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1. Introduction  
In 1965, Zadeh introduced the concept of a fuzzy set and fuzzy relation to representing 
the phenomena of uncertainly in real world problem. In 1975, Rosenfeld [4] introduced 
the concept of fuzzy graph Nagoor Gani and Radha [3] introduced on Regular fuzzy 
graph. Alison Northup [1] studied some properties on (2, �) regular graph in her bachelor 
thesis. In [7], the authors introduced  �� of a vertex in product graphs and also they 
discussed on (2, �) regular and totally (2, �) regular fuzzy graphs in [6]. Seethalakshmi 
and Gnanajothi studied about perfect fuzzy matching [8]. In this paper, we introduce 
square fuzzy matching and square perfect fuzzy matching. We derive the necessary and 
sufficient condition for the fuzzy graph on a cycle or a complete graph to be square 
perfect fuzzy matching. Also, we discuss some properties of square perfect fuzzy 
matching with examples.   
 
 2. Preliminaries 
In this section, some basic definitions are given. 

Definition 2.1. [4] A fuzzy graph � is a pair of function �: (
, �) where 
 is a fuzzy 
subset of a non empty set � and  �  is a symmetric fuzzy relation on 
. The underlying 
crisp graph of �: (
, �)  denoted by �∗: (�, �) where �	 ⊆ �	 × �. A fuzzy graph �  is 
complete if �(�, �) = 	�(��) 	= 	
(�) 	∧ 	
(�)  for all �, � ∈ 	�  where ��  denotes the 
edge between �	and �. 
  
Definition 2.2. [3]  Let �: (
, �) be a fuzzy graph. The degree of a vertex	� is	�(�) =∑ �(�, �)��� . Since �(��) > 	0 for �� ∈ � and �(��) = 	0	for uv ∉ �, this is equivalent 
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to �(�) = ∑ �(�, �)��∈! . The minimum degree of �  is	"(�) =	∧ #�(�)/�	 ∈ �%.  The 
maximum degree of � is △ (�) =	∨ #�(�)/	�	 ∈ �%.    
 
Definition 2.3. [7] For a given graph �, the ��  degree of a vertex � in � ,denoted by ��(�) means number of vertices at a distance two away from	�. 
 
Definition 2.4. [6] Let �: (
, �) be a fuzzy graph. The	�� degree of a vertex	� is	��(�) =∑ ��(�, �)��� ,   where ��(�, �) = #�(�, �() ∧ �(�(, �) . Also �(��) = 	0	,	 for uv ∉ �. 
The minimum 	�� degree of �  is	"(�) =	∧ #	��(�)/	�	 ∈ �%. The maximum 	��  degree 
of � is △ (�) =	∨ #	��(�)/	�	 ∈ �%. 
 
Definition 2.5. [7]  A graph � is said to be (2, �	) regular, (��	- regular) if ��(�) = �, for 
all � in �. 
 
Definition 2.6. [3] Let �: (
, �)	be a fuzzy graph on	�∗: (�, �). If �)(�) = �	 for all � ∈ 	�, (i.e.,) if each vertex has same degree	�, then � is said to be a regular fuzzy graph 
of degree � or a	�	 regular fuzzy graph.  
 
Definition 2.7. [6]  Let �: (
, �	) be a fuzzy graph on �∗:	(	�	, �	).	 If 	��(�) = �	for all � ∈ �, then � is  said to be (	2, �	) regular fuzzy graph.  
 
3. Square perfect fuzzy matching 
Definition 3.1. Let  �:	(		
, �	)  be a fuzzy graph on �:	(	�, �	). A subset M of  E is called 
a square fuzzy matching if for each vertex  �, we have ∑ ��(�, �)	�∈*		 ≤ 
(�). 
 
Example 3.2. Let � ∶ 	 (
, �	)			be a fuzzy graph on the cycle �∗:	(	�	, �	) where �	 =	#	�(, ��, �-, �.	% and  �	 = 	 #	/(, /�, /-, /.	% with 	/( = �(��,			/� = ���-, /- = �-�., /. =�.�(. 
(�() = 0.7 , 
(��) = 0.5 ,
(�-) = 0.4,
(�.) = 0.7. �	(/() = 0.3, �	(/�) = 0.4 ,�	(/-) = 0.2,�	(/.) = 0.5 
 
     
    
  
 
    
 
                                                               Figure 1: 
 4 ��(�(, ��) =					�5∈*	(�6,�5)∈7

4 8�	(�(, �) ∧ �	(�, ��)9�5∈*		
= 0.3 ∧ 0.4 + 0.2 ∧ 0.5 

               = 0.3 + 0.2 = 0.5 ≤ 
(�() 4 ��(�;∈*		(�5,�;)∈7	
��, �-) = 			0.4 ∧ 0.2 + 0.3 ∧ 0.5	 = 	0.2	 + 0.3	 = 0.5 = 
(��) 

�((0.7) ��(0.5) 

�-(0.4) �.(0.7) 

0.3 

0.4 

0.2 

0.5 
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4 ��(�<∈*		(�;,�<)∈7	
�-, �.) = 		0.2 ∧ 0.5 + 0.3 ∧ 0.4	 = 	0.2	 + 0.3	 = 0.5 ≰ 
(�-) 

4 ��(		�6∈*		(�<,�6)∈7	
�., �() = 		0.5 ∧ 0.3 + 0.2 ∧ 0.4	 = 	0.3	 + 0.2	 = 0.5 ≤ 
(�.) 

Thus  > = #	/(, /�, /.	% is a square fuzzy matching in �. 
 

Definition 3.3.  A square fuzzy matching M is called a square perfect fuzzy matching if ∑ ��(�, �)	�∈*		 = 
(�). 
 
Definition 3.4. Let �:	(
, �	)  be a fuzzy graph and M be a square fuzzy matching. Then 
square fuzzy matching number ?(�) is defined to be ?(�) = ∑ ��(�, �)�∈7		(�,�)∈7 . 

Example 3.5. In example 3.2,		?(�) = 1.5.   
 
Theorem 3.6. Let �: (
, �	)	 be a fuzzy graph on the cycle �∗:	(	�	, �	). Then 
(�) = �	is 

a constant function for all	� ∈ �  and �(�, �) = A�  for all (�, �) ∈ � if and only if the 

following statement are equivalent 
 (i) E is a square perfect fuzzy matching  

 (ii) (2, �) regular fuzzy graph. 
 Proof:  Suppose that 
  is a constant function. Let 
(�) = �	is a constant, for all � ∈ �  

and �(�, �) = A�  for all (�, �) ∈ �. Assume that G is a (2, �) regular fuzzy graph on the 

cycle �∗:	(	�	, �). Then  ��(�) = 	�. By definition of ��- degree of a vertex in fuzzy 
graph ie., 	∑ ��(�, �) = ��(�) ⇒ ∑��(�, �) = � for all � ∈ � . Since � is a (2, �) regular fuzzy graph. ⇒ ∑��(�, �) = 
(�) for all � ∈ � .   
Each vertex of � is satisfies the square perfect fuzzy matching in �. 
Thus (ii) ⇒(i) 
Now, suppose that E is a square perfect fuzzy matching on �.Since � is a fuzzy graph on 
the cycle and only two edges are incident with each vertex for cycles, for any vertex � ∈ �. ⇒ ∑ ��(�, �)	�∈*		(�,�)∈7 		where �,C ∈ � = 
(�).   

⇒  ∑ ��(�, �) = 	�	�∈*	(�,�)∈7 for all � ∈ �. 

⇒ ��(�) = ∑ ��(�, �) = 	�	�∈*		(�,�)∈7  for all � ∈ �. 

Hence � is a (2, �)	regular fuzzy graph on cycle. Thus (i)⇒ (ii). Therefore, (i) ⇔	(ii) 
The converse parts holds trivially. 
 
Example 3.7. Let	�: (
, �	)  be a fuzzy graph on the cycle �∗:	(	�	, �	)	  where V = #	�(, ��, �-, �. } and  E = #	/(, /�, /-, /. } with 	/( = �(��,			/� = ���-, /- = �-�., /. =�.�(. 
(�() = 0.8 , 
(��) = 0.8 ,
(�-) = 0.8,
(�.) = 0.8 �	(/() = 0.4 , �	(/�) = 0.4 ,�	(/-) = 0.4 ,�	(/.) = 0.4. 
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Figure 2: 4 ��(�(, ��) =				�5∈*		(�6,�5)∈7
4 (�	(�(, �) ∧ �	(�, ��))�5∈*		

 

              				= 	0.4	 ∧ 0.4 + 0.4	 ∧ 0.4	 = 0.4		 + 0.4		 = 0.8 = 
(�()	4 ��(�;∈*		(�5,�;)∈7	
��, �-) 						= 	0.4	 ∧ 0.4 + 0.4	 ∧ 0.4	 = 0.4		 + 0.4		 = 0.8 = 
(��) 

4 ��(�<∈*		(�;,�<)∈7	
�-, �.) 							= 	0.4	 ∧ 0.4 + 0.4	 ∧ 0.4	 = 0.4		 + 0.4		 = 0.8 = 
(�-) 

4 ��(�6∈*		(�<,�6)∈7	
�., �() 								= 	0.4	 ∧ 0.4 + 0.4	 ∧ 0.4	 = 0.4		 + 0.4		 = 0.8 = 
(�.) 

           Hence � is a square perfect fuzzy matching and also (2, �) regular fuzzy graph. 

Example 3.8. In example 3.7,	?(�) = 3.2.   

Theorem 3.9.  Let G : (
, �	) be a (2, �) regular fuzzy graph on the cycle  �∗:	(	�	, �	). If 
(�) = �	which is a constant function for all	� ∈ � and  �(�, �) = F where F ≤ � and F ≠ A� for all (�, �) ∈ �. Then E is not a square perfect fuzzy matching on �.  

Proof: Suppose that G is a fuzzy graph on the cycle and only two edges are incident with 
each vertex for cycles, for any vertex � ∈ �  . 
     ⇒     ∑ ��(�, �)	�∈*		(�,�)∈7 		where �,C ∈ � = ��(�, �) + ��(�, C) 
                            = �	(�	, �() ∧ �	(�(, �) + 	�	(�, �H) ∧ �	(�H, C) 																															= 	F ∧ F + 	F ∧ F			 = 	F + F	 = 	2F	 ≤ 	�		

              = F	 ≤ A� , but F ≠ A� 
                           = F	 < 	�/2 . 
Similarly F > �/2 
    ⇒ 	∑ ��(�, �) 	≠ �	�∈*		(�,�)∈7  for all � ∈ � 

				⇒ 	∑ ��(�, �) 	≠�∈*		(�,�)∈7 
(�) for all � ∈ �  . 

Hence, E is not a square perfect fuzzy matching on �. 

Remark 3.10. The condition �	(�, �) = �/2 is essential in theorem 3.6.This is illustrate 
with the following example. 

�((0.8) ��(0.8) 
�-(0.8) �.(0.8) 

0.4 

0.4 

0.4 

0.4 
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Example 3.11. Let �: (
, �	) be a fuzzy graph on the cycle 	�∗:	( V , E ) where V = #	�(, ��, �-, �. } and  E = #	/(, /�, /-, /. } with 	/( = �(��,			/� = ���-, /- = �-�., /. =�.�(. 
(�() = 0.8  , 
(��) = 0.8  , 
(�-) = 0.8 , 
(�.) = 0.8  ; �	(/() = 0.5  , �	(/�) = 0.5 
,�	(/-) = 0.5, �	(/.) = 0.5  
 
 
 
 
 
 
 
 
 

Figure 3: 4 ��(�(, ��) =					�5∈*		(�6,�5)∈7
4 (�	(�(, �) ∧ �	(�, ��))�5∈*		

	= 0.5 ∧ 0.5 + 0.5 ∧ 0.5	
= 	0.5	 + 0.5	 = 1 ≠ 
(�() 4 ��(�;∈*		(�5,�;)∈7	

��, �-) 				= 0.5 ∧ 0.5 + 0.5 ∧ 0.5	 = 	0.5	 + 0.5	 = 1 ≠ 
(��) 
4 ��(�<∈*		(�;,�<)∈7	

�-, �.) 				= 0.5 ∧ 0.5 + 0.5 ∧ 0.5	 = 	0.5	 + 0.5	 = 1 ≠ 
(�-) 
4 ��(�6∈*		(�<,�6)∈7	

�., �() 				= 	0.5 ∧ 0.5 + 0.5 ∧ 0.5	 = 	0.5	 + 0.5	 = 1 ≠ 
(�.) 
 Hence � is not a square perfect fuzzy matching. 

Theorem 3.12.  Let �: (
, �	)	  be a square perfect fuzzy matching on the cycle  

�∗:	(	�	, �	)  of length ≥ 5.  If  
(�K) = L -A. 				 , M = 1,2, N − 1, N	�							, M = 3,4	,… , N − 2	Q  for all � ∈ �  and 

�	(/K) = RA� 				, M = 1,2, … , N − 1	A. 			,									M = N															Q 
for all (�, �) ∈ �. Then � is not a (2, �) regular fuzzy graph. 
Proof:  Let G : (
, �	)  be a square perfect fuzzy matching on the cycle on �∗:	(	�	, �	) is 
any cycle of length ≥ 5. Let /(, /�, … , 	/H be edges of a cycle of �∗in that order. ��(�) = 4 ��(�, �)�∈*		(�,�)∈7

 

��(�() = 	�	(/() ∧ �	(/�) + 	�	(	/H) ∧ �	(/HS() = 	 A� ∧ A� +	A. ∧ A� =	 -A. = 
(�()	           ��(��) = 	�	(/() ∧ �	(/H) + 	�	(	/�) ∧ �	(/-) = 	 A� ∧ A. +	A� ∧ A� =	 A. +	A� =	 -A. = 
(��).        

�((0.8) 
��(0.8) 

�-(0.8

�.(0.8) 0.5 
0.5 

0.5 

0.5 
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For M	 = 3,4, … , N − 2 

 ��(�K) = 	�	(/KS() ∧ �	(/KS�) + 	�	(	/K) ∧ �	(/KT() = 	 A� ∧ A� +	A� ∧ A� = 	�	 = 
(�K)	      	��(�HS() = 	�	(/HS�) ∧ �	(/HS-) + 	�	(	/HS() ∧ �	(/H) = 	A� ∧ A� +	A� ∧ A. =	 -A. =
(�HS()	          	��(�H) = 	�	(/() ∧ �	(/H) + 	�	(	/HS() ∧ �	(/HS�) = 	 A� ∧ A. +	A� ∧ A� =	 -A. = 
(�H).           
Hence � is not a (2, �) regular fuzzy graph. 

Example 3.13.  Let � ∶ 	 (
, �	) be a fuzzy graph on the cycle  �∗ : ( V , E ) where V = #	�(, ��, �-, �.,  �U } and  E = #	/(, /�, /-, /.  , 	/U } with 	/( = �(��,			/� = ���-, /- =�-�., /. = �.�U	, /U = �U�( . 
(�() = 0.6 , 
(��) = 0.6 ,
(�-) = 0.8,
(�.) = 0.6,	
(�U) = 0.6. �	(/() = 0.4 , �	(/�) = 0.4 ,�	(/-) = 0.4  ,�	(/.) = 0.4 ,	�	(/U) = 0.2. 4 ��(�(, ��) =		�5∈*		(�6,�5)∈7
4 (�	(�(, �) ∧ �	(�, ��))�5∈*		

= 0.4 ∧ 0.4 + 0.2 ∧ 0.40.6 = 
(�() 
 
 
 
 
 
 
 
 
 
 
                                                     Figure 4: 4 ��(�;∈*		(�5,�;)∈7	

��, �-) = 		0.4 ∧ 0.4 + 0.4 ∧ 0.2	 = 	0.4	 + 0.2	 = 0.6 = 
(��) 
4 ��(�<∈*		(�;,�<)∈7	

�-, �.) = 			0.4 ∧ 0.4 + 0.4 ∧ 0.4	 = 	0.4	 + 0.4	 = 0.8 = 
(�-) 
4 ��(�W∈*		(�<,�W)∈7	

�., �U) = 				0.4 ∧ 0.2 + 0.4 ∧ 0.4	 = 	0.2	 + 0.4	 = 0.6 = 
(�.) 
4 ��(�6∈*		(�W,�6)∈7	

�U, �() = 			0.2 ∧ 0.4 + 0.4 ∧ 0.4	 = 	0.2	 + 0.4	 = 0.6 = 
(�U) 
  Hence � is not a (2, �) regular fuzzy graph. 

Theorem 3.14. Let G : (
, �	) be a fuzzy graph on complete graph XH on �:	(	�	, �	).If 
(�) = �	  which is a constant function for all	� ∈ �  and �(�, �) = Y	AH	Z = �(  for all (�, �) ∈ �  on the cycle [H and  �(�, �) = 	 AS�A6H(HS-)  for all interior  edges (�, �) ∈ �. Then 

E is a square perfect fuzzy matching on �. 

�((0.6) 
��(0.6) 

�-(0.8) �.(0.6) 

�U(0.6) 0.4 

0.4 
0.4 

0.4 

0.2 
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Proof: Let G : (
, �	) be any  fuzzy graph on complete graph XH, two edges are incident  
with each vertex of the cycle and remaining (n-3) edges are incident with interior 
vertices. The two distance of n(n-3) edges are some edge one is interior and another one 
is cycle (or) some two edges are interior.   
Hence      ∑ ��(�, �) =�∈*		(�,�)∈7 ∑ (�	(�, C) ∧ �	(C, �))�∈*		(�,�)∈7	  

            = 2[�	(�, C) ∧ �	(C, �)] + (N − 3)N[�	(�, C) ∧ �	(C, �)] 
                               		= 	2(�( ∧ �() + 	N(N − 3)	^ AS�A6H(HS-) ∧ 	�(_ 
          = 	2	�( + 	N(N − 3) ^ AS�A6H(HS-)_ = 2�( + 	� − 2�( = � = 	
(�). 
Hence E is a square perfect fuzzy matching on G. 

Remark 3.15. The condition �	(�, �) = AS�A6H(HS-)  is essential in theorem 3.14. This is 

illustrate with the following example.  

Example 3.16.  Let G : (
, �	)  be a  fuzzy graph on complete  graph  XH where V = #	�(, ��, �-, �.,	�U} and E = #	/(, /�, /-, /., /U, /`, /a, /b, /c, /(d} with 	/( = �(��,			/� =���-, /- = �-�., /. = �.�U	, /U = �U�(, /` = �(�-	, /a = �(�., /b = ���., /c =���U	, /(d = �-�U. 
(�() = 1 , 
(��) = 1 ,
(�-) = 1,
(�.) = 1, 
(�U) = 1. �	(/() = 0.2, �	(/�) = 0.2, �	(/-) = 0.2, �	(/.) = 0.2, �	(/U) = 0.2, �	(/`) = 0.1,�	(/a) = 0.1,	�	(/b) = 0.1, �	(/c) = 0.1, �	(/(d) = 0.1. 
  
 
 
 
 
 
 
  
 
 
 
 

                        Figure 5: 4 ��(�(, ��) =		�5∈*(�6,�5)∈7
4 8�	(�(, �) ∧ �	(�, ��)9	�5∈*		

= 0.4 + 1 = 1.4 ≠ 
(�() 
4 ��(�;∈*		(�6,�;)∈7	

�(, �-) = 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�() 
4 ��(�<∈*		(�6,�<)∈7	

�(, �.) 					= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�() 
4 ��(�W∈*		(�6,�W)∈7	

�(, �U) 					= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�() 

0.25  

0.1 

0.1 

0.1 

0.1 

0.1 

�((1) ��(1) 

�-(1) 

�U(1) �.(1) 

0.2 

0.2 

0.2 

0.2 

0.2 
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4 ��(�;∈*		(�5,�;)∈7	
��, �-) 				= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(��) 

4 ��(�<∈*		(�5,�<)∈7	
��, �.) 			= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(��) 

4 ��(�W∈*		(�5,�W)∈7	
��, �U) 					= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(��) 

4 ��(�<∈*		(�;,�<)∈7	
�-, �.) 				= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�-) 

4 ��(�W∈*		(�;,�W)∈7	
�(, �.) 					= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�-) 

4 ��(�W∈*		(�<,�W)∈7	
�., �U) 					= 	2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�.) 

4 ��(�6∈*		(�W,�6)∈7	
�U, �() 	= 2(0.2 ∧ 0.2) + 5(5 − 3)[0.1] 	= 0.4 + 1 = 1.4 ≠ 
(�U) 

                	  Hence fuzzy graph on complete graph 	XH  is not a square perfect fuzzy 
matching in	�. 
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