 
3. fuzzy gs-closed [11] if scl(λ)≤ μ whenever λ ≤ μ and  μ   is fuzzy open in X. 
4. fuzzy αg-closed [3] if  αcl(λ)≤ μ whenever λ ≤ μ and  μ   is fuzzy α-open in X. 
5. fuzzy ω-closed [12]  if  cl(λ)≤ μ whenever λ ≤ μ and  μ   is fuzzy  semi-open in X. 
6. fuzzy g-closed [2] if  cl(λ)≤  μ whenever λ ≤  μ and  μ   is fuzzy  open in X. 
7. fuzzy gsp-closed [9] if spcl(λ)≤ μ whenever λ ≤ μ and  μ   is fuzzy open in X. 
8. fuzzy sg-closed [10] if scl(λ)≤ μ whenever λ ≤  μ and  μ   is fuzzy semi-open in X. 
9. fuzzy αrω-closed [15] if αcl(λ)≤ μ whenever λ ≤ μ and  μ   is fuzzy rw-open in X. 
 

Definition 1.3. [8] A fuzzy point xλ∈A is said to be quasi-coincident (in short q-

coincident)  with the fuzzy set A is denoted by xλqA  if and only if  λ + A(x) > 1.   

A fuzzy set A is quas-coincident with a fuzzy set B denoted by AqB if and only if there 
exists x∈X such that A(x) + B(x) > 1.   

If the fuzzy sets A and B are not quasi-coincident then we write  Aq�B . 
A fuzzy set B is said to be a q-neighbourhood (in short, q-nbd) of a fuzzy set A if there 
is a fuzzy open sets U with AqU ≤ B. 
 

Definition 1.4. [14] A fuzzy set A in (X,τ) is called Fαrω-nhd of a fuzzy point xλ if there 
exists  a Fαrω-open set B such that xλ∈B ≤ A.  
  
A fuzzy set A in (X,τ) is called fuzzy αrω-q-nhd of a fuzzy point xλ (resp.  fuzzy set B), if 
there exists a Fαrω-open set U in (X,τ) such that  xλqU ≤ A (resp. BqU≤ A). 
 
2. Fαrω-continuous and Fαrω-irresolute functions 
We introduce Fαrω-continuous and Fαrω-irresolute mappings and study some of their 
fundamental properties and also we introduce fuzzy Tαrω-space as an application of  fuzzy 
αrω-closed set. 

 

Definition 2.1. A mapping f:(X,τ)→(Y,σ) is called fuzzy αrω-continuous (in short, Fαrω-
continuous) if  f−1(V) is Fαrω-closed in (X,τ) for every fuzzy closed set V of (Y,σ). 
 
Definition 2.2. A mapping f :(X,τ)→(Y,σ) is called fuzzy αrω-irresolute(in short, Fαrω-
irresolute)  if  f−1(V)  is Fαrω-closed in (X,τ) for every Fαrω-closed set V of (Y,σ). 
 
Definition 2.3. A fuzzy topological space (X,τ) is called a fuzzy Tαrω space if every Fαrω-
closet set in it is fuzzy closed. 

Theorem 2.4.  1) If  f :(X,τ)→(Y,σ) be fuzzy continuous then f is Fαrω-continuous. 
2)  If  f:(X, τ)→(Y,σ) be Fα-continuous  then f is Fαrω-continuous. 
Proof: 1) Let V be a fuzzy closed set in (Y,σ). Since f is fuzzy-continuous, f−1(V) is F-
closed in (X,τ). Every F-closed is Fαrω-closed set, f−1(V) is Fαrω-closed in (X,τ).  Hence 
f is Fαrω-continuous. 
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2)  Let V be a fuzzy closed set in (Y,σ). Since f is Fα-continuous, f−1(V) is Fα-closed in 
(X,τ). Every Fα-closed is Fαrω-closed set, f−1(V) is Fαrω-closed in (X,τ). Hence f is 
Fαrω-continuous. 

Example 2.5.  Let  P=Q={a,b,c,d} and the fuzzy sets  A, B,C,D,E:P→[0, 1] be defined as 

            A	x� =
1 if  x = a 

  0 otherwise 
     B	x� =

1 if  x = b 

  0 otherwise 
  C	x� =

1 if   x = a, b 

0 otherwise
 

D	x� =
1 if  x = a, b, c 

  0       otherwise 
     E	y� =

1 if  y = c, d 

  0 otherwise 
  G	x� =

1 if   x = a, d 

0 otherwise
 

Consider T1 and T2 ={1,0,A,B,C,D}  then (P,T1) and (Q,T2) are fuzzy topological space. 
Let map f: P→Q defined by f(a)=c, f(b)= a, f(c)=b, f(d)=d, then f is Fαrω-continuous but 
not fuzzy-continuous and not Fα-continuous, as fuzzy closed set E in Q, then f–1(E)=G  in 
P which is not Fα-closed , not  F-closed set in P. 
 
Theorem 2.6.  If  f : (X,τ)→(Y,σ) be Fαrω-continuous. Then f is Fαg-continuous. 
Proof:  Let V be a fuzzy closed set in (Y,σ). Since f is Fαrω-continuous, f−1(V ) is Fαrω-
closed in (X,τ). Every Fαrω-closed is Fαg-closed  set, f−1(V) is Fαg-closed in (X,τ). 
Hence f is Fαg-continuous. 
 
Example 2.7. Let X=Y={a,b,c} and the fuzzy sets  A, B, G:X→ [0, 1]  

 A	x� =
1 if  x = a 

  0 otherwise 
     B	x� =

1 if  x = b, c 

  0   otherwise 
  G	x� =

1 if   x = a, c 

0 otherwise
 

Consider T1={1,0,A,B}, T2={0,1,A} Then (X,T1) and (Y,T2) are  fuzzy topological space. 
Let map  f: X→Y defined by f(a)=b, f(b)=a, f(c)=c then f is Fαg-continuous but not 
Fαrω-continuous  as  F-closed set B in Y, then  f–1(B)=G  in X which is not Fαrω-closed 
set in X 
 
Theorem 2.8. Let f:(X, τ)→(Y,σ) be Fαrω-continuous if and only if inverse image of 
each  fuzzy open set of (Y,σ) is Fαrω-open in (X,τ). 
Proof: Let  f  be Fαrω-continuous. If  V is any fuzzy open set in (Y,σ) then f−1(1−V)  
=1−f−1(V)  is  Fαrω-closed.  Hence f−1(V) is Fαrω-open in (X, τ ).  
Conversely Let V be a fuzzy closed set in (Y,σ). By hypothesis, f−1 (1 − V) is Fαrω-open 
in (X,τ).  This gives  f−1(V)  is  Fαrω-closed.  
Hence f is Fαrω-continuous. 
 
Theorem 2.9. If  f:(X,τ)→(Y,σ) is Fαrω-continuous then for each fuzzy point xλ of  X 
and A∈σ such that f(xλ)∈A, there exists a Fαrω-open set B of  X such that  xλ∈B and 
f(B) ≤ A. 
Proof: Let xλ be a fuzzy point of X and A∈σ such that f(xλ)∈A. Take B=f−1(V). Since  
1− A is fuzzy closed in (Y, σ) and f is Fαrω-continuous, we have f−1(1−A)= 1−f−1(A) is 
Fαrω-closed in (X,τ). This gives B=f−1(A) is Fαrω-open in (X,τ) and  xλ∈B and f(B)= 
f(f −1(A))≤A.  
 
Theorem 2.10. If  f:(X,τ)→(Y,σ) is Fαrω-continuous then for each fuzzy point xλ of X  
and A∈σ such that f(xλ)qA, there exists a Fαrω-open set B of X such that xλqB and      
f(B) ≤ A. 
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Proof: Let xλ be a fuzzy point of X and A∈σ such that f(xλ)qA. Take B=f−1(A).             
By  above thereon 2.9, B is Fαrω-open in (X,τ) and xλqB and f(B)= f(f−1(A))≤ A. 
 
Theorem 2.11. If  f:(X, τ)→(Y,σ) is  Fαrω-irresolute  then f is Fαrω-continuous. 
Proof:   As every fuzzy closed set is Fαrω-closed and f is Fαrω-irresolute  map.  
 
Remark 2.12. The following example shows that reverse implication is not true. 
 
Example 2.13. Let X={a,b,c,d},Y={a,b,c} and  
fuzzy sets  A,B,C,D:X→[0,1]   E,F:Y→[0,1]  be defined as  

   A	x� =
1 if  x = a 

  0 otherwise 
     B	x� =

1 if  x = b 

  0 otherwise 
  C	x� =

1 if   x = a, b 

0 otherwise
 

D	x� =
1 if  x = a, b, c 

  0      otherwise 
   E	y� =

1 if  y = a 

  0 otherwise 
  G	y� =

1 if   y = b 

0 otherwise
 

τ = {0,1,A,B,C,D}  σ ={0,1,E} Then (X,τ) and (Y,σ) are  fuzzy topological space.  Let 
map  f:X→Y defined by f(a)=b, f(b)=a, f(c)=a, f(d)=c then f is Fαrω-continuous  but f is 
not Fαrω-irresolute, as  Fαrω-closed set  G in Y, then  f–1(G)=A  in  X , which is not 
Fαrω-closed set in X. 
 
Theorem  2.14. Let f:(X,τ)→(Y,σ) and g:(Y,σ)→(Z,η) be any two functions. Then 

i) g◦f:(X,τ)→(Z,η) is Fαrω-continuous if g is fuzzy-continuous and f is Fαrω-irresolute. 
ii)  g◦f:(X,τ)→(Z,η) is Fαrω-irresolute if g is Fαrω-irresolute and f is Fαrω-irresolute. 
iii)  g◦f:(X,τ)→(Z,η) is Fαrω-continuous if g is Fαrω-continuous and f is  Fαrω-irresolute.  
Proof:   
(i) Let U be a Fopen set in (Z,η). Since g is Fuzzy-continuous, g–1(U) is Fuzzy-open set 

in (Y,σ). Since every Fuzzy-open is Fαrω-open then g–1(U) is Fαrω-open in Y, siince 
f is Fαrω-irresolute f–1(g–1(U)) is an Fαrω-open set in (X,τ). Thus (g◦f)–1(U)=            
f–1(g–1(U)) is an Fαrω-open set in (X, τ) and hence gof is Fαrω-continuous.  

(ii)  Let U be a Fαrω–open set in (Z,η). Since g is Fαrω-irresolute, g–1(U) is Fαrω-open 
set in (Y, σ). Since f is Fαrω–irresolute, f–1(g–1(U)) is an Fαrω-open set in (X,τ). Thus 
(g◦f)  –1(U)=f–1(g–1(U)) is an Fαrω-open set in (X,τ) and hence gof  is Fαrω-irresolute. 

(iii)  Let U be a fuzzy-open set in (Z,η). Since g is fuzzy-continuous, g–1(U) is fuzzy-open 
set in (Y,σ). As every Fopen set is Fαrω–open,  g–1(U) is Fαrω–open set in (Y,σ).  
Since f is Fαrω–irresolute f–1(g–1(U)) is an Fαrω–open set in (X,τ). Thus(g◦f)–1(U)=  
f–1(g–1(U)) is an Fαrω-open set in (X,τ) and hence g◦f is Fαrω-continuous. 
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