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1. Introduction 
The concept of fuzzy sets was introduced by Zadeh [20]. Kramosil and Michalek [10] 
introduced the concept of fuzzy metric space. George and Veeramani [7] modified this 
concept of fuzzy metric space and defined Hausdroff topology on fuzzy metric space. 
Many authors have studied common fixed point theorems in fuzzy metric spaces. The 
most interesting results in this direction are due to Cho [2], George and Veeramani [7], 
Grabiec [8], Kaleva [9], Kramosil and Michalek [10], Mishra et al. [11] etc., Singh and 
Chauhan [15] introduced the concept of compatibility in fuzzy metric space and proved 
some common fixed point theorems in fuzzy metric space.  

Gahler [5-6] investigated 2-metric spaces in a series of his papers.  It is to be 
remarked that Sharma, Sharma and Iseki [14] studied for the first time contraction type 
mappings in 2-metric spaces. In 2002, Sharma [13] introduced fuzzy 2-metric space and 
fuzzy 3-metric space and obtained some common fixed point theorems for three 
mappings in this setting. Sharma [13] proved common fixed point theorems for 
commuting maps, thus modified and extended the results due to Fisher [4]. 

   In 2007, Singh et al. [16] introduced the concept of semi-compatibility and 
weak compatibility in fuzzy -2, fuzzy-3 metric space. 
For the sake of completeness, we recall some definitions and known results in fuzzy, 
fuzzy -2, fuzzy-3 metric spaces. 

2. Preliminaries and definitions 
Definition 2.1. [12] A binary operation ∗: [0, 1]	× �0,1� → �0,1� is called a continuous t-
norm if it satisfies the following conditions: 
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(i) ∗ is associative and commutative, 
(ii)  ∗ is continuous, 
(iii)   a∗1 = a; for all a	∈	[0,1] 
(iv)  a∗b	≤ c∗d whenever a	≤ c	and	b ≤ d, for	all	a, b, c, d ∈ �0,1�. 
 
Example of t-norms are a∗b = ab and a∗b = min {a, b}. 
 
Definition 2.2. [10] The 3-tuple (X, M,*) is called a fuzzy metric space if X is an 
arbitrary set,	∗ is a continuous t-norm and M is a fuzzy set in X2 × [0,∞) satisfying 
the following conditions for all x, y, z	∈ X and s, t > 0: 
 (FM-1) M(x, y, 0) = 0; 
(FM-2) M(x, y, t) = 1, for all t > 0 if and only if x = y; 
(FM-3) M(x, y, t) = M(y, x, t); 
(FM-4) M(x, y, t)	∗M(y, z, s)	≥ M(x, z, t + s); 
(FM-5) M(x, y,∙): [0,∞) → �0,1� is left continuous. 
 
Note that M(x, y, t) can be thought of as the degree of nearness between x and y with 
respect to t. We identify x = y with M(x, y, t) = 1, for all t > 0.  
The following example shows that every metric space induces a fuzzy metric space. 
 
Example 2.1. [10] Let (X, d) be a metric space. Define a∗b = min {a, b} and for all x, y	∈ 

X, M(x, y, t) =		 �
	���(�,�) for all t > 0 and M(x, y, 0) = 0.Then (X, M, ∗) is a fuzzy metric 

space. It is called the fuzzy metric space induced by the metric d. 
   

Definition 2.3. [8] Let (X, M,	∗) be a fuzzy metric space. A sequence {xn} in X is said to 
convergent to a point x	∈ X if lim!→∞M(xn, x, t) = 1 for all t > 0. Further, the sequence 
{x n} is said to be Cauchy sequence in X, if lim!→∞M(xn, xn+p, t) = 1 for all  t > 0 and p > 
0.The space  X is said to be complete if every Cauchy sequence in it converges to a point 
of it.  

 
Definition 2.4. [16] A function M is continuous in fuzzy metric space iff whenever 
{x n}→x and {yn}→y then lim!→∞M(xn, yn, t) = M(x, y, t) for each t > 0. 
 
Definition 2.5. [3] A binary operation ∗: [0,1]	× [0,1] ×	[0,1] → [0,1] is called a 
continuous t-norm if ([0,1],	∗) is an abelian topological monoid with unit 1 such that 
a" ∗ b" ∗ c" ≤ a# ∗ b# ∗ c#						whenever a" ≤ a#,	b" ≤ b#,c" ≤ c# for all a", a#, b", b#, c" 
and c# are in [0, 1]. 
 
Definition 2.6. [13] The 3-tuple (X, M,	∗) is called a fuzzy-2 metric space if X is an 
arbitrary set,	∗ is a continuous t-norm and M is a fuzzy set in X3	× [0,∞) satisfying the 
following conditions for all x, y, z, u ∈	X and		t",t#, t% > 0: 
(FM’-1)   M(x, y, z, 0) = 0; 
(FM’-2)  M(x, y, z, t) = 1, for all t > 0 and when at least two of the three points are equal, 
(FM’-3) M(x, y, z, t) = M(y, x, z, t) = M(z, x, y, t); 
 (Symmetry about three variables) 
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(FM’-4) M(x, y, z,t" + t# + t%)	≥	M(x, y, u,t")	∗M(x,u,z,t2)	∗M(u,y,z,t3); 
(This corresponds to tetrahedron inequality in 2-metric space). 
(FM’-5) M(x, y, z,∙): [0,∞) → �0,1� is left continuous. 
 
The function value M(x, y, z, t) may be interpreted as the probability that the area of 
triangle is less than t.  
 
Definition 2.7. [16] Let (X, M,	∗) be a fuzzy-2 metric space. A sequence {xn} in X is said 
to convergent to a point x	∈ X     lim!→∞M(xn, x, a, t) = 1, for all a	∈ X,t > 0. Further, the 
sequence {xn} is said to be Cauchy sequence in X, if lim!→∞M(xn, xn+p, a, t) = 1 for all 
a	∈ X, t > 0 and p > 0.The space X is said to be complete if every Cauchy sequence in it 
converges to a point of it. 
 
 Definition 2.8. [16] A function M is continuous in fuzzy-2 metric space iff whenever 
{x n}→x and {yn}→y then lim!→∞M(xn, yn, a, t) = M(x, y, a, t) for all a	∈ X and for each  

    t > 0. 
    

Definition 2.9. [16] A binary operation ∗: [0,1]	×	[0,1] ×	[0,1] ×	[0,1] →	[0,1] is called a 
continuous t-norm if ([0,1],	∗) is an abelian topological monoid with unit 1 such that 
a" ∗ b" ∗ c" ∗ d" ≤ a# ∗ b# ∗ c# ∗ d#						whenever a" ≤ a#,	b" ≤ b#,c" ≤ c#,	d" ≤ d# for 
all a", a#, b", b#, c",c# ,d1 and d2 are in [0, 1]. 
 
Definition 2.10. [13] The 3-tuple (X, M, ∗) is called a fuzzy-3 metric space if x is an 
arbitrary set,	∗ is a continuous t-norm and M is a fuzzy set in X4	× [0, ∞) satisfying the 
following conditions for all x, y, z, w, u	∈	X and			t", t#,t%, t' > 0: 
(FM”-1) M(x, y, z, w, 0) = 0; 
(FM”-2) M(x, y, z, w, t) =1, for all t > 0, iff at-least two of the four points are equal 
 (FM”-3) M(x, y, z, w, t) = M(y, x, z, w, t) = M (w, z, x, y, t) =…; 
(Symmetry)  
(FM”-4) M(x, y, z,	t"+t#+t%+t')	≥	M(x, y, z, u,t")	∗ M(x,y,u,w,t2) ∗   
                                                          M(x,u,z,w,t3)	∗ M(u,y,z,w,t4); 
(FM”-5) M(x, y, z, w,∙): [0,∞) → �0,1� is left continuous. 
 
Definition 2.11. [16] Let (X, M,	∗) be a fuzzy-3 metric space. A sequence {xn} in X is 
said to convergent to a point x	∈ X if 
                   lim!→∞M(xn, x, a, b, t) = 1, 
for all a, b	∈ X, t > 0. Further, the sequence {xn} is said to be Cauchy sequence in X, if 
lim!→∞M (xn, xn+p, a, b, t) = 1 for all a, b	∈ X, t > 0 and p > 0. The space X is said to be 
complete if every Cauchy sequence in it converges to a point of it. 
 

   Definition 2.12. [16] A function M is continuous in fuzzy-3 metric space iff whenever 
{x n} 	→	x and {yn} 	→	y then lim!→∞M(xn, yn, a, b, t) = M(x, y, a, b, t) for all a, b	∈ X and 
for each t > 0. 
 
Definition 2.13. [11] Let A and B mappings from a fuzzy metric space, (X, M,	∗) into 
itself. The mappings are said to be compatible if 
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 lim!→∞ M (ABxn, BAxn, t) = 1 for all t > 0, whenever {xn} is a sequence in X such 
that		lim!→∞Axn = lim!→∞Bxn = x for some x ∈	X. 
Singh et al.[16] extend this concept in fuzzy-2 metric spaces and in fuzzy-3 metric spaces 
as follows: 
 
Definition 2.14. [16] Let A and B mappings from a fuzzy-2 metric space, (X, M,	∗) into 
itself. The mappings are said to be compatible if  lim!→∞ M(ABxn, BAxn ,a, t) = 1 for all  
t > 0 and a	∈ X, whenever {xn} is a sequence in X such that		lim!→∞Axn = lim!→∞Bxn = x 
for some x ∈	X. 
 
Definition 2.15. [16] Let A and B mappings from a fuzzy-3 metric space, (X, M,	∗) into 
itself. The mappings are said to be compatible if lim!→∞ M(ABxn, BAxn, a, b, t) = 1 for 
all t > 0 and for all a, b	∈	X, whenever {xn} is a sequence in X such that 
		lim!→∞Axn  = lim!→∞Bxn = x for some x ∈	X. 
 
Definition 2.16. [17] Two self maps A and B of a fuzzy metric space (X, M,	∗) are said 
to be weak compatible if they commute at their coincidence points, that is  Ax = Bx 
implies ABx = BAx. 
 
Definition 2.17. [18] Let A and B mappings from a fuzzy metric space (X, M,	∗) into 
itself. The mappings are said to be semi-compatible if  lim!→∞M(ABxn, Bx, t) = 1, for all 
t > 0, whenever {xn} is a sequence in X such that lim!→∞Axn =	lim!→∞Bxn = x for some 
x	∈ X. 
      Singh et al.[16] extend this concept in fuzzy-2 metric spaces and in fuzzy-3 metric 
spaces as follows: 
 
Definition 2.18. [16] Let A and B mappings from a fuzzy-2 metric space (X, M,	∗) into 
itself. The mappings are said to be semi-compatible if 
 lim!→∞M(ABxn, Bx, a, t) = 1 for all t > 0 and a	∈ X, whenever {xn} is a sequence in X 
such that lim!→∞Axn =	lim!→∞Bxn = x for some x	∈ X. 
 
Definition 2.19. [16] Let A and B mappings from a fuzzy-3 metric space (X, M,	∗) into 
itself. The mappings are said to be semi-compatible if 
 lim!→∞M(ABxn, Bx, a, b, t) = 1 for all t > 0 and a, b	∈ X, whenever {xn} is a sequence in 
X such that lim!→∞Axn =	lim!→∞Bxn = x for some x	∈ X. 
 
Definition 2.20. [3] A Pair (A, S) of self maps of a fuzzy metric space (X, M,	∗) is said to 
be reciprocal continuous if lim!→∞ASxn = Ax and lim!→∞SAxn = Sx, whenever there 
exist a sequence {xn} such that lim!→∞Axn =	lim!→∞Sxn = x for some x	∈ X. 
 In a similar manner, we extend the concept of reciprocal continuity in fuzzy-2 metric 
spaces and fuzzy-3 metric spaces as follows: 
 
Definition 2.21. A Pair (A, S) of self maps of a fuzzy-2 metric space (X, M,	∗) is said to 
be reciprocal continuous if lim!→∞ASxn = Ax and lim!→∞SAxn = Sx, whenever there 
exist a sequence {xn} such that lim!→∞Axn =	lim!→∞Sxn = x for some x	∈ X. 
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Definition 2.22. A Pair (A, S) of self maps of a fuzzy-3 metric space (X, M,	∗) is said to 
be reciprocal continuous if lim!→∞ASxn = Ax and lim!→∞SAxn = Sx, whenever there 
exist a sequence {xn} such that lim!→∞Axn =	lim!→∞Sxn = x for some x	∈ X. 
 
Example 2.2. Let(X, M,*) be a fuzzy metric space, where X = [0, 4]. Define self maps A 
and B on X as follows 

     Ax = * 5x − 4,				if	x ∈ �0,2�x − 3,								if	x ∈ (2,4�1    , Bx = * x#,				if	x ∈ �0,2�3x,							otherwise1 
x	∈ �0,4�.Define a sequence x!=	61 − "!7; 
Then limn→∞ABxn = limn→∞A61 − "

!7	#	= limn→∞561− 1

n
7 − 4 = 1 = Ax. 

limn→∞Axn = limn→∞561− 1

n
7 − 4= 1 

limn→∞BAxn = limn→∞B6561− 1

n
7 − 47 

                    = limn→∞B61 − 9
n
7 = limn→∞ 61 − 9

!7	# = 1 = Bx. 

lim!→∞Bxn =	limn→∞ 61− 1

n
72

= 1 

lim!→∞ABx! = Ax	and	lim!→∞BAx! = Bx. 
Thus pair (A, B) is reciprocally continuous. 
 
3. Main results 
Theorem 3.1. Let (X, M,	∗) be a complete fuzzy-2 metric space and t∗t ≥		t for all 
t	∈ �0,1� and let A, B, S and T be self maps of X such that 
(3.1.1)  A(X) ∪B(X)⊆S(X)∩T(X), 
(3.1.2)  Pairs (A, T) and (B, S) are semi compatible and are reciprocal continuous, 
(3.1.3)  aM(Tx,Sy,v,t) + bM(Tx,Ax,v,t) + cM(Sy,By,v,t) 

 + max{M(Ax,Sy,v,t), M(By,Tx,v,t)}	≤	qM(Ax,By,v,t) 
for all x, y	∈ X, where a, b, c	≥ 0, q > 0 with q < (a + b + c+1). 
Then A, B, S and T have a unique common fixed point. 
Proof: Let xo	∈	X be any arbitrary point. 
Since A(X) ⊆ S(X), there is a point x1	∈	X such that Axo = Sx1. 
Again since B(X) ⊆ T(X) for this x1 there is a point x2	∈	X such that Bx1 = Tx2. 
Inductively, we construct a sequence {y2n} in X such that 

y2n = Ax2n = Sx2n+1 and y2n+1 = Bx2n+1 = Tx2n+2, for all n = 0, 1, 2,… 
Let M2n = M (y2n, y2n+1, t) < 1 for all n. 
Putting  x = x2n, y = x2n+1 in equation (3.1.3),we   get 
aM(Tx2n,Sx2n+1,v,t) + bM(Tx2n,Ax2n,v,t) + cM(Sx2n+1,Bx2n+1,v,t) 
                     + max{M(Ax2n,Sx2n+1,v,t),M(Bx2n+1,Tx2n,v,t)} 	≤	qM(Ax2n,Bx2n+1,v,t) 
aM(y2n-1,y2n,v,t) + bM(y2n-1,y2n,v,t) + cM(y2n,y2n+1,v,t) 
                     + max{M(y2n,y2n,v,t),M(y2n+1,y2n-1,v,t)} 	≤ qM (y2n,y2n+1,v,t) 
Implies (a + b)M2n-1 + cM2n + 1 ≤	qM2n 
(q- c) M2n	≥	(a + b)M2n-1 + 1 
 (q -c)M2n >(a + b) M2n-1  

 i.e.   M2n > pM2n-1 > M2n-1,          where p = 
(a�b)
(q>c) >1,                                           (3.1.1.1) 
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Thus {M2n, n	≥ 0} is an increasing sequence of positive real numbers in [0, 1] and 
therefore tends to a limit L	≤ 1. 
We claim that L = 1, suppose if not i.e. L<1. 
If L < 1, taking limit as n→ ∞	  in equation (3.1.1.1), we get L < L, which is a 
contradiction. Therefore L = 1. 
Now consider, for any positive integer p, 

M(y2n, y2n+p, v, t) ≥ M(y2n, y2n+1,v, tp)	∗…∗M(y2n+p-1,y2n+p,v,
t

p
) 

Implying limn→∞M (y2n, y2n+p, v, t)	≥ 1 ∗ …∗ 1 = 1. 
    Thus {y2n} is a Cauchy sequence in X. Since X is complete, there exists a point u ∈ X 
such that the sequence {y2n} converges to u ∈ X and  subsequently, the sequences 
{Ax 2n},{Bx 2n+1},{Sx 2n+1} and {Tx2n+2}and its subsequences also converges to u ∈ X .  
Now we will show that u is a common fixed point of A, B, S and T. 
 
Step 1. Since the pair (A, T) is reciprocal continuous, we get   
         limn→∞TAxn→Tu, also		limn→∞TTxn→Tu, 
and since  pair (A, T) is semi compatible, we have  
         limn→∞ATxn→Tu.  
Now we put x = Txn, y = xn in equation (3.1.3), we get 
aM(TTxn, Sxn, v, t) + bM(TTxn, ATxn, v, t) + cM(Sxn, Bxn, v, t) 
          + max{M(ATxn, Sxn, v, t),M(Bxn, TTxn, v, t)}	≤	qM(ATxn, Bxn, v, t) 
Taking limit as n→ ∞, we get 
aM(Tu, u, v, t) + bM(u, Tu, v, t) + cM(u, u, v, t) 
                          + max{M(Tu, u, v, t),M(u, Tu, v, t)}	≤ qM(Tu, u, v, t) 
         aM(Tu, u, v, t) + bM(u, Tu, v, t) + c  + M(Tu, u, v, t)	≤	qM(Tu,u,v,t) 
                    this gives   c ≤ (q− a− b− 1)M(Tu,u, v, t) 
i.e. M(Tu, u, v, t)	≥ ( c

q>a>b>1
) > 1, 

Thus Tu = u. 
 
Step 2. Put x = u and y = xn, in equation (3.1.3), we get 
aM(Tu, Sxn, v, t) + bM(Tu, Au, v, t) + cM(Sxn, Bxn, v, t) 
                 + max{M(Au, Sxn, v, t),M(Bxn, Tu, v, t)}	≤	qM(Au,Bxn, v, t) 
Taking limit as n→ ∞, we get 
aM(u, u, v, t) + bM(u, Au, v, t) + cM(u, u, v, t) 
                           + max{M(Au, u, v, t),M(u, u, v, t)} ≤	qM(Au,u,v,t) 
a + bM(u, Au, v, t) + c + max{M(Au, u, v, t), 1} ≤	qM(Au,u,v,t) 
Implies  ( a + c+1) ≤ (q− b)M(Au,u, v, t) 
i.e.                 M(Au, u, v, t) ≥ (	a�c�1		

q>b
) > 1, 

This gives  Au = u. Hence Au = u = Tu. 
 
Step 3. Since the pair (B, S) is reciprocal continuous. 
In this case, limn→∞SBxn→ Su, also  limn→∞ SSxn→ Su, 
Since (B, S) is semi compatible, we have limn→∞BSxn→Su. 
Let x = xn, y = Sxn in equation (3.1.3), we get  
aM(Txn, SSxn, v, t) + bM(Txn, Axn, v, t) + cM(SSxn, BSxn, v, t) 



Common Fixed Point Theorems in Fuzzy 2 and Fuzzy 3-Metric Spaces 

59 

 

                   + max{M(Axn, SSxn, v, t),M(BSxn, Txn, v, t)}	≤	qM(Axn, BSxn, v, t) 
Taking limit as n→ ∞, we get 
aM(u, Su, v, t) + bM(u, u, v, t) + cM(Su, Su, v, t) 
                    + max{M(u, Su, v, t),M(Su, u, v, t)} 	≤ qM(u, Su, v, t) 
Implies       aM(u, Su, v, t) + b + c + M(u, Su, v, t)	≤	qM(u,Su,v,t) 
            ( b + c)	≤ (q− a− 1)M(u,Su, v, t) 
i.e.   M(u, Su, v, t)	≥ ( b�c

q>a>1
) >1 

This gives  Su = u. Hence Au = Su = u = Tu. 
 
Step 4. Put x = xn, y = u in equation (3.1.3), we get 
aM(Txn,Su,v,t) + bM(Txn,Axn,v,t) + cM(Su,Bu,v,t) 
                    + max{M(Axn,Su,v,t),M(Bu,Txn,v,t)} 	≤	qM(Axn,Bu,v,t) 
Taking limit as n→ ∞, we get 
aM(u,u,v,t) + bM(u,u,v,t) + cM(u,Bu,v,t) 
                    + max{M(u,u,v,t),M(Bu,u,v,t)}	≤	qM(u,Bu,v,t) 
a + b + cM(u,Bu,v,t) + 1≤	qM(u,Bu,v,t) 
Implies ( a+b+1)	≤ (q− c)M(u,Bu, v, t) 
 i.e. M (u,Bu,v,t) ≥ (a�b�"

q>c
) > 1,this gives  Bu = u. 

Hence u = Au = Su = Bu = Tu is a common fixed point of A, B, S and T. 
Uniqueness. Let z ≠u be another common fixed point of A, B, S and T, then             
Az = Bz = Sz = Tz = z. 
Put x = u and y = z in equation (3.1.3), we get 
aM(Tu, Sz, v, t) + bM(Tu, Au, v, t) + cM(Sz, Bz, v, t) 
                    + max{M(Au, Sz, v, t),M(Bz, Tu, v, t)}	≤	qM(Au,Bz,v,t) 
aM(u, z, v, t) + bM(u, u, v, t) + cM(z, z, v, t) 
                      + max{M(u, z, v, t),M(z, u, v, t)} 	≤	qM(u,z,v,t) 
aM(u, z, v, t) + b + c + M(u, z, v, t) ≤	qM(u,z,v,t) 
 Implies (b+c)	≤ (q− a− 1)M(u,z,v,t) 

 i.e.                        M(u, z, v, t) ≥ ( b�c

q>a>1
) >1 

This gives u = z. Hence u is a unique common fixed point of A, B, S and T. This 
completes the proof of the theorem. 

Theorem 3.2. Let (X, M,	∗) be a complete fuzzy-3 metric space and t∗t	≥	t for all  
t ∈ �0,1� and let A, B, S and T be self maps of X such that 

(3.2.1)   A(X) ∪ B(X) ⊆ S(X) ∩T(X); 
(3.2.2)   Pairs (A, T) and (B, S) are semi compatible and reciprocal continuous; 
(3.2.3) aM(Tx, Sy, v, w, t) + bM(Tx, Ax, v, w, t) + cM(Sy, By, v, w, t) 

+ max{M(Ax, Sy, v, w, t),M(By, Tx, v, w, t)}	≤	qM(Ax,By,v,w,t) 
for all x, y	∈ X,where a,b,c	≥ 0 ,q > 0 with q < a+b+c+1. 
Then A, B,S and T have a unique common fixed point. 
Proof: Let xo	∈	X be any arbitrary point. 
Since A(X) ⊆ S(X), there is a point x1 ∈ X such that Axo = Sx1. 
Again since B(X) ⊆T(X) for this x1 there is a point x2 ∈	X such that Bx1 = Tx2.  
Inductively, we construct a sequence {y2n} in X such that 
              y2n = Ax2n = Sx2n+1 and y2n+1 = Bx2n+1 = Tx2n+2, for all n = 0, 1, 2,… 
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Let   M2n = M (y2n, y2n+1,v,w,t) < 1 for all n. 
Putting x = x2n, y = x2n+1 in equation (3.2.3), we get 
aM(Tx2n,Sx2n+1,v ,w,t) + bM(Tx2n,Ax2n,v,w,t) + cM(Sx2n+1,Bx2n+1,v,w,t) 
             + max{M(Ax2n,Sx2n+1,v,w,t),M(Bx2n+1,Tx2n,v,w,t)} 
																																																				≤	qM (Ax2n,Bx2n+1,v,w,t) 
aM(y2n-1,y2n,v,w,t) + bM(y2n-1,y2n,v,w,t) + cM(y2n,y2n+1,v,w,t) + 
                       max{M(y2n,y2n,v,w,t),M(y2n+1,y2n-1,v,w,t)} 
																																						≤	q M (y2n,y2n+1,v,w,t) 
Implies   (a + b) M2n-1 + cM2n + 1 ≤	qM2n 
                  (q-c) M2n	≥	(a+b)M2n-1+1 
                    (q-c) M2n  > (a+b) M2n-1  

     i.e. M2n > pM2n-1 > M2n-1 , where p = 
(a�b)
	(q>c) >1.                                                    (3.2.1.1) 

Thus {M2n, n ≥ 0} is an increasing sequence of positive real numbers in [0, 1] and 
therefore tends to a limit L ≤ 1. 
We claim that L = 1, suppose if not i.e. L < 1. 
If L < 1, taking limit as n→ ∞  by equation (3.2.1.1), we get L < L, which is a 
contradiction. Therefore L = 1. 
Now consider, for any positive integer p, 

M(y2n,y2n+p,v,w,t)	≥ M(y2n,y2n+1,v,w, tp)	∗…∗M(y2n+p-1,y2n+p ,v,w, tp) 
Implying limn→∞M (y2n, y2n+p, v, w, t)	≥ 1 ∗ …∗ 1 = 1 
Thus {y2n} is a Cauchy sequence in X. Since X is complete, there is a point u∈ X such 
that y2n converges to u ∈ X and subsequently, the sequences {Ax2n} ,{Bx 2n+1},{Sx 2n+1} 
and {Tx2n+2} and its subsequences also converges to u ∈ X. 
Now we show that u is a common fixed point of A, B, S and T. 

Step 1. Since the pair (A, T) is reciprocal continuous, we get 
               limn→∞ TAxn→Tu, also limn→∞TTxn→Tu. 
And since (A, T) is semi compatible, we have  
              limn→∞ ATxn→Tu.  
Now we put x = Txn, y = xn in equation (3.2.3), we get 
aM(TTxn,Sxn,v,w,t) + bM(TTxn,ATxn,v,w,t) + cM(Sxn,Bxn,v,w,t) 
            + max{M(ATxn,Sxn,v,w,t),M(Bxn,TTxn,v,w,t)} ≤	qM(ATxn,Bxn,v,w,t) 
Taking limit as n→ ∞, we get 
aM(Tu,u,v,w,t) + bM(u,Tu,v,w,t) + cM(u,u,v,w,t) 
                     + max{M(Tu,u,v,w,t),M(u,Tu,v,w,t)} 	≤	qM(Tu,u,v,w,t) 
aM(Tu,u,v,w,t) + bM(u,Tu,v,w,t) + c + M(Tu,u,v,w,t) ≤	qM(Tu,u,v,w,t) 
                                   c	≤ (q− a− b− 1)M(Tu,u, v,w, t) 
i.e          M(Tu,u,v,w,t)	≥ (	 c

q>a>b>1
) > 1. 

This gives   Tu = u. 

Step 2. Put x = u and y = xn in equation (3.2.3), we get  
aM(Tu,Sxn,v,w,t) + bM(Tu,Au,v,w,t) + cM(Sxn,Bxn,v,w,t) 
                + max{M(Au,Sxn,v,w,t),M(Bxn,Tu,v,w,t)}	≤	qM(Au,Bxn,v,w,t) 
Taking limit as n→ ∞, we get 
aM(u,u,v,w,t) + bM(u,Au,v,w,t) + cM(u,u,v,w,t) 
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          + max{M(Au,u,v,w,t),M(u,u,v,w,t)}	≤ qM(Au,u,v,w,t) 
a + bM(u,Au,v,w,t) + c + max{M(Au,u,v,w,t),1} ≤ qM(Au,u,v,w,t) 
Implies   (a+c+1) ≤ (q− b)M(Au,u, v,w, t) 
i.e.            M(Au,u,v,w,t)	≥ (a�c�1

q>b
) > 1. 

This gives    Au = u. Hence Au = u = Tu. 

Step 3. Since the pair (B, S) is reciprocal continuous, we have 
 limn→∞ SBxn→ Su, also limn→∞SSxn→ Su. 
 And since (B, S) is semi compatible, we have  
             limn→∞BSxn→	Su. 
Let x = xn, y = Sxn in equation (3.2.3), we get 
aM(Txn,SSxn,v,w,t) + bM(Txn,Axn,v,w,t) + cM(SSxn,BSxn,v,w,t) 
                 + max{M(Axn,SSxn,v,w,t),M(BSxn,Txn,v,w,t)} 
																																																										≤ qM(Axn,BSxn,v,w,t) 
Taking limit as n→ ∞, we get 
aM(u,Su,v,w,t) + bM(u,u,v,w,t) + cM(Su,Su,v,w,t) 
                   + max{M(u,Su,v,w,t),M(Su,u,v,w,t)} 	≤	qM(u,Su,v,w,t) 
aM(u, Su, v, w, t) + b + c + M(u,Su,v,w,t)	≤	qM(u,Su,v,w,t) 
Implies     (b + c)	≤ (q− a− 1)M(u,Su, v,w, t) 
Implies M(u, Su, v, w, t) ≥ ( b�c

q>a>1
) > 1 

This gives Su = u. Hence Au = Su = u = Tu. 

Step 4. Put x = xn, y = u in equation (3.2.3), we get 
aM(Txn, Su, v, w, t) + bM(Txn, Axn, v, w, t) + cM(Su, Bu, v, w, t) 
               + max{M(Axn, Su, v, w, t),M(Bu, Txn, v, w, t)}	≤	qM(Axn, Bu, v, w, t) 
Taking limit as n→ ∞, we get 
a M(u, u, v, w, t) + b M(u, u, v, w, t) + c M(u, Bu, v, w, t) 
                  + max{M(u, u, v, w, t),M(Bu, u, v, w, t)}	≤	qM(u,Bu,v,w,t) 
a + b + c M (u, Bu, v, w, t) + 1 ≤	q M(u,Bu,v,w,t) 
Implies (a + b +1) ≤ (q− c)M(u,Bu, v,w, t) 
 i.e.                             M (u, Bu, v, w, t) ≥ (a�b�1

q>c
) > 1. 

This gives    Bu = u. 
Hence u = Au = Su = Bu = Tu is a common fixed point of A, B, S and T. 

Uniqueness. Let z	≠ u be another common fixed point of A, B, S and T, 
then Az = Bz = Sz = Tz = z. 
Put x = u and y = z in equation (3.2.3), we get 
aM(Tu,Sz,v,w,t) + bM(Tu,Au,v,w,t) + cM(Sz,Bz,v,w,t) 
                + max{M(Au,Sz,v,w,t),M(Bz,Tu,v,w,t)} ≤	qM(Au,Bz,v,w,t) 
aM(u,z,v,w,t) + bM(u,u,v,w,t) + cM(z,z,v,w,t) 
                            + max{M(u,z,v,w,t),M(z,u,v,w,t)} ≤	qM(u,z,v,w,t) 
aM(u,z,v,w,t) + b + c + M(u,z,v,w,t)	≤	qM(u,z,v,w,t) 
Implies     (b+c)	≤ (q− a− 1)M(u, z, v,w, t) 
 i.e.                             M(u,z,v,w,t)	≥ ( b�c

q>a>1
) > 1. 

This gives u = z.  
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      Hence, u is a unique common fixed point of A,B, S and T. This completes the proof 
of the theorem. 

4. Conclusion  
Using the notion of semi-compatible and reciprocal continuity of mappings, theorem 3.1 
and theorem  3.2  are generalization of some results of Chauhan et al. [1]  and Som [19] 
results of from fuzzy metric spaces to fuzzy 2, fuzzy 3- metric spaces.  
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