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1. Introduction

The concept of fuzzy set was initiated by Zadehl@®5 [15]. Fuzzy algebra is an
important branch of fuzzy mathematics from the ptian of fuzzy concepts. In this path,
Iseki and Tanaka [1] introduced the concept of B&lfebras in 1978. Isel2]
introduced the concept of BCl-algebras in 1980islknown that the class of BCK-
algebras is a proper subclass of the class of Rfebeas. Selvam and Nagalakshmi [4]
introduced the class of PMS-algebras, which isreegdization of BCl/ BCK/TM/KUS -
algebras. In this paper, we introduce the concdéphamomorphism and Cartesian
product of fuzzy PMS-algebras and established safrite properties in detail.

2. Preliminaries
In this section, we give the fundamental definisidhat will be used in the development
of this paper.
Definition 2.1. [2] A BCK-algebra is an algebra (X,*,0) of type(2,0)tisfying the
following conditions:

) (x*y)*(x*2z)<(z*y)

i) x*(x*y)<y

i) x<x

iv) Xx<yandy< X = x=y

v) 0<x= x=0,
where x< y is defined by x *y = 0 ,for all x, y, @ X.
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Definition 2.2.[3] A BCl-algebra is an algebra (X,*,0) of type (2,(atisfying the
following conditions:

) (x*y)*(x*2z) < (z*Y)

i) x*(x*y) sy

i) x<x

V) X<y andy<x=> x =y

V) X<0=x=0,
where x< y is defined by x *y = 0, for all X, y, @ X.

Definition 2.3.[4, 5] A nonempty set X with a constant O and a binaryapen ‘-’ is
called PMS — algebra if it satisfies the followiagjoms.

1. O0*x =X

2. (y*x)*(z*x)=z*y,0 x,y, zOX.
In X, we define a binary relatianby x< y if and only if x *y = 0.

Definition 2.4. [4, 5]Let X be a PMS - algebra and | be a subset of &} this called a
PMS - ideal of X if it satisfies following conditirs:

1. 000 |

2. z-yOlandz*xO 1= y*xOlforall x,y, zO X.

Definition 2.5.[5, 6]Let X be a PMS-algebra. A fuzzy getn X is called a fuzzy PMS-
ideal of X if it satisfies the following conditions

) 1(0) = u(x)

i) Ly *x)=>min {u(z*y), Wz * x)}, for all x, y,z0O X.

Definition 2.6.]5,6] A fuzzy setu in a PMS-algebra X is called a fuzzy PMS- sub ladge
of X if u(x *y) = min {u(x), u(y)}, for all x, yad X.

3. Homomorphism on PMS -Algebra
In this section, we discussed about PMS-idealsMi$Rlgebras under homomorphism
and some of its properties dretail.

Definition 3.1.[5,10]Let (X,*,0) and (YA,0') be PMS- algebras. A mapping f:-XY is
said to be a homomorphism if f(x*y) = f( f(y) for all x,y O X.

Remark: If f: X - Y is a homomorphism of PMS-algebra, then f (0) =0

Definition 3.2.[11, 14]Let f: X - X be an endomorphism and u be a fuzzy set in X. We
define a new fuzzy sef in X asp'(x) = p(f(x)) for all xJ X.

Definition 3.3. [11,14]For any homomorphism f. X Y, the set {xO X / f(x) = 0} is
called the kernel of f, denoted by Ker(f) and tee{sf(x) / x(OX} is called the image of f,
denoted by Im(f).

Theorem 3.4.Let f be an endomorphism of PMS- algebra X. If ja fsizzy PMS-ideal of
X, then so is L.
Proof: Let u be a fuzzy PMS-ideal of X.
Now,  W'(0) =u[f(0)]
2 [f(x) ]
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A ()
= H(0)= W' (%)
Let x,y,zO X. Then
Wy * %) = 1If(y)]
> min {u(f(z) * f(y)), K(f(z) * 1(x))}
=min{u (f(z*y)), u(f(z %))}
= ming (2 *y), H(z * x)}
O pi(y>) = min {'(z*y), W(z *x)}
Hencep'is a fuzzy PMS-ideal of X.

Theorem 3.5.Let f: X — Y be an epimorphism of PMS- algebraplfis a fuzzy PMS-
ideal of X, then u is a fuzzy PMS-ideal of Y.
Proof: Let u' be a fuzzy PMS-ideal of X and lgt] Y. Then there exists X X such that
fx) =y.
Now, H (0)=p (f(0))
3(0)
> H(x) = | (f9) = 1 (Y)
O u©0)=nu(y)
Letyy, v2,y5 OY.
H(Y24Yy1)= 1 (F (x2) A f(x1))
F (F (x2* x1))
= P(X2+ Xq)
>min {p' (xs* X2), W' (Xa*X1)}
=min {1 [f (xs* X2)], W [f(x3*x1)]}
= miny [f(x3) A f(x2)], W [f(x3) A f(x,)]}
= min{[ys A y2], 1 [ysA yi]}
O (A1) >min {u(ys A yo), H(BA Y1)}
= W is afuzzy PMS-ideal of Y.

Theorem 3.6.Let f: X — Y be a homomorphism of PMS- algebra. If u is &juBMS-
ideal of Y thery' is a fuzzy PMS-ideal of X.
Proof: Let u be a fuzzy PMS-ideal of Y and let x, y12X.
Then  1'(0) = (f(0))
> uf(f(X))
f H )
= H(0)=H(x).
Wy *x) = [f(y*x)]
= u[f(y)A f(x)]
>min {u (f(z) A f(y)), 1 (f (2)A f(x))}
=min{u (f(z*y)), u (fF(z*x)}
=min ' (z*y), 1 (z * X}
Ou(y*x)= min{p (z*y), 1 (z*x)}
Hencey' is a fuzzy PMS-ideal of X.

Theorem 3.7.If p is a fuzzy PMS- sub algebra of X, thghis also a fuzzy PMS-sub
algebra of X.

Proof: Let u be a fuzzy PMS- sub algebra of X.

Let x,yd X.
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Now, ' (x *y) = [f (x *y)]
=p (f(x) Af(y)
> min {u (f (x)) , u(f(y)) }
= ming{ (x), 1 ()}
= W (x*y) 2min{y (x), 4 ()}
Henceuf is a fuzzy PMS-sub algebra of X.

Theorem 3.8.Let f: X—Y be a homomorphism of a PMS-algebra X into a PNigtzra
Y, then the pre- image ¢f denoted by
f (W) is defined as {f (W}X) = u(f(x)) .0 xO X. If p is a fuzzy PMS- sub algebra of Y,
then f(p) is a fuzzy PMS- sub algebra of X.
Proof: Let u be a fuzzy PMS- sub algebra of Y. Let X[].
Now, { % (W) }x*y) = pu[f(x*y)]

=u[f(x)Af(y)]

=min { p [f (], W [f(y)] }

= min {0}, {f (I}

= {7} (¢*y) = min {{f (1)} ), {f (WY}
O () is a fuzzy PMS-sub algebra of X.

4. Cartesian product of fuzzy PMS-ideals of PMS—akhras
In this section, we discuss the Cartesian prodli@iS-algebras and establish some of
its properties in detail on the basis of fuzzy PM&al and fuzzy PMS- sub algebra.

Definition 4.1.[5, 11]Let yu and be the fuzzy sets in X. The Cartesian productdux X
x X - [0,1] is defined by (1 ®)(x, y) = min {u(x),0(y)}, for all x, y O X.

Definition 4.2[3] Let B be a fuzzy subset of X. The strongest fugzyrelation on PMS-
algebra X is the fuzzy subses of X x X given bypg (x, y) = min {3(x), B(y)}, for all x,
y O X.

Theorem 4.3.If u andd are fuzzy PMS-ideals in a PMS- algebra X, thendlis<a fuzzy
PMS-ideal in X x X.
Proof: Let (X, X2) O X x X.
(1 0) (0,0) = min { u (0)5 (0) }
>min {1 (%), (%)}
= (&) (X1 X2)
Let (X1, X2), (Y1,¥2), (z1,22) O X x X.
(X 8) [(Yr.Y2) * (X1, %2)] = (U X 8) [ y1* X1,¥2* X
= ming{(y1* X1) 8(y2* X2)}
> min {min {u(z:* y1), K(z2* x1)} min {3(z* y2), &( * x2)}}
= min {mimz;*y1), 8(zz*y o)} min{ u(z1*x1) 8(z2* X2)}}
=minkk 0) ((z* y1),(z* ¥2)),(L X 0) ((z* X1),( 2 * X2) )}
=minkk 0) ((z1,22) * (Y1.Y2), M X 9) ((z1, 22) * (X1,%2))}
O (1 x8) [(Y1,Y2) *(X1, %2)] = min {(L x 8) [(z1,Z2) * (Y1,Y2)], (M X B) [(z1, Z2) * (X1, %)}
Hence, 4 x 8 is a fuzzy PMS- ideal in X x X.

Theorem 4.4.Let nandd be fuzzy sets in a PMS-algebra X such thatd is a fuzzy
PMS-ideal of X x X. Then
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(i) Eitherp(0) > u(x) (or) &0) > d(x) for all x O X.
(i) If p(0)> u(x) for all xd X, then eithed(0) > u(x) (or) 3(0) > d(x)
(iii) If 3(0) > &(x) for all xO X, then eithep(0) > p(x) (or) u(0) > &(x).
Proof: Letu x 6 be a fuzzy PMS-ideal of X x X.
()Suppose thau(0) <pu(x) andd(0) <d(x) for some x, y1 X.
Then (1 x9) (x.y) =min{p(x) , 3(y) }
> min {(0),5 (0) }
=Ux9) (0, 0),
which is a contradiction. Therefong0) > p(x) (or) 8(0) > d(x) for all xT X.
(i) Assume that there exists x[yX such tha®(0) <u(x) andd(0) < d(x).
Then (1 x ) (0,0) = min {u(0), 8(0) } = 6(0) and hence(x 8) (X, y) = min {u(x),o(y)}
> 3(0) = (ux d) (0,0) Which is a contradictiotdence, ifu(0) > u(x) for all x O X, then
eitherd (0) > p(x) (or) 8(0) > d(x).
Similarly, we can prove that &20) > 8(x) for all xd X, then eithep(0) > p(x) (or) u(0) >
0(x), which yields (iii).

Theorem 4.5.Let pandd be fuzzy sets in a PMS-algebra X such thatd is a fuzzy
PMS-ideal of X x X. Then eithar or  is a fuzzy PMS-ideal of X.
Proof: First we prove thad is a fuzzy PMS-ideal of X.
Since by 4.4 (i) eithgn(0) > p(x) (or) 8(0) > &(x) for all xIIX .
Assume thad(0) > o(x) for all X0 X.
It follows from 4.4 (iii) that eithep(0) > u(x) (or) pu(0) > &(x).
If u(0) > d(x), for any xJ X, thend(x) = min {u(0), &(x)} = (K x ) (0, x)
Now, d(y*x)=mx9)(0,y*x)
> min {(1 x9) [(0,2) * (0.y)], (1 x9) [(0,2) * (0, )T}
= miu{x 9) [(0*0),(z*y)], (1 x ) [(0*0),(z*X)]}
= min {(4 x 3) [0,(z*y)], (1 x 0) [0, z*X]}
=min{d(z*vy),d (z*x)}
=oy*x)=2min{d(z*y), 6(z*x) }.
Henced is a fuzzy PMS-ideal of X.
Next we will prove thapt is a fuzzy PMS-ideal of X. Lat (0)> u (X)
Since by theorem 4.4 (ii), eith&¢0) > u(x) (or) 8(0) > d(x).Assume thad(0) > u(x), then
H(x) = min {u(x) , 3(0)} = (K x 3) (x,0).
Now, p(y *x) = (1 x9) (y*x,0)
> min {(1 x9) [(z,0) * (y,0)], (1 x9) [(z,0) * (x,0)]}
= min {(1 x 9) [(z*y),(0*0)], (K x 3) [(z*X),(0*0)]}
=min {(ux0)[z*Yy, 0], uxd) [z*x,0]}
=min{p(z*y), n(z*x)}
=u(y*x)zmin{p(z*y)u(z*x}
Hencey is a fuzzy PMS-ideal of X.

Theorem 4.6.If u andd are fuzzy PMS-sub algebras of a PMS-algebra X the o is
also a fuzzy PMS-sub algebra of X x X.
Proof: For any x x>, y1, ¥> I X.
(L X Q) ((X1,Y1) * (X2,Y2))= (L X ) (X* X2 , Y1 *Y2)
= min { (X1 * X2),8(y1* y2) }
= min {min {u (x1), 4 Ce)l,min{3(y1) , &( Y2)}}
= min {min {u(x1),6(y1)}, min {p(x2) , 3(y2)} }
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=min {(Lxd) (X.Y1) , UXd) (X2, V)}
= (U X O)((X1y1) * (X2,¥2)) = min {(H x 3) (X, Y1), (L X B) (X2, ¥2) }
This completes the proof.

Theorem 4.7.Let yg be the strongest fuzf3relation on PMS-algebra X, whefeis a

fuzzy set of a PMS - algebra X.f3fis a fuzzy PMS-ideal of X, thew; is a fuzzy PMS-
ideal of X x X.

Proof: Let 3 be a fuzzy PMS-ideal of a PMS-algebra X.
Let (X, X2), (Y, Y2), (z, z2) O X x X.

Then g (0, 0) = min § (0), B (0)}
>min { B (x1), B(X2) }
Hp (X1, X2)

= Hp (0, 0)= kg (X1, X2)
And g [(y1,Y2) * (X1, %)]

= Hp [y1* X1,¥2* X
= min B(y1* X1), B(y2* X2)}

> min {min {B(z1* y1), B(z:* x1)} min {B(z2* y2), B(z2* X2)}}
=min {min B (z.* y1), B (z2* y2)}, min {B(z:* x1), B(z2* X2)}}
=min {ig [(z:* y1), (Z* Y2)], Mg [(z:* X1), (z2* x2)]}
= min {15 [(z1, 22) * (y1,Y2)l, Kg [(z1, 22) * (X2, X2)T}

O Mg [(Y1,Y2) * (X1, %2)] = min {Wg [(z1, 22) * (y1,Y2)], B [(21, 22) * (X1, %2)]}
Therefore g is a fuzzy PMS-ideal of X x X.

Theorem 4.8.1f g is a fuzzy PMS-ideal of X x X, ther is a fuzzy PMS-ideal of a
PMS-algebra X.

Proof: Let pg is a fuzzy PMS-ideal of X x X.
Then for all (X X2), (Y1, V), (z2, Z2) O X x X.
min $(0), B(0)} = pg (0,0)= Hg (X1, X2) = min {B (), B(x2)}

= min {B(0), B(0)} = min {B(x1), B(x2)} = B(0) = B(x1) or B(0) = B(x2)
Also, min B (y1* X1), B (Y2* X2)}

=g [y1* X1,Y2* X2]

=Hp [(Y1,Y2) * (X1, X2)]

>min {Ug [(Z1, Z2) * (Y1.Y2)], M [(Z1, Z2) * (X1,X2)]}

=min {4 [(z:* Y1), (Z2* y2)], Wp [(z2* 1), (22 * x2)T}

=min {min B (z.* y1), B (z2* y2)}, min {B(z:* x1), B(z2* X2)}}

= min {min $(z:* y1), B(ze* X1)}, min {B(z2* y2), B(z2* X2)}}
Putx=y.=2=0,We getf (y:* x1) > min {B(z.* y1) B(z2* X1)}
Hencef is a fuzzy PMS-ideal of a PMS-algebra X.

Theorem 4.9.1f B is a fuzzy PMS-sub algebra of a PMS-algebra Xn {lge is a fuzzy
PMS-sub algebra of X x X.

Proof: Let 3 be a fuzzy PMS-sub algebra of a PMS-algebra X.

Let X3 Xo, V1, Y2 O X.

Then M (X1, Y1) * (X2, ¥2)) = Mg (Xa* X2, Y1* Y2)
=min B (X2* X2), B(y1 * y2)}
>min { min { B (1), B (x2) }, min { B(y1) , B(y2) } }
= min {min {B(x1) , B(y2) }, min { B(x2) , B(y2) } }
=min {ug (X1,y1), Mg (X2, ¥2)}
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= Hp ((X,Y1) * (X2, ¥2)) 2 min { pg (X1, Y1), Hp (X2, ¥2) }-
Thereforey; is a fuzzy PMS-sub algebra of X x X.

Theorem 4.10.If pgis a fuzzy PMS-sub algebra of X x X, thpris a fuzzy PMS- sub
algebra of a PMS - algebra X.
Proof: Let x, yO X.
Now, B (x*y)=min {B(x*y),B(x*y)}
= Hp((x*y) * (x*y))
=min{pg (X*y),Hs (X*y)}
= min {min B(x), B(y)}, min {B(x), B(y)}}
= minf{(x), B(y)}
=B (x*y)=min{B(x),B(Y) }
O B is a fuzzy PMS - sub algebra of a PMS - algebra X.

5. Conclusion

In this article, we have been discussed homomanmplaisd Cartesian product on PMS-
algebras. It adds another dimension to the defiRbtS-algebras. This concept can
further be generalized to Intuitionistic fuzzy daterval valued fuzzy sets for new results
in our future work.
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