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Abstract. In this paper, we present a new generalized useful fuzzy inaccuracy measure 
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1. Introduction 
The concept of fuzzy sets was introduced by Zadeh [1] and developed his own theory to 
measure the ambiguity (uncertainty) of a fuzzy set. Fuzzy logic plays an important role in 
the context of information theory. Kilr and Parviz [2] first made an attempt to apply fuzzy 
set and fuzzy logic in information theory, later on various researchers applied the concept 
of fuzzy in information theoretic entropy function. The importance of fuzzy set comes 
from the fact that it can deal with imprecise and inexact information. Its application areas 
span from design of fuzzy controller to robotics and artificial intelligence. Besides above 
applications of fuzzy logic in information theory there is a numerous literature present on 
the application of fuzzy logic in information theory. 
          Fuzziness and uncertainty are the basic nature of human thinking and many real 
world objectives. Fuzziness is found in our decision, in our language and in the way of 
process information. The main objective of information is to remove uncertainty and 
fuzziness. In fact, we measure information supplied by the amount of probabilistic 
uncertainty removed in an experiment and the measure of uncertainty removed is also 
called as a measure of information, while measure of vagueness is called measure of 
fuzziness. 

Later, many other researchers made more efforts in this particular area. For 
instance, Kaufmann [24] proposed fuzzy entropy of a fuzzy set by a metric distance 



Ashiq Hussain Bhat, Mohd Afzal Bhat, M. A. K Baig  and Saima Manzoor 

136 
 

 

between its membership function and the membership function of its nearest crisp set. 
Yager [25,26] defined an entropy measure of a fuzzy set in terms of the lack of 
distinction between fuzzy set and its complement. In 1989, Pal and Pal [27] proposed an 
entropy based on exponential function to measure the fuzziness called ‘exponential fuzzy 
entropy’. A number of parametric generalizations of De Luca and Termini’s [4] entropy 
measure have been studied by various researchers in last two decades. In 2007, Ding et 
al. [28] extended the idea of De Luca and Termini’s fuzzy entropy for pairs of fuzzy sets 
and defined some new fuzzy information measures such as conditional fuzzy entropy, 
joint fuzzy entropy and fuzzy mutual information. Generalized fuzzy coding theorems by 
considering different generalized fuzzy information measures under the condition of 
uniquely decipherability codes were investigated by several authors, see for instance, the 
papers: Baig and Dar [10,11,12], Parkash and Sharma [13,14], Ashiq and Baig 
[21,22,23]. 
 
2. Preliminaries on fuzzy set theory 
Let a universe of discourse	� = {	
, 	�, … , 	�} then a fuzzy subset of universe � is 
defined as: � = ��	� , ���	���:		� ∈ �, ���	�� ∈ [0,1]� 
where ���	��: � → [0,1] is a membership function and gives the degree of belongingness 
of the element 	� to the set � and is defined as follows: 

μ��	�� = ! 0, if		� ∉ �	and	there	is	no	ambiguity,1, if		� ∈ �		and	there	is	no	ambiguity,0.5, if		� ∈ �	or		� ∉ �	and	there	is	maximum	ambiguity,6 
       In fact μ��	�� associates with each			� ∈ X gives a grade of membership function in 
the set		�. When μ��	�� takes values only 0 or 1, there is no uncertainty about it and a set 
is said to be a crisp (i.e. non-fuzzy) set. Some notions related to fuzzy sets which we shall 
need in our discussion Zadeh [1]. 

• Containment: If � ⊂ 9 ⟺ μ��	�� ≤ μ<�	�� ⩝ 			� ∈ X 
• Equality: If � = 9 ⟺ μ��	�� = μ<�	�� ⩝ 			� ∈ X 
• Compliment: If �̅ is complement of � ⟺ μ��	�� = 1 − μ��	�� ⩝ 			� ∈ X 
• Union: If � ∪ 9 is union of �	&	9 ⟺ μ�∪<�	�� =Max{μ��	��, μ<�	��B ⩝ 	� ∈ X 
• Intersection: If 	� ∩ 9	is	intersection	of                   �	&	9 ⟺ μ�∩<�	�� = Min{μ��	��, μ<�	��B ⩝ 			� ∈ X 
• Product: If 	�9	is	product	of�	&	9 ⟺ μ�<�	�� = μ��	��μ<�	�� ⩝ 			� ∈ X 
• Sum: 

If 	� + 9	is	sum	of�	&	9 ⟺ μ�H<�	�� = μ��	�� + μ<�	�� − μ��	��μ<�	�� ⩝			� ∈ X 
Let’s consider a simple example. Later, we’ll use the result of this example to provides a 
new method for European claim pricing.  Consider a dynamic system driven by fractional 
noise 
 
3. Basic concepts 
If	
, 	�, … , 	� are members of the universe of discourse, with respective membership 
functions μ��	
�, μ��	��, μ�, … , μ��	��, then all  μ��	
�, μ��	��, μ��	I�,… , μ��	�� 
lies between 0 and 1 but these are not probabilities because their sum is not unity. μ��	�� 
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gives the element 	�the degree of belongingness to the set “A”. The function  μ��	�� 
associates with each 	�∈ Rn a grade of membership to the set “A” and is known as 
membership function. 
Denote L. M = N 	
	� 																…																	����	
�														���	��							…														���	��O,	0	≤ μ��	�� ≤ 1	 ⩝		�      (1.1)  

We call the scheme (1.1) as a finite fuzzy information scheme. Every finite scheme 
describes a state of uncertainty. Since μ��	�� and 1 − μ��	�� gives the same degree of 
fuzziness, therefore corresponding to entropy due to Shannon [3], De-Luca and Termini 
[4] suggested the following measure of fuzzy entropy. 
 P��� = −∑ Rμ��	�� log μ��	�� + �1 − μ��	���log�1 − μ��	���T��U
       (1.2) 
           De-Luca and Termini [4] introduced a set of four properties and these properties 
are widely accepted as for defining new fuzzy entropy. In fuzzy set theory, the entropy is 
a measure of fuzziness which expresses the amount of average ambiguity in making a 
decision whether an element belongs to a set or not. So, a measure of average fuzziness P��� in a fuzzy set A should have the following properties to be valid fuzzy entropy: 

I. (Sharpness): P��� is minimum if and only if A is a crisp set,i.e., μ��	�� =0	or	1;		for all	� , i = 1, 2,… , n. 
II.  (Maximality): P��� is maximum if and only if A is most fuzzy set, i.e., μ��	�� =
� ;	for all	� , i = 1, 2, … , n. 

III.  (Resolution): P��∗� ≤ P���, where A* is sharpened version of A. 
IV.  (Symmetry): P��� = P��Y�,	where �Y is the complement of A. i.e.,	��Z�	�� =1 − μ��	��; for all		�i = 1, 2, … , n 

 
The different elements 	�	depends upon the experimenters goal or upon some 

qualitative characteristics of the physical system taken into account; ascribe to each 
element  	� a non-negative number ([�>0) directly proportional to its importance and 
call[�the utility of the element 	�.Then the weighted fuzzy entropy [5] of the fuzzy set 
“A” is defined as: 
 P��,\� = −∑ [�{��U
 μ��	�� log μ��	�� + �1 − μ��	��� log�1 − μ��	���B(1.3) 
Now let us suppose that the experimenter asserts that the membership function of the ith 
element is�<�	�	�, where the true membership function isμ��	��, thus we have two utility 
fuzzy information schemes: 

L. M∗ = ] 	
	� 																…																	����	
�														���	��							…														���	��[
[� 												…															[� ^,0	≤ μ��	�� ≤ 1	 ⩝		�	,[� > 0 (1.4) 

Of a set of n elements after an experiment, and 

L. M∗∗ = ] 	
	� 																…																	��<�	
��<�	��									…														�<�	��[
[� 															…															[� ^ , 0 ≤ μ<�	�� ≤ 1	 ⩝ 		�	,[� > 0      (1.5) 

of the same set of n elements before the experiment. In both the schemes (1.4) and (1.5) 
the utility distribution is the same because we assume that the utility [� of an element 	� 
is independent of its membership function μ��	��, or predicted membership function 
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 μ<�	��, [� is only a ,utility , or value of the element 	�for an observer relative to some 
specified goal (refer to [6]). 
         The quantitative-qualitative measure of fuzzy inaccuracy corresponding to Taneja 
and Tuteja measure of inaccuracy [7] with the above schemes is: `��; 9;\� = −∑ [�{��U
 μ��	�� log μ<�	�� + �1 − μ��	��� log�1 − μ<�	���B             (1.6) 
         Guiasu and Picard [8] considered the problem of encoding the letter output by the 
source (1.4) by means of a single prefix code with code-words a
, a�, … , a�having 
lengths b
,b�,…,b� satisfying Kraft [9] inequality: 
    ∑ cdef��U
 ≤ 1                                  (1.7) 
where c being the size of the code alphabet. Corresponding to Guiasu and picard [8] 
useful mean code-word length we have the following useful fuzzy mean length of the 
code 

 g��;\� = ∑ hf{ij�kf�H�
dij�kf��Beflfmn∑ hf{ij�kf�H�
dij�kf��Blfmn                                   (1.8) 

and obtain bounds for it in terms of (1.6) under the condition: ∑ {��U
 μ��	��μ<d
�	�� + �1 − μ��	����1 − μ<�	���d
} 	cef ≤ 1                                   (1.9) 
where D is the size of code alphabet .Inequality (1.9) is generalized fuzzy Kraft’s 
inequality. 
       A code satisfying generalized fuzzy Kraft’s inequality is known as a personal fuzzy 
code. It is easy to see that for μ��	�� = μ<�	��⩝	� , o = 1,2,3, … , q (1.9) reduces to Kraft 
[9] inequality. 
 In this particular paper generalized useful fuzzy code-word mean length are 
considered and bounds have been obtained in terms of generalized useful fuzzy 
inaccuracy measure of order �	and type	� .The main aim of these results is that it 
generalizes some well-known fuzzy measures already existing in the literature. 
 
4. Coding theorems of generalized useful fuzzy inaccuracy measure 
    Consider a function: 

`rs(A;B;U)= 

dr logt u∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn ∑ hflfmn Nvjw�kf�H�
dvj�kf��wO |      (2.1) 

where	� > 0�≠ 1�, � > 0,μ��	�� ≥ 0, μ<�	�� ≥ 0 ⩝ 	� , o = 1, 2, 3,… , q 
 
Remarks of (2.1) 

(i) When β= 1 (2.1) reduces to useful fuzzy information measure of order � 
corresponding to Bhatia [15] information measure of order	�. 

(ii)  When β= 1, [� = 1	 ⩝ o = 1, 2, 3, … , q (2.1) reduces to fuzzy inaccuracy 
measure of corresponding to Nath [16], further it reduces to fuzzy entropy 
corresponding to Renyi’s [17] entropy by taking μ��	�� = μ<�	�� 	⩝ 	� 	, o =1, 2, 3,… , q 

(iii)  When β= 1, [� = 1	 ⩝ o = 1, 2, 3, … , q and � → 1 (2.1) reduces to the fuzzy 
measure corresponding to Kerridge [18] 

We call (2.1) the generalized useful fuzzy inaccuracy measure of order � and type β. 
         Further we define a parametric fuzzy code-word mean length credited with utilities 
and membership functions as: 
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gs� ��;\� = 
� log� ]∑ hf��nNvjw�kf�H�
dvj�kf��wOt��flfmn
�∑ hfNvjw�kf�H�
dvj�kf��wOlfmn ���n ^, − 1 < � < ∞, � ≠ 0, � > 0        (2.2)      

Remarks of (2.2) 
(i) When � = 1,	(2.2), reduces to useful fuzzy code-word mean length 

corresponding to code given by Bhatia [15]. 
(ii)  When 	� = 1, [� = 1 ⩝ o = 1, 2,… , q.	(2.2), reduces to fuzzy code-word 

mean length corresponding to Cambell [19] mean length. 
(iii)  When � = 1, [� = 1 ⩝ o = 1, 2,… , q. and 	� → 0 (2.2), reduces to optimal 

fuzzy code length corresponding to Shannon [3] optimal code length. 
(iv) When [� = 1 ⩝ o = 1, 2,… , q. (2.2), reduces to the fuzzy code-word mean 

length corresponding to Khan and Haseen [20] code length. 
Now we found the bounds for (2.2) in terms of (2.1) under the condition ∑ N��s�	���<ds�	�� + �1 − ���	���s�1 − �<�	���dsOcdef ≤��U
 1                         (2.3)  

where D is the size of code alphabet, also (2.3) is fuzzy generalization of Kraft [9] 
inequality. It is easy to see that for  � = 1	�q�	μ��	�� = μ<�	�� 	⩝ 	� 	, o = 1, 2, 3, … , q, 
inequality (2.3) reduces to Kraft [9] inequality. 
 
Theorem 4.1. For all integers c	�c > 1�. Let b� satisfies the the condition (2.3), then the 
generalized parametric useful fuzzy code-word mean length satisfies gs� ��;\� ≥ `rs��; 9;\�                                                                                                 (2.4) 

where � = 

H�	, equality holds iff 

b� = − logt u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kf�vyw�{zn��kf�H�
dvj�kf��w�
dvy�kf��w�{zn�Olfmn |                              (2.5) 

Proof: By Holder’s inequality we have ∑ 	��� ≥��U
 �∑ 	���U
 �n��∑ 	���U
 �n�                                                                                (2.6) 

For all 	� , �� > 0, o = 1, 2, 3, … , n and 

� + 
� = 1, � < 1�≠ 0�, � < 0 or � <1�≠ 0�, � < 0. 

We see the equality holds iff there exists a positive constant a such that 	�� = a���                                                                                                                       (2.7) 
Making the substitution 

	� = [�d���n� � ���zw� �	�� + �1 − ���kf��zw� � u 
∑ hflfmn Nvjw�kf�H�
dvj�kf��wO|
d���n� �cdef      (2.8) 

�� =[����n� � u��s���n� ��	���<ds�	�� + �1 − ���	���s���n� ��1 −
�<�	���dsO u 
∑ hflfmn Nvjw�kf�H�
dvj�kf��wO|

���n� �
                                                                  (2.9) 

� = −� = rd
r       and   � = �
H� = 1 − � 
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in (2.6) and after suitable simplification, we get 

�N��s�	���<ds�	�� + �1 − ���	���s�1 − �<�	���dsOcdef�
�U


≥ �∑ [��H
 N��s�	�� + �1 − ���	���sOc�ef��U

�∑ [� N��s�	�� + �1 − ���	���sO��U
 ��H
 �

zn�
 

 

�∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 ∑ [���U
 N��s�	�� + �1 − ���	���sO �
nnz{

 

Now using the inequality (2.3) we get 

�∑ [��H
 N��s�	�� + �1 − ���	���sO c�ef��U

�∑ [� N��s�	�� + �1 − ���	���sO��U
 ��H
 �

n�

≥ �∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 ∑ [���U
 N��s�	�� + �1 − ���	���sO �
nnz{

 

Taking logarithm to both with base D we get 1� logt �∑ [��H
 N��s�	�� + �1 − ���	���sO c�ef��U

�∑ [� N��s�	�� + �1 − ���	���sO��U
 ��H
 � 

1		1 − � logt �∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 ∑ [���U
 N��s�	�� + �1 − ���	���sO � 
Or equivalently, we can write   gs� ��;\� ≥ `rs��; 9; \� 
 
Theorem 4.1. For every code with lengths  b
, b�, … , b� satisfies the condition (2.3), gs� ��;\� can be made to satisfy the inequality gs� ��;\� < `rs��; 9;\� + 1                                                                                        (2.10) 

Proof: Let b� be the positive integer satisfying the inequality 
 

logt � [� N�<rs�	�� + �1 − �<�	���rsO∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 � ≤ b� < 

−logt u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn | + 1                                 (2.11) 

Consider the interval 
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�� =
��
��
� − logt u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn | ,
−logt u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn | + 1��

��
�
                 (2.12) 

of length 1, in every ��, there lies exactly one positive integer b�, such that 

0 < − logt � [� N�<rs�	�� + �1 − �<�	���rsO∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 � ≤ b� < 

− logt u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn | + 1                              (2.13) 

We will first show that the sequence b
, b�, … , b� thus defined above satisfies (2.3).  
Subsequently from the left inequality of (2.13) we have 

− logt � [� N�<rs�	�� + �1 − �<�	���rsO∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 � ≤ b� 
Or equivalently, we can write 

logt u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn | ≥ cdef                               (2.14) 

Multiply both sides of equation (2.14) by  N��s�	���<ds�	�� + �1 − ���	���s�1 − �<�	���dsO 
and then summing over  o = 1, 2, … , q on both sides to the result that we obtain we get 
the required result (2.3). 
Now take the last inequality of (2.13) we have 

b� < − logt � [� N�<rs�	�� + �1 − �<�	���rsO∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 � + 1 

Or equivalently, we can write above as 

cef < u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn |d
c                                  (2.15) 

Raising power , � = 
drr   on both sides to equation (2.15), we get 

c�ef < u hfNvy{w�kf�H�
dvy�kf��{wO∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn |d� c�                               (2.16) 

Multiply both sides of equation (2.16) by  [��H
 N��s�	�� + �1 − ���	���sO
�∑ [� N��s�	�� + �1 − ���	���sO��U
 ��H
 

And then summing over o = 1, 2, … , q to the resulted expression, and after making 
suitable operations, we get 



Ashiq Hussain Bhat, Mohd Afzal Bhat, M. A. K Baig  and Saima Manzoor 

142 
 

 

∑ hf��nNvjw�kf�H�
dvj�kf��wOt��flfmn
�∑ hfNvjw�kf�H�
dvj�kf��wOlfmn ���n <
u∑ hfNvjw�kx�iyw�nz{��kx�H�
dij�kx��w�
diy�kf��w�nz{�Olfmn ∑ hflfmn Nvjw�kf�H�
dvj�kf��wO |�H
c�                                         (2.17) 

Taking logarithms to both sides with base D to equation (2.17), and then dividing both 

sides by	� = 
drr ,  to the resulted expression and after suitable operations, we get 

1� logt �∑ [��H
 N��s�	�� + �1 − ���	���sOc�ef��U

�∑ [� N��s�	�� + �1 − ���	���sO��U
 ��H
 � < 

11 − � logt �∑ [� N��s�	x�μ<s�
dr��	x� + �1 − μ��	x��s�1 − μ<�	���s�
dr�O��U
 ∑ [���U
 N��s�	�� + �1 − ���	���sO � + 1 

Or equivalently, we can write gs� ��;\� < `rs��; 9;\� + 1. 
 
 5. Conclusion 
In this article, we present a new generalized useful (weighted) fuzzy inaccuracy measure 
and its corresponding generalized fuzzy code-word length and show that these measures 
generalizes some well-known measures that already exists in the literature of fuzzy 
information measures. Also we obtain the bounds of generalized fuzzy code-word length 
in terms of generalizes useful (weighted) fuzzy inaccuracy measure. 
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