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1. Introduction

The well known Banach contraction mapping principle is a powerful tool in nonlinear
analysis. Many mathematicians have much contributed to the improvement and
generalization of this principle in many ways. Especially, some recent meaningful results
have been obtained. When Zadeh [16] introduced the concept of fuzzy sets, any
contributions added in different Mathematical subjects. Mihet [11] obtained some new
results of modifying the notion of convergence in fuzzy metric space. The fuzzy sets were
used widely in functional analysis and many authors enriched the matter, like Kramosil
[10], George and Veeramni [6] are constructing the fuzzy metric spaces, Katras [9], Bag
and Samanta [ 1] introduced and modified concept of fuzzy normed space, Goguen [7], and
Sanchez [14] defined and studied fuzzy relations. Fuzzy partial ordered relations are
introduced by Chon [3], while Y uan and Wu [15] introduced the concept of sub lattice.
Chitra and Mordeson [2] defined fuzzy norm and thereafter the concept of fuzzy norm
space has been introduced and generalized the different ways by Bag and Samanta [1].
Iterative techniques for approximating fixed point in Fuzzy normed spaces have been
studied by various authors (see e.g. [4,5,8,12,13]).

2. Preliminaries

Definition 2.1. A binary operation *:[0,1] x[0,1] - [0,1] is a continuous t-norm if
satisfies the following conditions:

(i) * iscommutative and associative;

(i) * iscontinuous;

(i ax1=aVae[0,1];
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(iv) a*b<c*d, whenever a<c and b<d foral a,b,c,d[0,1].

Definition 2.2. A fuzzy normed spaceisatriple (X, M ,*), where X isavector space,
X,y X and t,s>0,

i) M(xt)>0

(i) M(x,t) =1 ifandonly if x=0;

(i) M(cx,t):M(x,ﬁ) for all ¢#0:;
(iv) M(x,9)*M(y,t) S M(x+y,s+t);

(v) M(x,.) isacontinuousfunctionof R* and|im,..M (X,t) =1, lim..oM (x,t) =0

Definition 2.3. A sequence {X.} inafuzzy normed space is said to be convergent if for
each r,0<r <1 and t>0, thereexists N,[IN suchthat M (x,—x,t)>1-r forall
nzn,.

Definition 2.4. A sequence {x.} inafuzzy normed spaceis said to be Cauchy if for each
r0<r<1 and t>0, there exists n, N such that M(x,—x,,t) <1-r for all
n,mz2n;.

Definition 2.5. A fuzzy normed space is said to be complete if every Cauchy sequenceis
convergent.

Example2.6: Let M beafuzzyseton X x[0,0) definedby M (x,t) =

for all
t+| x|

x€X,t>0 and * is at—norm defined by a*b =ab. Then (X,M,*) is a fuzzy
normed space.

3. Main results
Let (X,°) be a partially ordered set, and let (X,M,*) be a complete fuzzy normed

space with continuous t-norm defined by a*b=min{a,b}. Let f,g: X - X bea
mapping satisfying

M (fx— gy, kt) =*2 min{ M (fx -y, kt)* M (x— gy, kt) * M (fx— x, kt)

*M(y-gy.kt)* M (x-y,kt)}

for which x,yOX and t>0, where O0<k<1. Suppose that {X} is a non
-decreasing sequence and |im,.. X, =X and X,°X for adl NN, then f and g
have a unique common fixed pointin X .
Proof: Let X, X, construct the sequence {X.} by taking

X = F(X,), X1, = 9(X,,,) for n=1,23... thenwe have that
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Xooxloxzo' "oxnoxn+1-"
Now put

a_n (t) =M (Xn+1 - Xn+21t)-
Then by using (2.1) we have

M (Xpig = Xiu20 KO = M (X, = 0X,,4, kD)

>*2min{M (X, = X,,,,Kt)* M (X, = 9X,,,, Kt)* M (fx. =X, kt)
*M (X0 = 9%00, KO * M (X, = X0, KD}

>*2mMin{M (X, = X,.;, KO * M (X, =X, Kt) * M (X, — X, Kt)
*M (X1 = Xz, KO * M (X, = X0, KU}

>*2mMin{ M (X, =X 5, KD * M (X,,; = X0, K * M (X ., — X, K)}

2*2min{M (X, = X.,, kt)}

=**0,4(1)

Thusit follows that &, (kt) =2**J ,(t), and so
t n t
o,(1) 2*25n_1(E) 2*? JO(F)-
On the other hand, we have
t(1-K)A+kt+---+k™ M) <t,Om>n,0<k<1.
By definition 2.2 we get that,
M (X, = X_,t) =min{M (x, =X, t(1-K)(1+Kk+---+ k™" ™))}
>min{M (X, = X ,,, t(1=K))* M (X,,, = X, t (1= K)(K +--- + K™ "))}
2 Min{M (X, = X1, 11~ K))* M (X0 = X, (L= K)K) *.*
M (X, = X, t(1-K)k™"™)}.
It follows from (3.2) and (3.3) that,
M (X, =X, 1) 2 Mi{M (X, = X,1, 1 (1= K))* M (X, = X2, 1 (1= K)K) ™.
M Xy = X, 11— K)K™ ")}

> min{[*?" & (t‘1 Ky 2™

By the hypothess, the t —norm = isdefined as a * b = min{a, b} for al
£0(0,1), thereexist 7 >0 suchthat *P (s)>1-¢ foral o0(1-7,1] andfor al

p.

t(l k)

)

Note that, ||mrM<,5(t(1 K)

)=1 fordl t>0 and 0<k <1, we have that

there exist n, such that M(x, — xm,t)>1—£, for dl m>n>n;. Thus {x} isa
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Cauchy sequence. Since X iscomplete, thereexist XL X suchthat |im,_. X, = X.
According to our assumption we have that X,°X for al nUN. It follows from

(3.1) that,

[imM(fx=x,,) = LiTM (fx-gx,,kt)

n- oo

>*2 [immin{ M (fx—x_,kt)* M (x— gx_, kt)* M ( fx— x, kt)

n- oo

*M (X, = 9%, kt)* M (x=x,,kt)}
=1

Thus, M (fx—x,kt) =1, thatis fx=Xx.
Similarly,
limM (X, = gx kt) = limM (fx, — gx kt)

n- oo n-o

2*2 limmin{M ( fx, = x,kt)* M (x, = gx ki) * M (fx, = x,,kt)

*M (x-gx.kt)* M (x, — X, kt)}
=1.
Thus, M (x—gxkt) =1, thatis x = gx.
Therefore, x = fx = gx.
Thus, X isthefixedpointof f and g.

Uniqueness. To prove, uniqueness of X as a common fixed point of f and g, let z
be another fixed point. Then by using (3.1) we have,

limM (X,,; —9zkt) = limM (fx, —gzkt)

>*2min{M (fx, — z,kt)* M (x, — gz kt)* M ( fx, — x,, kt)
*M(z-gzkt)* M(x, —z kt)}

=1

Thus, M (x-zkt) =1, thatis X = z. This complete the proof.
t t
Example 3.1. Let X =R, M (X,t)=— ,M(y,t) =
p 0= MO =

let t>0,a*b=min{a,b} for al a,b0[0,1]. Then (X,M,*) is a complete fuzzy
normed space. If X is used with the usual order X°y = x—-y<0, then (X,°) is

forevery x,ylO X and

partially ordered set. Let 0 <k <1 and define f(x,y)= % forany X,y X .Then
we have,

M (fx - gy, kt) = Kt

| XXy ]
4
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) kt kt
> mi ,
n{kt+| x—=x| kt+|gy—y|}

t t )
pe XX gy -yl
k k
=min{M (fx-x,t),M (gy-y,t)}
=*2M (x - y,1).

=min{
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