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Abstract. In this paper, we present a new generalized ug$ehzly inaccuracy measure
and generalized fuzzy code-word length of ordeand typeS. These measures are not
only new but some known measures are the particalses of our proposed measures.
We have also obtained the bounds of generalizezyfamde-word length in terms of
generalized useful fuzzy inaccuracy measure.
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1. Introduction
The concept of fuzzy sets was introduced by Zad¢hrd developed his own theory to
measure the ambiguity (uncertainty) of a fuzzy Bakzy logic plays an important role in
the context of information theory. Kilr and Par{22 first made an attempt to apply fuzzy
set and fuzzy logic in information theory, latervarious researchers applied the concept
of fuzzy in information theoretic entropy functiohhe importance of fuzzy set comes
from the fact that it can deal with imprecise ameiact information. Its application areas
span from design of fuzzy controller to roboticgl anmtificial intelligence. Besides above
applications of fuzzy logic in information theotyerre is a numerous literature present on
the application of fuzzy logic in information thgor

Fuzziness and uncertainty are the baatare of human thinking and many real
world objectives. Fuzziness is found in our decisim our language and in the way of
process information. The main objective of inforimatis to remove uncertainty and
fuzziness. In fact, we measure information supplsdthe amount of probabilistic
uncertainty removed in an experiment and the measfiuncertainty removed is also
called as a measure of information, while meastireagueness is called measure of
fuzziness.

Later, many other researchers made more effortthis particular area. For

instance, Kaufmann [24] proposed fuzzy entropy dizzy set by a metric distance
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between its membership function and the membeiffsimiption of its nearest crisp set.
Yager [25,26] defined an entropy measure of a fugey in terms of the lack of
distinction between fuzzy set and its complementl989, Pal and Pal [27] proposed an
entropy based on exponential function to measwdutziness called ‘exponential fuzzy
entropy’. A number of parametric generalization®Def Luca and Termini’s [4] entropy
measure have been studied by various researché@stitwo decades. In 2007, Ding et
al. [28] extended the idea of De Luca and Termihizzy entropy for pairs of fuzzy sets
and defined some new fuzzy information measuref sgcconditional fuzzy entropy,
joint fuzzy entropy and fuzzy mutual informationei@ralized fuzzy coding theorems by
considering different generalized fuzzy informatioreasures under the condition of
uniquely decipherability codes were investigatedsbyeral authors, see for instance, the
papers: Baig and Dar [10,11,12], Parkash and ShgiBdl4], Ashig and Baig
[21,22,23].

2. Preliminaries on fuzzy set theory
Let a universe of discourde= {x;,x,, ...,x,} then a fuzzy subset of universg is
defined as:
A= {(x;a(x)): x; € X, 14 (x;) € [0,1]}
wherep, (x;): X - [0,1] is a membership function and gives the degreeslaingingness
of the element; to the setd and is defined as follows:
0, if x; € A and there is no ambiguity,
a(x) = 1, if x; € A and there is no ambiguity,
0.5,if x; € A or x; € A and there is maximum ambiguity,

In factu, (x;) associates with each € X gives a grade of membership function in
the setd. Whenp, (x;) takes values only 0 or 1, there is no uncertaabiyut it and a set
is said to be a crisp (i.e. non-fuzzy) set. Som#ne related to fuzzy sets which we shall
need in our discussion Zadeh [1].

e Containment: If Ac B < py(x;) < pug(xp) ¥ x; €X
e Equality fA=B < p,u(x;) =ug(x;) ¥ x; €X
« Compliment: If 4is complement ol & p,(x;) =1 —pu(x) ¥ x; €X
e Union: If AU B is union ofd & B © pyup(x;) =Max{u,(x;), ug(x;)} ¥ x; € X
* Intersection: If A N B is intersection of
A& B < panp(x;) = Min{ps (x), up(x)} ¥ x; €X
*  Product: If AB is product ofA & B & u5(x;) = pa(x)ug(x) ¥ x; €X
«  Sum:
If A+ Bissumofd & B & payp(x) = s () + 5 () — maGeditp () ¥
x; €EX
Let’s conslider a simple example. Later, we'll use tesult of this example to provides a
new method for European claim pricing. Considdymamic system driven by fractional
noise

3. Basic concepts
Ifx,, x5, ..., x, are members of the universe of discourse, witlpeetsve membership

functions p, (x1), pa(x2), L, -, a(xn), then all p, (), pa(xz), na(xz), ) Baxn)
lies between 0 and 1 but these are not probasiliteause their sum is not unity.(x;)
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gives the element;the degree of belongingness to the set “A”. Thecfion p,(x;)
associates with eachhe R" a grade of membership to the set “A” and is knaagn
membership function.
Denote

X1X72

F.5= [HA(x1) pa(x2) #A(xn)]' O<ua(x) <1 v x; (.1)
We call the scheme (1.1) as a finite fuzzy infoipratscheme. Every finite scheme
describes a state of uncertainty. Sipgéx;) and1 — u,(x;) gives the same degree of
fuzziness, therefore corresponding to entropy dughannon [3], De-Luca and Termini
[4] suggested the following measure of fuzzy engrop
H(A) = = Xy [a () log g () + (1 = pa () )log(1 — pa(x))] 1.2)
De-Luca and Termini [4] introduced a e&four properties and these properties
are widely accepted as for defining new fuzzy gmirdn fuzzy set theory, the entropy is
a measure of fuzziness which expresses the amdwatecage ambiguity in making a
decision whether an element belongs to a set orSmta measure of average fuzziness
H(A) in a fuzzy set A should have the following propeexto be valid fuzzy entropy:
I.  (Sharpness)H(A) is minimum if and only if A is a crisp set,i.qiy(x;) =
0 or1; forallx;,i=1,2,...,n.
Il. (Maximality): H(A) is maximum if and only if A is most fuzzy set,.j.e4(x;) =
%; for allx;,i=1,2,...,n.
M. (Resolution)H(A*) < H(A), where A is sharpened version of A,
IV.  (Symmetry):H(A) = H(A®), where A€ is the complement of A. i.quyc(x;) =
1—p,(x;); forallx;i=1,2,..,n

Xn

The different elements; depends upon the experimenters goal or upon some
gualitative characteristics of the physical systeken into account; ascribe to each
element x; a non-negative numbert;60) directly proportional to its importance and
callu;the utility of the element;.Then the weighted fuzzy entropy [5] of the fuzef s
“A” is defined as:

H(AU) = = S ui{ ma () log a(x) + (1 — s (1)) log(1 — pa (x;))}(1.3)

Now let us suppose that the experimenter assextshtbh membership function of tith
element igz(x; ), where the true membership functiop éx;), thus we have two utility
fuzzy information schemes:

X1Xo Xn
F.§* = [,uA(xl) pa(xz) MA(xn)],Os HaCx) <1 % x; u; >0 (1.4)
UiuUy Uy
Of a set of n elements after an experiment, and
X1X Xn
F.§" = [HB(X1)ﬂB(x2) #B(xn)]:() Spp(x) <1 ¥ xu; >0 (1.5)
Uy Uy Uy

of the same set of n elements before the experinrebbth the schemes (1.4) and (1.5)
the utility distribution is the same because weuassthat the utility; of an element;
is independent of its membership functipp(x;), or predicted membership function
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ug(x;), u; is only autility’ or value of the element;for an observer relative to some
specified goal (refer to [6]).
The guantitative-qualitative measure dfzfpinaccuracy corresponding to Taneja
and Tuteja measure of inaccuracy [7] with the alsmreemes is:
I(4;B;U) = = S ui{ ma () log g () + (1 — ma () log(1 — 1 (x))} (1.6)
Guiasu and Picard [8] considered the mmbbf encoding the letter output by the
source (1.4) by means of a single prefix code wditlie-wordsc;, c,, ..., c,having
lengthsl,,l,,...,l,, satisfying Kraft [9] inequality:
n.Dpli<1 (1.7)
where D being the size of the code alphabet. CorresponttinGuiasu and picard [8]
useful mean code-word length we have the followisgful fuzzy mean length of the
code
) _ X ufpa () +(1—pa )M
L4 U) = T wi{ra (o) +(1-pa ()} (1.8)
and obtain bounds for it in terms of (1.6) under tondition:

e lra Gz () + (1 = ma (e)) (L — pp(x)) '} D < 1 (1.9)
where D is the size of code alphabet .Inequalitp)(is generalized fuzzy Kradt
inequality.

A code satisfying generalized fuzzy Kafhequality is known as a personal fuzzy
code. It is easy to see that for(x;) = up(x))vx;, i = 1,2,3,...,n (1.9) reduces to Kraft
[9] inequality.

In this particular paper generalized useful fuznde-word mean length are
considered and bounds have been obtained in tefmgemeralized useful fuzzy
inaccuracy measure of orderand type8 .The main aim of these results is that it
generalizes some well-known fuzzy measures alreaidying in the literature.

4. Coding theorems of generalized useful fuzzy inaccuracy measure
Consider a function:

S [y el ™ () + A () P (- g () PO
ST [l () +(1—na () ]
wherea > 0(# 1), B > 0,pua(x;) =0, pp(x;) =2 0¥ x;,i=1,2,3,...,n

15 (ABIU)= - log), (2.1)

Remarks of (2.1)

® When =1 (2.1) reduces to useful fuzzy information measofr@rder
corresponding to Bhatia [15] information measurerafera.

(i) When B=1,u; =1 ¥i=1,2,3,..,n (2.1) reduces to fuzzy inaccuracy
measure of corresponding to Nath [16], furtheredluces to fuzzy entropy
corresponding to Renyi's [17] entropy by takimg(x;) = ug(x;) ¥ x;, i =
1,2,3,..,n

(i) Whenp=1,u; =1 vi=1,23,..,nanda - 1 (2.1) reduces to the fuzzy
measure corresponding to Kerridge [18]

We call (2.1) the generalized useful fuzzy inaccynameasure of order and typeg.
Further we define a parametric fuzzy caded mean length credited with utilities
and membership functions as:
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n o t+if B D+(1— )E|ptl
m Ll )+ (1-pa () ]t+1 l<t<wtz08>0  (22)
(2 wif e+ (1 -uai)#))

1
Lp(A;0) = ~logp

Remarks of (2.2)

® When B =1,(2.2), reduces to useful fuzzy code-word mean lengt
corresponding to code given by Bhatia [15].

(i) When g=1u;=1vi=1,2,..,n.(2.2), reduces to fuzzy code-word
mean length corresponding to Cambell [19] meantleng

(i) Wheng =1,u;=1%i=1,2,..,n. and t - 0 (2.2), reduces to optimal
fuzzy code length corresponding to Shannon [3]ogiticode length.

(iv) Whenu; =1vi=1,2,..,n (2.2), reduces to the fuzzy code-word mean
length corresponding to Khan and Haseen [20] cedgth.

Now we found the bounds for (2.2) in terms of (2ityler the condition

o [ oy o) + (1= ae)’ (1 = p ) # D71 <1 (2.3)
where D is the size of code alphabet, also (2.3uizy generalization of Kraft [9]
inequality. It is easy to see that fg@t = 1 and pu(x;) = ug(x;) vx;, i =1,2,3,...,n,
inequality (2.3) reduces to Kraft [9] inequality.

Theorem 4.1. For all integerd (D > 1). Let; satisfies the the condition (2.3), then the
generalized parametric useful fuzzy code-word nleagth satisfies

LY (4;U) > 15 (4;B; U) (2.4)
wherea = ﬁ equality holds iff

wi| P )+ (1 (x) 7]

[, =—log — (2.5)

' P 15w eowb D o+ (1-ae)’ (1-pp (e P
Proof: By Holders inequality we have

1 1
Yimi iy = Qiz g xP)P(Eis, x9)e (2.6)
For all x;,y;,>0, i=1,23,..,n and %+%= 1, p<1(#0),g<0 or g<
1(#0),p <.
We see the equality holds iff there exists a pessitionstant such that
xlp = cyl-q 2.7
Making the substitution
t+1
() ( - 1 ) -

= N4+ (1 - NE D™ 2.8
X ul (HA (xl) ( .uA(xL)) ) |:Z?:1ui[#ﬁ(xi)"'(l_ﬂA(xi))B] ( )
yl tfl t+1

- B\— _ B 1
ul.( -) [HA( ‘ )(xi).ugﬁ(xi) + (1 — palxp) (: )(1 -

(F)
t
) | (2.9)
S | e+ (1-a (x)E]

p=—1:=017_1 and q=é=1—a

139



Ashiq Hussain Bhat, Mohd Afzal Bhat, M. A. K Badgnd Saima Manzoor
in (2.6) and after suitable simplification, we get

D [ Goms” G + (1= maGe) @ — o) #| 0
i=1

1

™ [”ﬁ(xi) +(1- ﬂA(xi))B] Dtli]t

(T [w o + @ = maf])

1

g [h Geong " () + (1 - )P (1 - uﬂm”ml_aﬂr

Mg [ o) + (1 — pae)) ]
Now using the inequality (2.3) we get

bt [ () + (1= pax))P | D
n B t+1
(Zryws [ () + (1 = maCe))?])
g [ GO () + (1 — AP (L — g ()P
R TACHERCEMENT
Taking logarithm to both with base D we get
T i AR CEy e Il
?logD P t+1
(B [ ) + (1 = maGe))f])
1 1 Yim1 U [Mf(xi)ug(l_“) () + (1 - uA(xi))B(l - HB(Xi))B(l_“)]
og
—a [l ) + (1~ )]

1
t

1

Or equivalently, we can write
L5(4;0) 2 15(4;B; )

Theorem 4.1. For every code with lengthsly, l,, ..., [,, satisfies the condition (2.3),
L%(A; U) can be made to satisfy the inequality

L5(4;0) < 15(4;B;U) +1 (2.10)
Proof: Let; be the positive integer satisfying the inequality

1 Ui [#E‘B(xi) +(1 —Hg(xl-))“ﬁ] L
08p — <1
g 1 G G + (1 = iaGe))P (1 = p ()P0
g,,2B/... _ NaB
wug? e+ (-np ()]
—lo +1 211
80 [2?=1ui[u,,’?(xi)ug“‘“)(xi)+<1—uA(xi»ﬁ(l—uB(xi))ﬁu—a)] (2.11)

Consider the interval
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[ 1o uiug? () +(1-pp (i) ]
8D |5 w1l ronE P e+ (—a )P (1—p )P |
85 = i ap I (2.12)
o wi[ug? () +(1-pp(x)) | i1
|82 |3, w[ kol e - pa G P (- e -] | |
of length 1, in every;, there lies exactly one positive intedggrsuch that
w; [ Ge) + (1 = pap () |
0 < —logp 3 50— <<
o1 Ui [uA w7 0) + (1 — pa ()P (1 - uB(xi))ﬁ(l‘“)]
) [,%B (s _ yyaB
wi[ug? e+ (1-pp () *F|
~1lo 2.13
&p [2{;1ui[uﬁ(xoug“‘“)(xi>+(1—uA(xi»f”(l—ua(xi))ﬁ(l-a)]] (213)

We will first show that the sequentgl,, ..., I, thus defined above satisfies (2.3).
Subsequently from the left inequality of (2.13) have

w; [ () + (1 — pp ()

<l
Sy g [ eug ™ G + (1= paGe))B (1 — g (x»)ﬁ(la)]‘
Or equivalently, we can write
log [ wi| P )+ (1-pp (x)) 75| -

P, il eonh ™ G+ (1-pa ) (1-pp (i) PO-9)] | =
Multiply both sides of equation (2.14) by

[t eng () + (1 = ma ) (1 = o ()]

and then summing ovei = 1,2, ...,n on both sides to the result that we obtain we get

the required result (2.3).
Now take the last inequality of (2.13) we have

g 188 () + (1 = 1 (x) ]

Sy [ Geug ™ 0) + (1 = pae)B (1 — g ()P~
Or equivalently, we can write above as

—logp

(2.14)

+1

l; < —logp

L wi g e +(1-pp (x) Y| -
DE<|s B ey P-a o (2.15)
S wifh Geuh T e+ (1-pa Ge)) B (1 () PO
Raising powert = 1?7“ on both sides to equation (2.15), we get
i 1P )+ (1-pp (x)%# -
Dttt < _ ;(Ezji) () +(1-pp(x) | . (2.16)
S wifuh Geuh T )+ (1 paGe) B (1-pp () P

Multiply both sides of equation (2.16) by
t+1|,,B (... _ WA
uf [ (o) + (1= aG))? |
n B t+1
(B [ ) + (1 = wa(x)P|)

And then summing ovet =1,2,...,n to the resulted expression, and after making
suitable operations, we get
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Ly uf il o) +(1-pa o) ot
(S e+ (-pae?])
Sy i Gonf ™ () +(1-uaGe)) P (1-np (1) P9
S il )+ (1-a i) B
Taking logarithms to both sides with base D to ¢éiqua(2.17), and then dividing both

1-a

t+1

Dt (2.17)

sides byt = — to the resulted expression and after suitableatipas, we get
1 o uf [ () + (1 - pax))P| D
?IOgD 3 t+1
(B [1h () + (1 = ua(xi))P|)
1 Sy g [ Geug P ) + (1= waGe))P (1 — g ()P~
1= alogD +1

g 1 () + (1= pa ()P
Or equivalently, we can write
LY (4;U) < I5(4;B;U) + 1.

5. Conclusion

In this article, we present a new generalized ugefeighted) fuzzy inaccuracy measure
and its corresponding generalized fuzzy code-wengjth and show that these measures
generalizes some well-known measures that alreaitsein the literature of fuzzy
information measures. Also we obtain the boundgeoferalized fuzzy code-word length
in terms of generalizes useful (weighted) fuzzycamacy measure.
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