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Abstract. A total edge dominating s&t of the edge sefE of G = (V, E) is said to be a
secure total edge dominating setoif for everyell E — F, there exists an edd§i@F such
that e andf are adjacent and-(— {f}) O {€} is a total edge dominating set & The
secure total edge domination numiglG) of G is the minimum cardinality of a secure
total edge dominating set &. LetF be a minimum secure total edge dominating set of
G. If E — F contains a secure total edge dominatingFseatf G, thenF' is called an
inverse secure total edge dominating set with i@sjoe=. The inverse secure total edge
domination numbeysc(G) of G is the minimum cardinality of an inverse securaltot
edge dominating set @. In this paper, we initiate a study of these patanse Also we
introduce some secure and inverse secure fuzzyrddiom parameters.
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1. Introduction
By a graph, we mean a finite, undirected withoapky multiple edges, isolated vertices
and isolated edges. For definitions and notatithresyeader may refer to [1]. L& = (V,
E) be a graph withM | = p vertices andg| = q edges.

A setF of edges in a grapB is an edge dominating set if every edge E — F
is adjacent to at least one edgeFinThe edge domination numbg(G) of G is the
minimum cardinality of an edge dominating set &f Recently several domination
parameters are given in the books by Kulli in [2]3A secure edge dominating set®f
is an edge dominating seflE with the property that for eadllE — F, there exists(IF
adjacent toe such that £ — {f}) 0{€} is an edge dominating set. The secure edge
domination numbeys(G) of G is the minimum cardinality of a secure edge donigat
set of G. The concept of secure edge domination was intredibby Kulli in [5]. Recently
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many other domination parameters were studiedefample, in [6, 7, 8, 9, 10, 11, 12,
13, 14, 15].

A setF of edges inG is a total edge dominating set @if every edge inG is
adjacent to at least one edgeFinThe total edge domination numbgfG) of G is the
minimum cardinality of a total edge dominating e&G. This was introduced by Kulli
and Patwari in [16] and was studied, for examplg1v].

Let F be a minimum edge dominating set @f If E — F contains an edge
dominating seF', thenF' is called an inverse edge dominating sebafith respect td-.
The inverse edge domination numhgr(G) of G is the minimum cardinality of an
inverse edge dominating set @f This concept was introduced by Kulli and Soner in
[18]. Many other inverse domination parameters veéueied for example, in [19, 20, 21,
22].

In this paper, we introduce some secure domingti@rameters in domination
theory and in fuzzy domination theory.

2. Securetotal edge domination
We introduce the concept of secure total edge datioimin graphs.

Definition 1. A total edge dominating s€tof the edge set of a graggh= (V, E) is said
to be a secure total edge dominating seb dfffor everye [0 E — F, there exists an edge
f O F such thate andf are adjacent and- (- {f}) O{€} is a total edge dominating set of
G. The secure total edge domination numpgiG) of G is the minimum cardinality of a
secure total edge dominating setf

Let yswSet be a minimum secure total edge dominatingdete thaty,G) is
defined only ifG has no isolated vertices and isolated edges.

Proposition 2. Let G be a graph without isolated vertices and isolatigkes. Then
Yie(G) < Ysid G) 1)
and this bound is sharp.
Proof: Clearly every secure total edge dominating set@dad edge dominating set. Thus
(1) holds.
The graptK; 4 achieves this bound.

Proposition 3. If F is a secure total edge dominating set of a gf@apthenF is a secure
edge dominating set @.

Proof: SupposerF is a secure total edge dominating setGofThenF is a total edge
dominating set of5. ThereforeF is an edge dominating set Gf Let e[JJE — F. Then
there existd§JF such thae andf are adjacent and-(- {f}) 0{ €} is an edge dominating
set of G. ThusF is a secure edge dominating seGof

Proposition 4. If K, , is a star wittp=2 vertices, thegsdK;, ) = 2.

Proof: Let E be the edge set &f; ,, whereE = {e;, &, ...,6}. Let F = {e,, &} E. Then

F is a secure total edge dominating seKof,. ThenysdKi, ) < 2. SupposgsdKi, p)=1.
Without loss of generality;1={ei}. ThenF; is not a secure total edge dominating set, so
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that ys(K1p) = 1. Without loss of generality,;={e;}. ThenF; is not a secure total edge
dominating set, so thgd{K.p) 22. Thus the result follows.

The double sta§,,is the graph obtained from joining centers of starsK,
andK; , with an edge.

Proposition 5. If S,,,is a double star with<insn vertices, thenygd Sy = 3.

Proof: Let E be the edge set &, ,whereE ={e, q, &, ...,en f1, f5, ..., f}. Let F={e, e,

f;} O E. ThenF is a secure total edge dominating seBgf Theny.dSn) < 3. Suppose
Yaie( S = 2. Without loss of generalitys; = {e, e;}. Clearly F; is not a secure total edge
dominating set, so thgd(Sn,) = 3. Thus the result follows.

3. Inverse securetotal edge domination
We introduce the following concept.

Definition 6. Let G = (V, E) be a graph. LeF be a minimum secure total edge
dominating set 06. If E — Fcontains a secure total edge dominating=sef G, thenF'

is called an inverse secure total edge dominathgvith respect t&. The inverse secure

total edge domination numbgte (G) of G is the minimum cardinality of an inverse
secure total edge dominating setf

Definition 7. The upper inverse secure total edge dominatiorbeufiye {(G) of G is the
maximum cardinality of an inverse secure total edigminating set of.
A yste‘l-set is a minimum inverse secure total edge domigaet ofG.

Example 8. For the grapty 4, Vs(K1.4)= VYete (K1.0).
Remark 9. Not all graphs have an inverse secure total edgerdding set.

Theorem 10. Let F be aygeset of a connected gragh If a yse -set exists, thef has at
least 4 edges.

Proof: Let F be aysgeset of a connected gragh ThenysdG) = F| = 2. If ayge -set
exists, therE — Fcontains a secure total edge dominating set witheet to-. Hence

— F22. ThusG has at least 4 edges.

Theorem 11. If Ky, is a star withp > 4 vertices, thegse (K1) = 2.
Proof: Let F be ayseset ofK,,. By Proposition 4H| = 2. LetF = {e, §. Then S={x, y}
is ayse -set ofKy, , for x, y 0 E(Ky,p) — {e, §. Thusyse (K = 2.

Proposition 12. For any stakKyp, p = 4, YsdK1p) = Yeie (K1) = 2.

Theorem 13. If S, is a double star with 8 m < n vertices, theryste‘l(sn,ro =4,

Proof: Let E(S.,) = {e ey &, ...... ,em f1, T2, ..., fu}. By Proposition 5F = {e, e, fi} is a
Ysiwset of S, ThenF; = {e, &, f,, f3} is an inverse secure total edge dominating set of
Snnin E —F. Thenyse (Sn ) < 4. SUPPOS§se (Sn, n=3. Without loss of generality, =

{ey, &, f3}. Clearly F; is not an inverse secure total edge dominatingseeihatyste‘l(sn,

n) = 4. Hence the result follows.
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Proposition 14. If a yse -Set exists in a gragh, then
Ysid G) < Veo (G)
and this bound is sharp
Proof: Clearly every inverse secure total edge dominatitgofG is a secure total edge
dominating set. ThugdG) < Ysie (G).
The graptKy 4 achieves the lower bound.

Proposition 15. Let G be a graph witlp vertices. If ayse -set exists, then
Ysid G) + Yste (G) <p
and this bound is sharp.
Proof: This follows from the definition ofse (G).
The graptK, 4 realizes the sharp lower bound.
We establish lower and upper bounds for the irevesecure total edge
domination number d&.

Theorem 16. Let G be a graph witlp vertices. It ayye -set exists irG, then
2< yste_l(G) < p- 2

and these bounds are sharp.

Proof: By Proposition 14ysdG) < Vs (G) and since Z yq{G), we have
2 < Vs (G).

By Proposition 15yse (G) < p —VYsG) and since & y{G), we have
yste_l(G) sp -2.

Thus the result follows.

The graptK, 4 achieves both the lower and upper bounds.

Problem 1. Characterize grapt® for whichysdG) = Vs (G).
Problem 2. Characterize grapt@ for whichysdG) + Ve (G) = p.

4. Some secur e fuzzy domination parameters
In this section, we present some secure fuzzy daitioim parameters in fuzzy domination
theory.

4.1. Secureand inver se secur e fuzzy domination

A fuzzy graph G =V, g, W) is a nonempty together with a pair of functiors: V - [0,
1] andpu: Vx V - [0, 1] such thati(u, V) < o(u) Oo(v) for all u, vO V. We say that
dominatesy in G if p(u, V) = a(u) Oao(v).

Definition 17. Let G be a fuzzy graph. Leat, V. A subsetD of V is called a fuzzy
dominating set if for every 0 V — D, there exists a vertax D such thau dominates
v. The minimum cardinality of a fuzzy dominating séG is called the fuzzy domination
number ofG and is denoted by(G), see [23, 24].

We now define the secure fuzzy domination in fuge@phs.

Definition 18. Let G be a fuzzy graph. A secure fuzzy dominating set fafzzy graphc
is a fuzzy dominating s&@0V with the property that for eachd V — Dthere existy[1D
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adjacent tou such that @ — {v}) O{u} is a fuzzy dominating set. The secure fuzzy
domination numbey,(G) of G is the minimum cardinality of a secure fuzzy doating
set ofG.

Next, we define the inverse secure fuzzy domimatiomber.

Definition 19. Let G be a fuzzy graph. Ldd be a minimum secure fuzzy dominating set
of a fuzzy graptG. If V — D contains a secure fuzzy dominating Bebf G, thenD' is
called an inverse secure fuzzy dominating set vétipect td. The inverse secure fuzzy
domination numbey. (G) of G is the minimum cardinality of an inverse securezfu
dominating set ir@.

4.2 Secure and inver se secur e fuzzy edge domination
An edgee = uvof a fuzzy graph is called an effective edge(ifv)= o(u)Co(v).

Definition 20. Let G be a fuzzy graph orW( E). A subsefr of E is called a fuzzy edge
dominating set if for every edge ilh— Fis adjacent to at least one effective edgé€.in
The minimum cardinality of a fuzzy edge dominatseg of G is called the fuzzy edge
domination number oB and it is denoted by(G), see [25].

We now define the secure fuzzy edge dominatidnzmy graphs.

Definition 21. Let G be a fuzzy graph o/( E). A secure fuzzy edge dominating set of a
fuzzy graphG is a fuzzy edge dominating deflE with the property that for each edge
e[JE — F, there existd00F adjacent toe such that £ — {f}) O {e} is a fuzzy edge
dominating set. The secure fuzzy edge dominationb@uy,{G) of G is the minimum
cardinality of a secure fuzzy edge dominating $€%.0

We also define the inverse secure fuzzy edge datinmnumber as follows:

Definition 22. Let G be a fuzzy graph oV( E). LetF be a minimum secure fuzzy edge
dominating set of a fuzzy graph If E — Fcontains a secure fuzzy edge dominating set
F' of G, thenF' is called an inverse secure fuzzy edge domina@igvith respect té.

The secure fuzzy edge domination numggr(G) of G is the minimum cardinality of an
inverse secure fuzzy edge dominating sét.in
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