Intern. J. Fuzzy Mathematical Archive Vol. 12, No. 1, 2017, 39-47 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 31 March 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/ijfma.v12n1a5

International Journal of **Fuzzy Mathematical Archive**

Another Theta Generalized Closed Sets in Fuzzy Topological Spaces

V.Chandrasekar¹ and G.Anandajothi²

 ¹Department of Mathematics, Kandaswami Kandar's College Velur (Namakkal) – 638 182, Tamil Nadu, India E-mail: vckkc3895@gmail.com
²Department of Mathematics, K.S.Rangasamy College of Arts & Science Tiruchengode – 637 215, Tamil Nadu, India Corresponding author. E-mail: jothi.anandhi@gmail.com

Received 10 January 2017; accepted 22 February 2017

Abstract. In this paper, we introduce a new class of fuzzy generalized closed sets called fuzzy $\theta g'''$ -closed and its properties are investigated. Further, new concept of fuzzy θg^*s -closed, fuzzy $g''' \theta$ - closed, fuzzy $g^*s \theta$ -closed, and fuzzy $g'''_{\alpha} \theta$ - closed sets are introduced using it.

Keywords: fuzzy generalized closed sets, fuzzy θ g-closed sets, fuzzy θ gs-closed sets, fuzzy θ g^m-closed and fuzzy θ -closed sets

AMS Mathematics Subject Classification (2010): 54C10, 54C08, 54C05

1. Introduction

Zadeh [13] introduced the concept of fuzzy sets in 1965. In 1968, the concept of fuzzy topological space introduced by Chang [5] and many researchers have been worked in this area. Shafei [6] introduced θ generalized closed sets in fuzzy topological space in 2005. Later Salleh [12] defined the concepts of θ semi-generalized closed sets in fuzzy topological space. Recently, Othman introduce fuzzy θ -generalized semi closed sets in fuzzy topological space [7]

In the present paper, we introduce fuzzy $\theta g''$ -closed sets in fuzzy topological space and investigate certain basic properties of these fuzzy sets.

2. Basic concepts

Throughout the present paper, (X, τ) or simply X mean fuzzy topological space (abbreviated as fts) on which no separation axioms are assumed unless otherwise mentioned. We denote and define the closure and interior for a fuzzy set A by $Cl(A) = \wedge \{\mu : \mu \ge A, 1 - \mu \in \tau\}$ and $Int(A) = \vee \{\mu : \mu \le A, \mu \in \tau\}$. fuzzy θ closure of A [6] and fuzzy semi- θ closure of A [12] are denoted by $Cl_{\theta}(A) = \wedge \{cl(\mu) : A \le \mu, \mu \in \tau\}$ and

 $sCl_{\theta}(A) = \land \{scl(\mu) : A \leq \mu, \mu \text{ is semi-open in } \tau \}$ respectively.

V.Chandrasekar and G.Anandajothi

Definition 2.1. A fuzzy set A of (X, τ) is called

- (i) fuzzy semi-open [1] if $A \le Cl(Int(A))$
- (ii) fuzzy α -open [3] if $A \leq Int(Cl(Int(A)))$
- (iii) fuzzy θ -open if $A = Int_{\theta}(A)$ [6] and fuzzy θ -closed [6] if $A = Cl_{\theta}(A)$
- (iv) fuzzy semi- θ -open [12] if $A = sInt_{\theta}(A)$ and fuzzy semi- θ -closed [12] $A = sCl_{\theta}(A)$

The semi closure [11] (respectively α -closure [10]) of a fuzzy set A of (X, τ) is the intersection of all fs-Closed (respectively f α -closed sets) that contain A and is denoted by sCl(A) (respectively $\alpha Cl(A)$).

Definition 2.2. A fuzzy set A of (X, τ) is called

- (i) fuzzy generalized closed (in short, fg-closed)[4] if $Cl A \le H$, whenever $A \le H$ and H is fuzzy open set in X
- (ii) fuzzy generalized semi closed (in short, fsg-closed)[2] if $sCl(A) \le H$, whenever $A \le H$ and H is fs-open set in X.
- (iii) fuzzy generalized closed (in short, fgs-closed) [9] if $sCl(A) \le H$, whenever $A \le H$ and H is f-open set in X.
- (iv) fuzzy θ -generalized closed (in short, f θ g-closed) [6] if $Cl_{\theta}(A) \le H$, whenever $A \le H$ and H is f-open set in X.
- (v) fuzzy θ -semi-generalized closed (in short, $f \theta$ sg-closed) [12] if $s Cl_{\theta}(A) \le H$, whenever $A \le H$ and H is fs-open set in X.
- (vi) fuzzy θ generalized semi closed (in short, $f \theta$ gs-closed) [7] if $s Cl_{\theta}(A) \le H$, whenever $A \le H$ and H is f-open set in X.
- (vii) fuzzy g^{'''}- closed [8] if $Cl A \le H$, whenever $A \le H$ and H is fuzzy gs-open set in X
- (viii) fuzzy g*s- closed [8] if s $Cl A \le H$, whenever $A \le H$ and H is fuzzy gs-open set in X
- (ix) fuzzy g''_{α} closed [8] if $\alpha Cl A \le H$, whenever $A \le H$ and H is fuzzy gs- open set in X

3. Fuzzy $\theta g'''$ -closed sets in fuzzy topological spaces

Definition 3.1. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called fuzzy $\theta g'''$ -closed if $Cl_{\theta}(A) \leq H$ whenever $A \leq H$ and H is fuzzy θgs –open in X.

Definition 3.2. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called

fuzzy θg^*s - closed if $s Cl_{\theta}(A) \le H$, whenever $A \le H$ and H is fuzzy θgs -open set in X.

Definition 3.3. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called fuzzy g^{*m*} θ - closed if $ClA \leq H$, whenever $A \leq H$ and H is fuzzy θ gs-open set in X.

Definition 3.4. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called fuzzy $g^*s \theta$ -closed if $s ClA \le H$, whenever $A \le H$ and H is fuzzy θ gs-open set in X.

Definition 3.5. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, τ) is called fuzzy $g''_{\alpha}\theta$ - closed if α Cl $A \leq H$, whenever $A \leq H$ and H is fuzzy θ gs-open set in X.

Theorem 3.1. Every fuzzy θ -closed set is fuzzy $\theta g'''$ - closed set in a fuzzy topological space (X, τ) .

Proof: Let A be fuzzy θ closed set in X. Let H be a $f \theta gs$ - open set in X such that $A \leq H$. Since A is fuzzy θ - closed, $Cl_{\theta}(A)=A$. Therefore $Cl_{\theta}(A) \leq H$ whenever $A \leq H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy $\theta g'''$ - closed set in X.

Remark 3.1. The converse of the above theorem need not be true as shown in the following example.

Example 3.1. Let $X = \{a\}$. Fuzzy sets A and B are defined by A (a) = 0.6 ;B(a)=0.5. Let $\tau = \{0, A, 1\}$. Then B is a fuzzy $\theta g'''$ - closed set but it is not a fuzzy θ - closed set in (X, τ) .

Theorem 3.2. Every fuzzy semi- θ -closed set is fuzzy θg^*s - closed set in a fuzzy topological space (X, τ) .

Proof: Let A be fuzzy semi- θ closed set in X. Let H be a f θ gs - open set in X such that $A \leq H$. Since A is fuzzy semi- θ - closed, $sCl_{\theta}(A) = A$. Therefore $sCl_{\theta}(A) \leq H$ whenever $A \leq H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy θ g*s- closed set in X.

Theorem 3.3. Every fuzzy α -closed set is fuzzy $g''_{\alpha}\theta$ - closed set in a fuzzy topological space (X, τ) .

Proof: Obvious from Definition 3.5 and Definition 3.1 (ii)

Theorem 3.4. Every fuzzy closed set is fuzzy $g''' \theta$ - closed set in a fuzzy topological space (X, τ) .

V.Chandrasekar and G.Anandajothi

Proof: Obvious from Definition 3.3.

Theorem 3.5. Every fuzzy semi-closed set is fuzzy $g^*s\theta$ - closed set in a fuzzy topological space (X, τ) .

Proof: Obvious from Definition 3.4

Remark 3.2. The converse of the theorems 3.2, 3.3, 3.4 and 3.5 need not be true as shown in the following example.

Example 3.2. Let $X = \{a\}$. Fuzzy sets A ,B and D are defined by A (a) = 0.5 ;B(a)=0.4 ;D(a)=0.7 .

Let $\tau = \{0, A, B, 1\}$. Then D is

(i) fuzzy θg^* s- closed set but it is not a fuzzy semi- θ -closed set in (X, τ) .

(ii) fuzzy $g''_{\alpha}\theta$ - closed set but it is not a fuzzy α -closed set in (X, τ) .

(iii) fuzzy g^{*m*} θ - closed set but it is not a fuzzy closed set in (X, τ) .

(iv) fuzzy g*s θ - closed set but it is not a fuzzy semi-closed set in (X, τ) .

Theorem 3.6. Every fuzzy $\theta g''$ -closed set is fuzzy θg^*s - closed set in a fuzz topological space (X, τ) .

Proof: Let A be a fuzzy $\theta g'''$ -closed set in X. Let H be a f θ gs- open set in X such that $A \leq H$. Since, $sCl_{\theta}(A) \leq Cl_{\theta}(A) \leq H$. Therefore $sCl_{\theta}(A) \leq H$, whenever $A \leq H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy θ g*s-closed set in X.

Remark 3.3. The converse of the above theorem need not be true as shown in the following example.

Example 3.3. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.1, A(b)=0.2; B(a)=0.5, B(b) = 0.4. Let $\tau = \{0, B, 1\}$. Then A is fuzzy θg^* s-closed but it is not f $\theta g'''$ -closed.

Theorem 3.7. Every fuzzy $\theta g'''$ -closed set is fuzzy $g''' \theta$ - closed set in a fuzzy topological space (X, τ) .

Proof: Let A be a fuzzy $\theta g'''$ -closed set in X. Let H be a f θ gs- open set in X such that $A \leq H$. Since, $Cl(A) \leq Cl_{\theta}(A) \leq H$. Therefore $ClA \leq H$, whenever $A \leq H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy $g''' \theta$ -closed set in X.

Remark 3.4. The converse of the above theorem need not be true as shown in the following example

Example 3.4. Let $X = \{a, b\}$ and the fuzzy sets A, B and D be defined as follows A (a) = 0.4, A(b)=0.4; B(a)=0.5, B(b) = 0.4; D(a) = 0.5, D(b) = 0.6.

Let $\tau = \{0, A, B, 1\}$. Then A is fuzzy $g''' \theta$ -closed but it is not $f \theta g'''$ -closed.

Theorem 3.8. Every fuzzy $\theta g'''$ -closed set is fuzzy $g''_{\alpha} \theta$ - closed set in a fuzzy topological space (X, τ) .

Proof: Let A be a fuzzy $\theta g'''$ -closed set in X. Let H be a f θ gs- open set in X such that $A \leq H$. Since, $\alpha Cl(A) \leq Cl_{\theta}(A) \leq H$. Therefore $\alpha ClA \leq H$, whenever $A \leq H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy $g''_{\alpha} \theta$ -closed set in X.

Remark 3.5. The converse of the above theorem need not be true as shown in the following example.

Example 3.5. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.3, A(b)=0.4; B(a)=0.7, B(b) = 0.6

Let $\tau = \{0, A, 1\}$. Then B is fuzzy $g''_{\alpha}\theta$ -closed but it is not $f\theta g'''$ -closed.

Theorem 3.9. Every fuzzy θ g*s -closed set is fuzzy g*s θ - closed set in a fuzzy topological space (X, τ) .

Proof: Let A be a fuzzy θ g*s -closed set in X. Let H be a f θ gs- open set in X such that $A \leq H$. Since, $sCl(A) \leq sCl_{\theta}(A) \leq H$. Therefore $sCl A \leq H$, whenever $A \leq H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy g*s θ -closed set in X.

Remark 3.6. The converse of the above theorem need not be true as shown in the following example.

Example 3.6. Let $X = \{a\}$ and the fuzzy sets A, B and D be defined as follows A (a) = 0.6; B(a) = 0.5; D(a) = 0.1. Let $\tau = \{0, A, B, 1\}$. Then D is fuzzy g*s θ - closed but it is not f θ g*s -closed.

Theorem 3.11. Every fuzzy $\theta g'''$ -closed set is fuzzy $g^*s \theta$ - closed set in a fuzzy topological space (X, τ) .

Proof: It is clear from Theorem 3.6 and Theorem 3.10

Remark 3.7. The converse of the above theorem need not be true as shown in the following example.

Example 3.7. $X = \{a, b\}$. Consider the fuzzy topology τ as in Example 3.3 where A is defined by A (a) = 0.1, A(b)=0.2. Clearly A is fuzzy g*s θ - closed set but not fuzzy $\theta g'''$ -closed set.

Theorem 3.8. Every fuzzy $g'''\theta$ -closed set is fuzzy $g'''_{\alpha}\theta$ - closed set in a fuzzy topological space (X, τ) .

V.Chandrasekar and G.Anandajothi

Proof: Let A be a fuzzy $g''' \theta$ -closed set in X. Let H be a f θ gs- open set in X such that $A \le H$. Since, $\alpha Cl(A) \le Cl(A) \le H$. Therefore $\alpha ClA \le H$, whenever $A \le H$ and H is fuzzy θ gs-open set in X. Hence A is fuzzy $g''_{\alpha} \theta$ -closed set in X.

Remark 3.8. The converse of the above theorem need not be true as shown in the following example.

Example 3.8. Let $X = \{a\}$ and the fuzzy sets A, B and D be defined as follows A (a) = 0.5; B(a) = 0.3; D(a) = 0.6. Let $\tau = \{0, A, B, 1\}$. Then D is fuzzy $g''_{\alpha} \theta$ -closed but it is not f $g''' \theta$ closed.

Remark 3.9. The following examples shows that the fuzzy $\theta g'''$ -closed set is independent of fuzzy g'''-closed, fuzzy g*s-closed, fuzzy g'''_{\alpha} – closed, fuzzy closed, fuzzy semi- θ -closed, fuzzy θ -g-closed, fuzzy θ -g closed, fuzzy θ -g closed.

Example 3.9. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.6, A(b)=0.5; B(a)=0.6, B(b) = 0.6.

Let $\tau = \{0, A, 1\}$. Then B is fuzzy $\theta g'''$ -closed but it is not fuzzy g'''-closed.

Example 3.10. Let $X = \{a, b\}$ Consider the Fuzzy topology τ as in Example 3.4 where D is defined by D (a) = 0.5 , D(b)=0.6.Clearly D is both fuzzy closed and fuzzy g^{'''}-closed but it is not fuzzy θ g^{'''}-closed.

Example 3.11. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.6, A(b)=0.6; B(a)=0.7, B(b) = 0.8.

Let $\tau = \{0, A, 1\}$. Then B is fuzzy $\theta g'''$ --closed but it is neither g'''_{α} -closed nor fuzzy g*s-closed.

Example 3.12. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.6, A(b)=0.6; B(a)=0.3, B(b) = 0.4.

Let $\tau = \{0, A, 1\}$. Then B is both fuzzy g'''_{α} -closed and fuzzy g^* s-closed but it is not fuzzy $\theta g'''$ -closed.

Example 3.13. Let $X = \{a, b\}$ Consider the Fuzzy topology τ as in Example 3.4 where E is defined by E (a) = 0.6, E(b)=0.6. Clearly E is fuzzy semi- θ - closed but it is not fuzzy $\theta g'''$ -closed and D is defined by D(a) = 0.5, D(b) = 0.6 is fuzzy closed but it is not fuzzy $\theta g'''$ -closed.

Example 3.14. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 1, A(b)=0.2; B(a)=0.5, B(b) = 0.9.

Let $\tau = \{0, A, 1\}$. Then B is fuzzy $\theta g'''$ --closed but it is neither fuzzy closed nor fuzzy semi- θ - closed.

Example 3.15. Let $X = \{a\}$ and the fuzzy sets A, B and D be defined as follows A (a) = 0.7; B(a) = 0.8; D(a) = 0.4. Let $\tau = \{0, A, B, 1\}$. Then D is fuzzy $\theta g'''$ -closed but it is not fuzzy θg -closed.

Example 3.16. Let $X = \{a, b\}$ and the fuzzy sets A and B be defined as follows A (a) = 0.5, A(b)=0.5; B(a)=0.2, B(b) = 0.3.

Let $\tau = \{0, A, 1\}$. Then B is fuzzy θg -closed but it is not fuzzy $\theta g'''$ --closed.

Example 3.17. Let $X = \{a\}$ and the fuzzy sets A, B be defined as follows A (a) = 0.4; B(a) = 0.3. Let $\tau = \{0, A, 1\}$. Then B is both fuzzy θ sg –closed and fuzzy θ gs – closed, but it is not fuzzy θ g^m-closed.

Example 3.18. Let $X = \{a\}$ and the fuzzy sets A, B be defined as follows A (a) = 0.7; B(a) = 0.9. Let $\tau = \{0, A, 1\}$. Then B is fuzzy $\theta g'''$ -closed but it is not fuzzy θsg -closed.

Example 3.19. Let $X = \{a\}$ and the fuzzy sets A, B be defined as follows A (a) = 0.6; B(a) = 0.5. Let $\tau = \{0, A, 1\}$. Then B is fuzzy $\theta g''$ -closed but it is not fuzzy θgs -closed.

Remark 3.10. From the above results and examples we have the following diagram of implications.



Figure 3.1:

4. Properties of fuzzy $\theta g'''$ –closed sets

Theorem 4.1 Let X be a fts, then the union of two fuzzy $\theta g'''$ - closed sets is fuzzy $\theta g'''$ - closed set.

Proof: Suppose that A and B are fuzzy $\theta g'''$ - closed sets in X and let H be a fuzzy θgs open set in X such that $A \lor B \leq H$. Since A and B are fuzzy $\theta g'''$ -closed sets, we have $Cl_{\theta}(A) \lor Cl_{\theta}(B) \leq H$.

Since $Cl_{\theta}(A \lor B) \le Cl_{\theta}(A) \lor Cl_{\theta}(B)$, therefore $Cl_{\theta}(A \lor B) \le H$, whenever $A \lor B \le H$ and H is fuzzy θ gs open set in X.

Theorem 4.2. If A is a fuzzy $\theta g'''$ - closed set in (X, τ) and $A \le B \le Cl_{\theta}(A)$, then B is fuzzy $\theta g'''$ - closed set in (X, τ) .

Proof: Let A be a fuzzy $\theta g'''$ - closed set in (X, τ) . Let $B \le H$ where H is a fuzzy θgs open set in X. Then $A \le H$. Since A is fuzzy $\theta g'''$ - closed set in, it follows that $Cl_{\theta}(A) \le H$.

Now $B \leq Cl_{\theta}(A)$ implies $Cl_{\theta}(B) \leq Cl_{\theta}(Cl_{\theta}(A)) = Cl_{\theta}(A)$. We get, $Cl_{\theta}(B) \leq H$. Hence, B is fuzzy $\theta g'''$ - closed set in (X, τ) .

Theorem 4.3. If a fuzzy set A of a fuzzy topological space X is both fuzzy θ gs-open and fuzzy θ g^{'''}- closed then it is fuzzy θ - closed.

Proof: Suppose that a fuzzy set A of X is both fuzzy θ gs -open and fuzzy θ g^{'''}- closed. Now $A \ge Cl_{\theta}(A)$ whenever $A \ge A$ and A is fuzzy θ gs -open .Since $A \le Cl_{\theta}(A)$. We get $A = Cl_{\theta}(A)$. Hence A is fuzzy θ - closed in X.

REFERENCES

- 1. K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Analy. Appl.*, 82(1) (1981) 14–32.
- G.Balasubramanian, On fuzzy-pre-separation axiom, *Bull., Calcutta Math Soc.*, 90(6) (1998) 427–434.
- 3. G.Balasubramanian and V.Chandrasekar, Totally fuzzy semi continuous functions, *Bull. Calcutta Mat. Soc.*, 92(4) (2000) 305-312.
- 4. G.Balasubramanian and P.Sundaram, On some generalization of fuzzy continuous functions, *Fuzzy Sets and Systems*, 86 (1) (1997) 93-100.
- 5. C.L.Chang, Fuzzy topological spaces, J. Math Anal Appl., 24 (1968) 182 190.
- 6. M.E.El- Shafei and A.Zakari, θ generalized closed sets in fuzzy topological spaces, *The Arabian Journal for Science and Engineering*, 31 (2A) (2006) 197 206.
- 7. A.Hakeem and Othman, On fuzzy θ-generalized-semi-closed sets, *Journal of Advanced Studies in Topology*, 7(2) (2016) 84-92.
- 8. M.Jeyaraman, J.Rajalakshmi and O.Ravi, Another generalization of closed sets in fuzzy topological spaces, *International Journal of Mathematical Archive*, 4(8) (2013) 187-192.
- 9. R.K.Saraf, M.Khanna, On gs-closed set in fuzzy topology, J. Indian Acad. Math., 25(1) (2003) 133-143.
- 10. S.S.Thakur and S.Sing, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, *Fuzzy Sets and Systems*, 98(3) (1998) 383 391.
- 11. T.H.Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl., (132) (2) (1988) 356-364.
- 12. Zabidin Salleh and N.A.F.Abdul Wahab, θ-semi-generalized closed sets in fuzzy topological spaces, *Bull. Malays. Math. Sci. Soc.*, 36(4) (2013) 1151-1164.
- 13. L.A.Zadeh, Fuzzy sets, Inform and Control, 8 (1965) 338 353.