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Abstract. In this paper an attempt is made to reduce the efrmon-fuzzy data using
fuzzy linear regression. A numerical example hankanalyzed. It is concluded from the
example that the normal regression method is betterpared to fuzzy linear regression
method.
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1. Introduction

Regression analysis, including statistical regoessanalysis and fuzzy regression
analysis, aims to determine the best-fit modeldescribing the functional relationship
between dependent variables and independent vesidly exploiting the knowledge
from the given input-output data pairs. Some diganey between the observed values
(from the data sets) and the estimated values (faegression model) can occur due to
measurement errors and/or modeling errors.

Regression analysis is one of the areas in whidzyf set theory is used
frequently, since Tanaka [4] initiated researchumzy linear regression (FLR) analysis.
This area is widely developed and wide varietiemethods are proposed. One approach
to deal with FLR is Linear Programming (LP). Thispeoach was first introduced by
Tanakaand developed by others, and next approach is sgasres method, which was
first introduced by Celmins [1] and developed blyest [2].

The fuzzy set theory introduced by Zadeh [5] hawiveéd meaningful
applications in many field of studies. The ideafafzy set is welcomed because it
handles uncertainty and vagueness. In fuzzy setyththe membership of an element of
a fuzzy set is a single value between zero and one.

This chapter presents linear regression analysia fuzzy environment using
fuzzy linear models with symmetric triangular fuzaymber (STFN) coefficientsThe
aim of this fuzzy regression (FR) analysis is talfthe coefficients of a proposed model
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for all given input—output data sets. Here, theidmea is to minimize the fuzziness of
the model by minimizing the total support of flagzy coefficients, subject to all data.
The rest of this chapter is organized as followsSegction2, the basic concept
and definitions are presented. In Sect®rfuzzy linearmodel is given. In Sectiod,
fuzzy regression analysis is given and finally ntica¢ examplds given In Section 5.

2. Preliminaries

Definition 2.1. A fuzzy set (FSJ is defined byd = { x, uz(x) : X A, uz(x) € [0,1] }. In
the pair &, 1z(x)), the first elemenk belong to the classical sétand the second element
belong to the interval [0, 1] is called memberdhipction.

Definition 2.2. A fuzzy setd is convex if
pa(hxy + (1-M)xz ) = Min (uz(xq), palxz)),vxy, x, € R andrig[0,1].

Definition 2.3. A triangular fuzzy number (TFN) with left spreaddaright spread is
denoted by and corresponding membership function is given,

x-(a-a) forx €la—a,a]

pa(x) = %f‘x forx € [a, a+p]
0 otherwise ~

where &R; a, p>. The symbolic representation of TFNAgzy = [a«, B]. Herea andp

are called left and right spreads of membershipctfan pz(X) respectively The

diagrammatic representation of a TFN is as follgwin

1a(X)
A

v
x

a—a a a+p
Figure 1. Triangular fuzzy number
Definition 2.4. A Linear Programming Problem (LPP) is defined as:
Maximize z=c X

Subject tcAx=b, x>0
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wherec = (¢, ¢y, .., ¢p), b= (b1by, ..., by)" andA= [a;jlmxnWhere all the parameters
are crisp.

2.5. Graded mean integration r epresentation method-defuzzification
If A =(ay, a,, as) is a triangular fuzzy number then the graded niet@gration
representation of is given byP(4) = [a; + 4a, + a3]/6

3. Fuzzy linear regression modd (FLR)
Fuzzyfunctions anduzzy linear model§3] are presented, here for continuation.
The general form of FR model is given by
g =1(x,A) =4y + Ayx; + Axp+ ... + A, x,, (1)

wherey is thefuzzyoutput,4; , i= 1,2,...,nis anfuzzy coefficient and X =%1, X2, s Xp)
is an n dimensional non-fuzzy input vector. Each Triangukuzzy Number (TFN)
coefficient4; can be defined bdry= [a; a;, B;] Wherar;, B;are called théeft and right
spreads of membership functigry(x) respectively.When two spreads are equal, the
TFN is known as symmetric triangular fuzzy numt&FEN). Hence a TFM -y = [aa,
B] is said to be STFN i&x = g (saym), this concept gives the definition of STFN as
follows:

A fuzzy sefl in R is said to be a STFN if there exist real nanmandm where
m>0 such that the membership functions are derived frigure 2.

1a(x)

f

1

v
x

a—m a a+m

Figure2: Symmetric triangular fuzzy number

x-azm) forx € a—m,a]

forx €la, a+m]
0 otherwise

pz(x) =< atm-x
m
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STFN can be represented &gy = [a; m,m], wherea is the centenn is thespread of
membership functiop z(x).

The fuzzy components are assumed to be STFNs. fliaey output from the
linear model f(x,A) in (1) can be expressed §isf(x, A) = (f¢(x), f'(x))wheref¢(x)
is the center of the of linear model f(X) and has the forfif (x) = aq + a;x; + - +
a,x, andf!(x)is the spreads of membership functions of A,
flx)=mo+my lx; 1 4+4+ m, Ix,|
Then the membership ¢fdefined in (1) can be represented as,
ma(y)=
{y_[(ao‘fz:iaixi)_(m0+2imi|xi|)

gt for y € [(ag + Biaix) — (mo + Zemulxl), (a0 + 2iaix))]

[(aot+Xiaix)+(mo+Xim|xi)]-y
t (mo+Ximilx;])

fory € [(ag + X;a;x;), (ag + X a;x;) + (my + X my|x;|)]

0 otherwise  _
The diagramatic representation of fuzzy output fismcof an FNA

with h-level set is presented in the following figure.

1a(x)
A

0.5

v
x

fr@- i) o) FFE + i)

Figure 3: Fuzzy output function
where f€(x) = (ap + X; a;x;)
fE)-fHx) =(ao + X a;x;) — (Mo + Xy my|x;|)
eI =(ao + Xiaixy) + (mg + Xymylx;])

4. Analysis of fuzzy linear regression

The objective of the Fuzzy Linear Regression (Foidthod with non-fuzzy data is to
determine the parametedsuch that the fuzzy output sey{ is associated withuz(y;) >

h wherehe[0,1] and R’ is chosen for the purpose of generating the bittstg model.

Now, the problem is to minimize the fuzzinessha butput. Since, the values of
the membership function of thieizzy output are the function of the spread of the
membership functionminimizing the spread of the membership function and hence it
leads to the minimization of the fuzziness of thpat.
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Minimize z = Min {f'(x)} where f!(x)is defined in (2
Minimize z = Min {f!(x)} = Min { (mo + X1, m; Z}”:1|x]-|} (3)
Subject to the set of constraiptse [f(x;)]n,

where [f6c;)]n = [Ao]n + [A1]nxj+ [Azvx+ - . . + Bplex; such that [.]denotes the h-level
set of an Fuzzy Number. By using tlizzy membership function for the output, the two
constraints of the FLR model are given by

y=l(ap+¥;aixy) —(mo+XimilxiD] o
(Mmo+Zimlx;) zh (4)
and
[(ap+Xiaix)+(mo+Xim;|x;)]-y
>
(mo+Xi mlx;]) 2 h ©)

Simplifying (4) and (5), we have

y —d[(ao + 2ia;ix;) — (mo + Ximylx; )] = h(mg + X m;lx;)) (6)
an

[(ap + Xiaix;) + (mg + X;my|x; )] —y = h(mg + X;m;lx;]) (7)
Again simplifying, we get

(ap +2iaix) — (L —h)(mo + Xymylx|) <y 8)
and  [(ap+Xiaix) + (1 —h)(mg + Ximy|x;D] =y 9

Therefore, the problem is reduced to the followfogn:
Minimize z =Min { f}(x)}
Min {f1(0} = Min {mg + Iy m; X2 [x[} - and
Subject to the constraing®),(9)andm, >0 anda;, m; =0 fori=1,2,...,n
By using the software TORA, the values of the ceatal spread of membership can be
estimated. This gives the FN coefficients as folow
Ao = [ag;mg, my]
Ay = [al‘;mltml]

ATL = [an;mnt "En] - -
By using the values g, 4;...... A, the FLR model becomes
J=Ay+A1x; + A+ .. +AX,
The value ofy can be estimated by substituting the valuesgfx, .... x,, the estimated
values ofyare actually STFNs which can be defuzzified topcmsimber by using the
function principle

A =[a; + 4a, + a3]/6(10)

5. Numerical illustration
Numerical problem is considered with the value ef®.7

Example 5.1. Consider the values foX andY in the following table to calculate the
coefficients of the FLR model forl

j 1 2 3 4 5 6
X 1 2 4 6 7 8
Y 301( 450C 440( 540( 720¢ 819¢
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Let us consider the value o= 0.7

Minimize z =Min { f'(x)}

Min { £ ()} = Min { (mo + my 254 ]])}

Subiject to the constraints

ag +xja; + 0.3ny + 0.3n,x; >y[from (9)]

ao +xja, - 0.3n, - 0.3n,x; <y [from (8)]
wherex; represents the componentyoin the " entry value. The number of functional
constraints depend on the number of data setsa@l@ilFrom the example six different
sets of values (x, y) will generate 12 functionahstraints respectively. Substituting the
given values, the LPP becomes,

Min { f!(x)} = Minimize {m, + 28 m; }

Subiject to the constraints
ag +1a; + 0.3n, + 0.3n, =3010
ay +1a; - 0.3n, -0.3n; <3010
ay +2a, + 0.3n, + 0.6 m; >4500
ay +2a, -0.3n, - 0.6 m; <4500
ay +4a; + 0.3n, + 1.2 my >4400
ay +4a;, -0.3n, - 1.2 my <4400
ay +6a,+ 0.3n,+ 1.8 my >5400
ap +6a, - 0.3n,- 1.8 m; <5400
ay +7a; +0.3ny + 2.1 m, >7295
ay +7a, - 0.3n, - 2.1 m; <7295
ap +8a; +0.3ny + 24 m,; =>8195
ay +8a, - 0.3n, —2.4n,; =>8195

whereay, a, mgy, m; =0.

By using the software Tora, the estimated valudt®fcenter and spread of membership
function is given by
a,= 2486.6667¢,= 615.8333m,= 2605.55561m,= 0.
where the minimized value of the objective functiomthe spread is
Min { f}(x)} = Minimize {m, + 28 m; }= 2605.5556
Now the FN coefficients are as follows:
A, =[2486.6667; 2605.5556, 2605.5556]
A, =[615.8333; 0, 0]
The FLR model is given by
y=Ag+Ax
y=[2486.6667; 2605.55,2605.55]+[615.8333; 0, 0](1)
¥ =[3102.4997;2605.55,2605.55]
The transformed crisp value $fis given by
Y =[a; +4a, + a3]/6 =[3102.4997 + 4(2605.55) + 2605.55] /6
Y = 2688.3805
The next value of can be calculated herg= 4, + 4;x,
y=[2486.6667; 2605.55,2605.55]+ [615.833; 0, 0] (2)
¥y =[3718.3333; 2605.55,2605.55]
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The transformed crisp value $fis given by
Y =[a; + 4a, + a3]/6 = [3718.3333 + 4(2605.55)+ 2605.55] /6 = 2791.0188
Similarly, the other values of Y are estimated arelpresented in the following table

Xj Observed; 7 e =9~y ef

1 301C 2688.38. -321.61¢ 103438.781
2 450( 2791.0%L -1708.9¢ 2920619.47
4 440( 2996.29 -1403.° 1970382.11
6 540( 3201.5° -2198.4 4833094.46
7 729t 3304.2: -3990.7¢ 15926404.8
8 819t 3406.8! -4788.1! 22926380.4

48680320.08

Table1

5.1. Determination of error using ordinary regression method

The linear regression equationviss a + b X(A)

The value of andb can be determined by using the following normalagigun.
YX +bY X?=Y XY(B)
na+hb) X =Y (C)

The values oK andY becomes,

X Y X2 XY
1 301C |1 301(
2 450C |4 900(
4 440C | 16 1760(
6 540C | 36 3240(
7 729t | 49 5106¢
8 819t | 64 6556(
28 32800 | 170 178635
Table?2

From (C)= 6a + 28b = 32800

From (B)=28a + 170b = 178635

Solving (B) and (C) we have,= 2433.1356 ant = 650.0423

Therefore the regression model (A) beconies,2433.1356+ 650.0423
The other values of Y are estimated and are pregémtthe following table

Xj Observed; 7 e =9~y ef

1 301C 3083.177' | 73.177! 5355.00504

2 450( 3733.220. | -766.7¢ 587951.261

4 440( 5033.304 | 633.304: 401074.969

6 540( 6333.389: | 933.389 871215.77

7 729t 6983.431 | -311.56¢ 97074.8055

8 819t 7633.47. | -561.52( 315311.448
2277983.263

Table3
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6. Conclusion

In this paper, fuzzy linear regression with symimgatrtriangular number is used for
prediction of values instead of normal linear regien. Error values is also found out for
both fuzzy linear regression and normal linear esgion. The error value of normal
regression analysis is efficient than that of fuzinear regression from the above
example.
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