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Abstract. In this paper, a multi-index, bi-criteria, fixed aige transportation problem
(MIBCFCTP) is considered in which the parametersadt and duration are taken as
trapezoidal fuzzy numbers. An algorithm incorpargtian extended VAM and an

extended MODI method is developed to find Parettinegd solutions of the problem.

The algorithm is illustrated with a numerical exden@nd solutions obtained are
compared with existing methods.
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1. Introduction

The classical transportation problem (TP) whiclwil studied in literature is a two-
index problem. Additional indices such as sourastidation, and modes of transport
extend the TP to a multi index transportation peab(MITP). Haley [12] has considered
the MITP with three indices as origin, destinataomd commodity. He further solved the
MITP with North-West corner rule and an extensibthe modified distribution (MODI)
method. Haley [13], Haley [14], Moravek and Vlack3], Smith [30], Vlach [34],
Korsnikov [20], Bandopadhyaya and Puri [6], Jungin(l.6], Pandian and Anuradha [26],
Bulut and Bulut [10], Zitouni [37], Djamel et al ] are names of few researchers who
considered MITP.

Sometimes in TPs there may be multiple objectivashsas minimizing
transportation time in addition to minimizing thartsportation cost. The TP having two
objective functions such as minimizing cost andetiis called bi-criteria transportation
problem (BCTP). Solutions of BCTP's are Paretorogli A solution (c, t) of bi-criteria
problem is Pareto optimal if there is no other sofu(C, T) of the problem satisfying
C<candT < twith strict inequality holding in at least one caBandopadhayaya [7] has
studied the multi index bi-criteria transportatigmoblem (MIBCTP).
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Some transportation problems, also have fixed @stsciated with the direct costs and
the resultant TP is called fixed charge transpioraproblem (FCTP). Sandrock [29],

Murty [24], Sadagopan and Ravindran [27] have prieskalgorithms which gave exact
solutions of the FCTP’s while Adlakha and Kowal§k], Aguado [2] have presented

heuristic methods to solve such problems. Khurawb4aora [17], Tuli and Chauhan [33]
have given algorithms to find Pareto optimal solusi of BCTPs with fixed cost.

Following Haley [12], Ahuja and Arora [3] and Khma and Adlakha [18] have
solved multi index bi-criteria fixed charge trandption problem (MIBCFCTP) with
crisp transportation parameters. Arora and Khuf&hayYang and Feng [35], Nagarajan
and Jeyaraman [25] are a few authors who have denesl MIBCFCTP's.

Uncertainties in real life situations which may dee to weather changes, data
unavailability or high information cost etc. nedtse the introduction of fuzzy numbers
in TP's. Zadeh [36] has introduced the fuzzy comdepdeal with the uncertainties.
Uncertain data in TP may be represented by triamgoit trapezoidal fuzzy numbers.
Mohanaselvi and Ganesan [22], Samuel and Venkdegudthy [28], Khalaf [15] have
solved fuzzy transportation problem (FTP) by usitrgangular fuzzy numbers.
Basirzadeh [8], Solaiappan and Jeyaraman [31] baked FTPs with trapezoidal fuzzy
numbers. Ritha and Vinotha [32] solved multi indieed charge transportation problem
(MIFCTP) using symmetrical trapezoidal fuzzy nunsbevhile Kumar, Gupta and
Sharma [4] proposed algorithm for bi-criteria fixetharge transportation problem
(BCFCTP) using trapezoidal fuzzy number. This paisemotivated by the need of
finding a better solution of the uncertain MIBCFCTh algorithm is developed to find
Pareto optimal solutions of the MIBCFCTP with casd duration as trapezoidal fuzzy
numbers. A numerical example is given to demorestila¢ algorithm and the solutions
obtained are compared with existing methods by Alaujd Arora [3] and Khurana and
Adlakha [18].

The rest of the paper is organised as follows:i@e& gives basic definition and
arithmetic operations on trapezoidal fuzzy numb&egtion 3 gives the mathematical
formulation of the fuzzy MIBCFCTP, Section 4 givwbe steps of the proposed algorithm,
Section 5 gives a numerical example to illustraie proposed algorithm and Section 6
gives the concluding remarks.

2. Preiminaries
2.1. Trapezoidal fuzzy numbers
Trapezoidal fuzzy numbers have been studied byoBeetd Chandra [9], Klir and Yuan

[19], Lee [21] to name a few. These numbers areefby A=(a,b,c,d)and have the
membership function

0, x<a,x2d

X728 a<x<b
Uz () = f—a b x<c

d=x c<x<d

Trapezoidal fuzzy numbers can be converted to amismbers using various ranking

approaches. Most commonly used is the averagengualgproach(a) :m.
4
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2.2. Arithmetic operations on trapezoidal fuzzy numbers

Let A=(a,.a,,a,a,) and B=(b,b, b, b,) be two trapezoidal fuzzy numbers then
arithmetic operations on trapezoidal fuzzy numlaeesas follows:

i) Addition : A+B=(a +h,a,+b,,a,+b;,a,+b,)

i) Subtraction : A-B=(a, -b, a,-b, a,-b, a,-h)

(Aa,,Aa,,Aa,,4a,) A>0

iii) Scalar Multiplication : } A =
(Aa,,Aay,Aa,,4a) A <0

3. Mathematical formulation of the fuzzy MIBCFCTP
The formulation of MIBCFCTP with trapezoidal fuzaymbers is as follows.

Let there are m sources, n destinations, p typesowimodities. Then objective of the
problem is to

o mn p_ mn _
Minimize< > 3 > Cijk Xijk + Z > Fik » max[t”k | Xijk >O] (1)
i:]_j:]k:l i=k=1

]_J<n
I<k<p

subject to

m

2 Xijk = Ajk

i=1

n

2 Xijk = Bki

=1

p

2 Xijk = Ejj

k=1

)
Xjk 20;i=212...m j=12..mk=12..p

n m p
ZAjkzszi’szl ZEU ZEU _ZAJK
: = ~

=1 i= k=1 =1 i=1
np pm

2 2 AK = 2 2By :2 ZEij
j=lk=1 k=1=1 i=1j=1

where

X, is the quantity of commodity k supplied from sour¢e destination j.

Cik is the fuzzy variable transportation cost per gonintity of commodity k supplied

from source i to destination j.
F.is the fuzzy fixed charge associated with soumed commodity k.
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~ n
Fik = Z fijkaijk , i :1,2,...,ntk212,...,p
=1

1 % >0
wheredyy =

0, Xijk =0
t~ijk is fuzzy time required to sent commodity k from isgui to destination j.
Ajk is the total quantity of commodity k required astileation j.

Byiis the total quantity of commodity k available atisce i.
Eij is the total quantity transported from source déstination j.

Eijk , Fika t~ijk are trapezoidal fuzzy numbers.

The formulated problem in (1) can be divided imo sub-problems.
The first sub-problem (Pis

~ mn P m n _
(P) MinimizeC=:> > > Eljk Xijk *+ > Y Fix ¢ Subject tq2).
i=1j=1k=1 i=k=1
The second sub-problemjfs
(P,) Minimize T = max [t | Xj > 0] subject tq2).
1<ism
I<j<n
I1<k<p
The sub- problem (P is solved byextended Vogel's Approximation Method (eVAM)

and extended Modified Distribution Method (eMODd)det the first Pareto Optimal cost
C, and the corresponding ting. Thereafter the cost matrix is modified and theose

Pareto optimal costc, and corresponding timeT, are obtained satisfying
61552,']'12'?;, inequality being defined by ranking function. Predmg similarly

remaining Pareto optimal solutionsC,T,),(C,T,).. are obtained satisfying
C <C,<C,<.., T2T 2T ... The process terminates when no further feasibletien

with respect to cost is obtained.

4. Steps of the proposed algorithm

Let there bem sourcesn destinations and types of commaodities.

Step 1. The fuzzy cost table (Table 1a) and fuzzy tintdegTable 1b) are formed with
m rows,n columns angb cell diagonals.

Step 2: The average ranking approaﬁm _a+b+c+d is applied on fuzzy numbers in
4

Tables (1a) and (1b) to get crisp cost table (Tab)eand crisp time table (Table 2b).

Step 3: An eVAM is applied to the crisp cost table (TaBbg as explained below:

(a) Calculate the penalties of all rows, columng egll diagonals.

(b) Select the largest penalty among all rows, roolsi and cell diagonals in the same
manner as in the Vogel's approximation method (VAM)the row or column or cell
diagonal associated with largest penalty, makeatloeation in the corresponding cell of
least cost.
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(c) In case of tie in the largest penalty in st8p)(above, select the row/column/cell
diagonal having the minimum least cost cell anderallocation in that cell.

(d)(i) If x=Aj then crosg" column ink™ cell diagonal.

(ii) If x4=B\; then cross" row ink™ cell diagonal.

(iii) If x3=E; then cros$"row inj" column.

(e) Corresponding allocations in Table (1a) are moade following step (3d) above as
shown below.

(I) If Xijk = Ajk then Ajk (HEV\) =0, B (nevx) = By (O|d) - Xijk andEij (HEV\) = Eij (O|d) - Xijk

(i) If Xijk = Bki then Ajk (new) = Ajk (old) - Xijk , Bki (new) = OandEij (new) = Eij (old) - Xijk
(i) If Xijk = Eij then Ajk (new) = Ajk (old) - Xijk , Bki (new) = Bki (old) - Xijk andEij (new =0
(f) Continue steps (3a) to (3e) until no more adlian is possible oA, =B, = E; = 0.

The initial allocations with crisp and fuzzy costee shown in Tables 3(a) and 3 (b)
respectively.

Step 4: The initial basic feasible solution is obtainednfrdable 3(b) as follows:

(a): The fuzzy initial feasible solution (FIFS) st in Table 3(b) is made feasible by
eliminating any negatively allocated cell by makiag e-loop (closed loop in three
dimensions) as explained in step 6&farting from that cell.

(b)For obtaining fuzzy initial basic feasible sadut (FIBFS) it is checked if the number
of allocated cells =mnp-(m-1)(n-1)(p-1)If it is true then the feasible solution in step
4(a) is also basic feasible. Otherwise this canmagle basic feasible by introducing
allocationse in non basic cells which are independent. The BBBtained is shown in
Table 4.

~ m n p -
Step 5: Calculate total fuzzy fixed charge= >~ >~ X fix corresponding to FIBFS of

i=1j=1k=1
step (4) .

Step 6: Apply eMODI as shown below.

(a) CaICUIatQIjk ,\7ki 'Wij for(i, j,k) O B(basig WhereEijk = ij + \7ki + W'J

(b) Calculatesy, =&y - (@ +Viq + W ),06, j,k)OB

(c)Select a non basic cell (i,j,k) Whoglﬁ [orD(Sijk)] is most negative.

(d) The non-basic cell of step (6¢) enters theshlagimaking are-loop of 8 or more cells

as explained below.

« Any two adjacent cells in the loop lie in the saro@ or same column or same cell
diagonal.

« All cells that get a plus or a minus sign must beabocated cell however the starting
non allocated cell should always have a plus sign.

(e) After addition of the non basic cell in the isalet its allocation bey, . Calculate

difference in fuzzy direct transportation COSEﬁS: Sijk *lij -
(f) Calculate fuzzy fixed chargéjk(temp for the newly entered cell in the basis.

(9) Find fuzzy fixed charge difference é‘?k (differencd = Eijk (temp) - F.
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(h) Calculate total difference in fuzzy transpadatcost asgijk = |'£ijk (difference + A‘ijk
@) If D(Eijk )= othen process terminates otherwise among the chisew (Eijk ) <ofind
the cell (i,j,k) Whosaj(gijk)is minimum. That cell now enters the basis. Reptaps
(6a)-(6h) till a”D(Eijk)zo- Table 5 shows the allocations of the first fuZ2greto
Optimal Cost.
Step 7: From Table 1(b), the fuzzy transportation times obtained where
ﬁ = mammun{ﬁjk | Xijk >O}
Step 8: The first fuzzy Pareto optimal solution is obtadras(él,ﬁ)
M if O )= 0(Ty)
G if O(fj) <O(T)
wherem = (M,M,M,M) is a sufficiently large trapezoidal fuzzy number.

Step 9: The fuzzy cost in Table 1(a) is modified by prudti Gik =

Step 10: Repeating steps 2-8 the second fuzzy Pareto aptsulution (éz,fz) is
obtained as shown in Table (6).

Step 11: Steps 9 and 10 are repeated to get the thirddPapimal solution shown in
Table (7). Proceeding in this manner subsequentet®aroptimal solutions
{(El,fl),(@,'Fz),...(éq,'El)} are obtained. The process terminates when solltgmomes

infeasible.

5. Numerical exampleillustrating the proposed algorithm
Consider a3x3x3 MIBCFCTP with trapezoidal fuzzy numbers. The fuzzgst
Cijk andfuzzy timeﬁjk are shown in Table 1(a) and Table 1(b) respectively

__.Table L (8) (Fuzzy Cost Table)

Destinations — =1 j=2 =3
Sourcas | B
(3,5.8.16) (1,5.6.8) (3.4.7.14) 1
=1 (3.4.7.14) (2.4.6.13) {1,2.3,6} 9
E; =10 (2,4.6,12)| Ep=6 (4,6.1020) E;:=9 (5.6,11,22) 10
(56,1122 (4.5.9.18) (6,7,13.26 &3
=2 (3.5.8,16) (7.8.15.30 (34.7.14) 14
En=21 (6,7,13.26] E=9 (3,7.12.24)| E:s=14 (3.5.8,16) 17
(1,5.6,8) (3.5,8,16) (4.6,10.20 15
L (2.4.6.12) [4.5,9,18) (2.4.6,12) 13
E:=21 (3.4.7.143 Es=13 (3.4.7.14)| Ess=12 {(3,7.12.24) 18
15 8 11 34
s 17 11 g 36
20 9 16 45
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Table 1:(b) (Fuzzy Time Table)

Destinations — j=1 j=2 i
Sources |
(1.1.3.6) (3,5,8,16) (3.,4,7,14)
=l (2.3,5,10) (2.4,6,12) (1.3.4,8)
(1,3.4,8) (3.5,8.16) (0.0.5,L5.2)
0,1,2,5) (1,3,4.8) (2.4.6.12)
o {6,0.5.152 (0.1.2.5) (0,0.5,L52
{2:4,6,12) (0.1,2.8) (0,0.5,157)
(1,3.4,8) (1,2.3,6) (1,3.4,8)
= (3,5,8.16) (0,1,2.5) (0.1,2,5)
(005152 (0,0.5.152) (3.5.8.16)

Table 2(a) and Table 2(b) shows the crisp cosetabtl crisp time table after applying
Step 2 on Table 1(a) and Tablel(b) respectively.

Table 2:(a) (Crisp Cost Table)

Destinations — i=l i=2 =3
Sources | Ba
8 5 7 5
i1 i 6 3 9
Eis=10 § g6 10 | Eu=9 11 10
L 5 13 13
= 8 15 7 14
=t1 13 | Eueo 12 | Easl4 8 17
5 8 10 15
=3 6 9 6 13
En=21 T |Ea=1a 7| Eam12 12 18
® 8 11 34
Aa o 11 8 36
19 3 16 45
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Table 2:(b) (Crisp Time Table)

Destinations — j=1 i=1 =2
Sources |
B g 7
=1 = [ 4
a 8 1
=
- 4 6
= ) 2 1

LB}
=

On applying Step 3 of the proposed algorithm tligalrallocations with crisp and fuzzy
costs are shown in Tables 3(a) and 3 (b) respégtive

Table 3: (a) (Crisp Initial Solution)

Deestinations — =l i=2 =3
Sources |
B 5 7
151 (1
7
=l [ [8]
L] 10 11
(1og
11 9 13
[10] 31
B 15 7
=1 (141
13 12 B
[-31 [6] [14]
5 B 10
[5] [10]
1 9 6
= 31 [10]
7 7 12
3] [3] [2]
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Table 3: (b) (Fuzzy Initial Solution)

Destinations — i=l =2 =3
Sources |
(3.5,8.16) (1,5,6,8) (3,4,7.14)
[5] [1]
[3,4.7.14) (2.4,6.11) {1,2.3.8)
=l 1] (8]
(2,4.6,11) (4,6,10,20) (5,611,212
[ro]
(5.6.11,21) (4.5.9.18) (6,7.13,26)
[10] [31
(3,5,8.16) (7.8,15.30) (3,4.7.14)
=1 [14]
(6,7.13,26) (5,7.12,24) (3.5.8.16)
[-31 [6] [14]
{1.5.6.8) (3.5.8,16) (4.6,10,20}
[51 [10]
(2,4,6,12) (4.5.9.18) (2,4.6.12)
=3 131 [10]
(3,4.7.14) (3.4.7.14) (5,7.12.24)
[13] [3] [2]

From Table 3(b) it is observed that the solubbiained is not feasible as cell (2, 1, 3)
has a negative allocation of -3 units. To makedtsfble an e-loop as explained in step 6d
is made and the solution is made feasible as slmWwable 4. Also number of allocated
cells is 18 which is less thannp-(m-1)(n-1)(p-B19. Hence an allocation efis made to
the cell (1,1,2) to get the 19 allocations of thiidl basic feasible solution.

Table4: (Fuzzy Initial Basic Feasible Solution)

Destinations — j=1 =2 j=3
Sources |
(3.5,8,16) (1,5.6.,8) (3.4.7.14)
51 (1]

(3.4.7.14) (2,4.6.12) (1,2.3,6)

¥l [l [ [8]
1.4,6,12) (4,6,10,20) (5.6,11,12)
1101
(5.6.11,22) (4,5.9.18) (6,7.13,26)
[10] 31

(3.5,8.186) (7.8.15.30) {34.7.14)

1 [11] 31
(6,7.13.26) (5,7.12,14) (3,5.8.16)
31 [14]
{1.5.6,8) (3,5.8.16) (4,6.10.20)
(5] (10}

(2.4.6.12) (4.5.9.18) {2.4.6.11)

=3 [6] ]
{3.4,7.14) (3.4,7.14) (5,7.12.24)
[10] [6] [21
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The fuzzy fixed charges are given as

f11:=(4,6,10,20 f1,:=(14,16,30,6( f13:=(9,11,20,4C
f11=(9,11,20,4C f10=(9,11,20,4C f13=(9,11,20,4C
f11=(14,16,30,6( f1,5=(9,11,20,4C f13=(4,6,10,20
f,1:=(4,6,10,20 f201=(9,11,20,4C f,3:=(9,11,20,4C
f,1,=(4,6,10,20 f20=(4,6,10,20 f13=(14,16,30,6(
f,1=(19,21,40,8( f205=(4,6,10,20 f,35=(4,6,10,20
f21:=(4,6,10,20 f12:=(19,21,40,8( f13:=(9,11,20,4C
f21,=(9,11,20,4C f22=(4,6,10,20 f13=(14,16,30,6(
f115=(9,11,20,4C f125=(4,6,10,20 f135=(4,6,10,20

The total fuzzy fixed charge for fuzzy initial badieasible solution is calculated from
Table 4. Then eMODI method as explained in steps(@pplied to Table 4 which gives
the allocations corresponding to the first Pargbtir®al cost as shown in Table 5.

Table5: (First Fuzzy Optimal Solution)

Destinations — =1 i=2 j=3
Sources |
(3.5.5.16) (L5.6.8) 34,714
[2] [4]
34718 2A46.13) 1.2.3.6)
=l [£] [4] [5]
(2.4.6,12) (4,6.10,20) (5.6.11.22)
[10]
(5,6.11,22) (4,5.9.18) (‘5-‘?3”-25
[71 [6]
(3,5.8.16) (7.8.15.30) (3.4.7,14)
= [14]
(6,7.13.26) (5.7.12.24) (3.5.8,16)
I3l [14]
(L5.6.8) (3.5.8.16) L4,5,)1|3_:0
[8] [71
(2,4.6.12) (4,5.9.18) (2.4.6.12)
= [31 [7 [3]
(3.4.7.14) (3.4.7.14) (5.7.12.24)
[10] [6] [2]

From Table 5 the first fuzzy Pareto Optimal costh&ined as

C, = (137,173,310,620)+ (339,544,883,1726)= (476,717,1193,2346)where] (C;) =1183
and corresponding fuzzy time = (35,8,16)wherel](T,) = 8. The first Pareto optimal
solution is(C,, T,) = ((476,71711932346)(3, 5,8,16))
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To obtain the 2 Pareto Optimal solution the cost Table 1(a) is ifiediby applying
Step 9. Thereafter Steps 2 -8 are applied to gealthcations of the"2 Pareto optimal
solution in the fuzzy cost table as shown in T#&ble

Table 6: (Second Fuzzy Optimal Solution)

De:rinaiinm i=1 = =3
Sources |
(3.5,8,16) (MALMAD (3.4,7.14)
[6]
{3,4,7.14) (2.4.6,12) (1,2.3.6)
=l [31 [6] [=]
(2,4.6.12) (MALMLAD {5,6,11,22
71 [31
(5,611,322 (4,5.9.18) (6,7,13.26)
141 [8] [11
(3,5.8,16) (7.8,15.30) (3.4.7.14)
=2 [14]
(6,7,13,26) (5,7.12.24) (3,5,8,16)
[31 [1] [13]
(1,5,6,8) (3,5,8,16) (4,6,10,20)
1] 41
(MALMA (4.5,9,18) 1,4.6,11)
=3 [51 [8]
(3.4,7.14) (3,:4,7,14) (MLALALM
froj [8]

From Table 6 the econd Pareto optimal solutioninbthis
(C,.,To) = ((489,72612152386)(3,4,7,14)). Again on applying Steps (9) and (10) the
allocations of the '8 Pareto optimal solution obtained in the fuzzy ¢abte are shown in

Table 7.
Table 7: (Third Fuzzy Optimal Solution)
Destinations — =1 =2 i=3
Sources |
(3.5,8.16) (ALALALM (MLMLMIAD
[6]
(3.4,7.14) (2,4.6,12) (1.2,3.6)
=l 31 161
(2.4.,6,17) (ALAVINLAD (5,6,11,22
131 151
(5.6,11,22) (4.5,9,18) (6,7.13.26)
[6] [71
(3.5,8.16) (7.8.15.30) (3.4,7.14)
=l [14] [=]
(6.7.13,26) (5.7.12.24) (3.5.8.16)
71 [31 [71
(1.5,6.8) (3.5.8.16) (4.6,10,20)
51 2] [41
(MLALMAD (4,5,8,18) 12,4,6,12)
=3 [51 [8]
(3.4.7.14) (3.4.7.14) (LML)
12} [6]
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From Table 7 the' fuzzy Pareto optimal solution obtained is

(C3,T3) =((54577413192602)(2, 4,6,12))

The procedure terminates as no further feasiblgisok can be obtained.

The solutions obtained by the proposed algorithencampared by solutions obtained by
existing methods as shown in Table 8.

Table 8 (Compar ative study between existing methods and proposed method)

Pareto Solutions by Numioéiterations
Optimal Existing | Existing | Proposed Proposed Existing | Existing | Proposed
solutions | method | method | method method method | method method
CostTime | 3] [18] (Fuzzy) (Crisp using | [3] [18] (Fuzzy)
Trgde off average
parr ranking’
i (1185, 8) | (1183,8)| ((476,717,110(1183, 8) 10 13 7
3,2346),
(3,5,8,16)
T (1204, 7) | (1204,7)| ((489,726,12[ (1204, 7) 7 7 5
5,2386),
(3,4,7,14)
I (1310, 6) | (1310,6) | ((545,774,13[ (1310, 6) 5 6 5
9,2602),
(2,4,6,12))
22 26 17
Total Number of Iteratior

It is observed from Table 8 that the proposed niktliges better first Pareto optimal
solution than one of the existing methods [3] whikcond and third Pareto optimal
solutions are the same as in existing methods.€eTlenlso a drastic reduction in the
percentage of iterations for the proposed methodndsgrly 23% (vis-a-vis existing
method).

6. Concluding remarks

In the paper, MIBCFCTP is studied with cost andetitaken as trapezoidal fuzzy
numbers which makes the problem more robust thestirx crisp problems. It has been
observed that the proposed method using eVAM anddeNusing e-loop) requires far
less iterations than existing methods of Ahuja Anora [3] and Khurana and Adlakha
[18] thus providing a better alternative to theséirig methods. The proposed method can
also be extended to more complex fuzzy transportgtroblems where availabilities,
requirements and actual quantity transported aefakzy numbers.
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