Intern. J. Fuzzy Mathematical Archive Vol. 1, 2013, 66-70 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 19 February 2013 www.researchmathsci.org

International Journal of Fuzzy Mathematical Archive

Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

P. Jenita Department of Mathematics Sri Krishna College of Engineering and Technology Coimbatore – 641 008 Email: sureshjenita@yahoo.co.in

Received 5 December 2012; accepted 7 January 2013

Abstract. In this paper, consistency of fuzzy relational equations involving k-regular block fuzzy matrices is discussed. Solutions of xM=b, where M is a block fuzzy matrix whose diagonal blocks are k-regular are determined in terms of k-generalized inverses of the diagonal block matrices.

Keywords: Fuzzy matrices, k-regular block fuzzy matrices, fuzzy relational equations, k-g-inverses.

AMS Mathematics Subject Classifications (2012): 15B

1.Introduction

Let F_n be the set of all n×n fuzzy matrices over the fuzzy algebra F=[0,1] under the operations $(+,\cdot)$ defined as $a+b=max\{a,b\}$ and $a\cdot b=min\{a,b\}$ for all $a, b\in F$. A study of the theory of fuzzy matrices were made by Kim and Roush [2] analogous to that of Boolean matrices. $A \in F_n$ is regular if there exists X such that AXA=A; X is called a generalized (g⁻) inverse of A and is denoted as $A^{-}[2]$. A{1} denotes the set of all ginverses of a regular matrix A. A fuzzy relational equation of the form xA = b is consistent when A is a regular matrix and $x=bA^{-}$ is a solution. Hence the set of all solutions $\Omega(A, b)$ of xA = b is non-empty. It is shown that $\Omega(A, b)$ has a unique maximal element [4, p. 98], however the minimal element is not unique. Recently, a development of k-regular fuzzy matrices is made by Meenakshi and Jenita [5] analogous to that of generalized inverse of a complex matrix [1] and as a generalization of a regular fuzzy matrix [2, 3]. A matrix $A \in F_n$, is said to be right k-regular (left k-regular) if there exists a matrix $X \in F_n$ such that $A^k X A = A^k (A X A^k = A^k)$ for some positive integer k. X is called a right k-g-inverse (left k-g-inverse) of A. In particular, for k=1 it reduces to ginverses of a fuzzy matrix. However a right k-g-inverse and a left k-g-inverse of a fuzzy matrix are distinct (refer example (2.22) of [5]). A k-regular matrix as one that has a generalized inverse lays the foundation in the study on fuzzy relational equations. Here, solutions of xM=b, where M is a block fuzzy matrix whose diagonal blocks are k-regular are determined in terms of k-generalized inverses of the diagonal block matrices as a

Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

generalization of results available in the literature [6] on consistency of fuzzy relational equations involving block fuzzy matrices whose diagonal blocks are regular(refer p.193-200 [3]).

2. Notations and Preliminaries

For a matrix $A \in F_n$, let R(A), C(A), A^T and A^- be row space, column space, transpose and g-inverse of A respectively.

Definition 2.1[5] A matrix $A \in F_n$, is said to be right k-regular if there exists a matrix $X \in F_n$ such that $A^kXA = A^k$ for some positive integer k. X is called a right k-g-inverse of A.

Let $A_r \{1^k\} = \{X | A^k X A = A^k\}.$

Definition 2.2[5] A matrix $A \in F_n$, is said to be left k-regular if there exists a matrix $Y \in F_n$ such that $AYA^k = A^k$, for some positive integer k. Y is called a left k-g-inverse of A. Let $A_{\ell} \{1^k\} = \{Y | AYA^k = A^k\}$.

In the sequel, we shall make use of the following results found in [5].

Lemma 2.1. For A, $B \in F_n$ and a positive integer k, the following hold.

- (i) If A is right k-regular and $R(B) \subseteq R(A^k)$ then B = BXA for each right k-ginverse X of A.
- (ii) If A is left k-regular and $C(B) \subseteq C(A^k)$ then B = AYB for each left k-g-inverse Y of A.

Lemma 2.2. Let $A \in F_n$ and k be a positive integer, then $X \in A\{1_k^k\} \Leftrightarrow X^T \in A^T\{1_k^k\}$.

3. Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

In this section, we are concerned with fuzzy relational equations of the form xM=b, where $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is a block fuzzy matrix whose diagonal blocks A and D are k-regular. We have determined conditions under which the consistency of xM=b implies those of yA = c and zD = d where $b = (c \ d)$.

Theorem 3.1.

Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with A and D are right k-regular, $R(C) \subseteq R(A^k)$ and $R(B) \subseteq R(D^k)$. If xM = b is solvable then yA = c and zD = d are solvable, where $b = (c \ d)$.

Proof: Since xM = b is solvable, let $x = \begin{pmatrix} \beta & \gamma \end{pmatrix}$ is a solution. Then, $\begin{pmatrix} \beta & \gamma \end{pmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{pmatrix} c & d \end{pmatrix} \Rightarrow \begin{pmatrix} \beta A + \gamma C & \beta B + \gamma D \end{pmatrix} = \begin{pmatrix} c & d \end{pmatrix}$

P. Jenita

Hence we get the equations: $\beta A + \gamma C = c$ and $\beta B + \gamma D = d$. (1)

By Lemma (2.1), A is right k-regular, $R(C) \subseteq R(A^k) \Rightarrow C = CA^-A$ for each right k-g-inverse A⁻ of A and D is right k-regular, $R(B) \subseteq R(D^k) \Rightarrow B = BD^-D$ for each right k-g-inverse D⁻ of D.

Substituting C and B in Equation (1), we get the equations:

 $(\beta + \gamma CA^{-})A = c \text{ and } (\beta BD^{-} + \gamma)D = d$.

Thus yA = c and zD = d are solvable and $(\beta + \gamma CA^{-}) = y$, $(\beta BD^{-} + \gamma) = z$ are the solutions.

Theorem 3.2.

Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with A and D are right k-regular. If $yA^k = c$ and $zD^k = d$

are solvable, $c \ge dD^-C^k$ and $d \ge cA^-B^k$ then $xM^k = b$ is solvable when $M^k = \begin{bmatrix} A^k & B^k \\ C^k & D^k \end{bmatrix}$ and $b = (c \ d)$

Proof: Since $yA^k = c$ and $zD^k = d$ are solvable, let $y = cA^-$ and $z = dD^-$ are the Solutions $\Rightarrow cA^-A^k = c$ and $dD^-D^k = d$.

From the given conditions, $c \ge dD^-C^k$ and $d \ge cA^-B^k$ we get, $c = c + dD^-C^k$ and $d = d + cA^-B^k$.

Now,
$$(cA^{-} dD^{-}) \begin{bmatrix} A^{k} & B^{k} \\ C^{k} & D^{k} \end{bmatrix} = (cA^{-}A^{k} + dD^{-}C^{k} CA^{-}B^{k} + dD^{-}D^{k})$$
$$= (c + dD^{-}C^{k} CA^{-}B^{k} + d)$$
$$= (c - d)$$
$$= b$$

Thus $xM^k = b$ is solvable. Hence the Theorem.

Remark 3.1. For k=1, the Theorem (3.1) and Theorem (3.2) reduces to the following: **Theorem 3.3[3].**

Let
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 with A and D are regular with $R(C) \subseteq R(A)$ and

 $R(B) \subseteq R(D)$. The Schur compliment M/A=D-CA⁻B and M/D =A-BD⁻C are fuzzy matrix. Then xM = b is solvable iff yA = c and zD = d are solvable, $c \ge dD^-C$ and $d \ge cA^-B$. Theorem 3.4. Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

Let
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 with A and D are left k-regular, $C(B) \subseteq C(A^k)$ and $C(C) \subseteq C(D^k)$. If $Mx = d$ is solvable then $Ay = b$ and $Dz = c$ are solvable, where $d = \begin{pmatrix} b \\ c \end{pmatrix}$.

Proof: This can be proved along the same lines as that Theorem (3.1) and by using Lemma (2.2) and hence omitted.

Theorem 3.5.

Let
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 with A and D are left k-regular. If $A^k y = b$ and $D^k z = c$

are solvable, $c \ge C^k A^- b$ and $b \ge B^k D^- c$ then $M^k x = d$ is solvable where $M^k = \begin{bmatrix} A^k & B^k \\ C^k & D^k \end{bmatrix}$ and $d = \begin{pmatrix} b \\ c \end{pmatrix}$.

Proof: Since $A^k y = b$ and $D^k z = c$ are solvable, let $y = A^- b$ and $z = D^- c$ are the solutions $\Rightarrow A^k A^- b = b$; $D^k D^- c = c$.

From the given conditions, $c \ge C^k A^- b$ and $b \ge B^k D^- c$ we get, $c = c + C^k A^- b$ and $b = b + B^k D^- c$.

Now,
$$\begin{bmatrix} A^{k} & B^{k} \\ C^{k} & D^{k} \end{bmatrix} \begin{pmatrix} A^{-}b \\ D^{-}c \end{pmatrix} = \begin{pmatrix} A^{k}A^{-}b + B^{k}D^{-}c \\ C^{k}A^{-}b + D^{k}D^{-}c \end{pmatrix}$$
$$= \begin{pmatrix} b + B^{k}D^{-}c \\ C^{k}A^{-}b + c \end{pmatrix}$$
$$= \begin{pmatrix} b \\ c \end{pmatrix}$$
$$= d$$

Thus $M^k x = d$ is solvable. Hence the Theorem.

Remark 3.2. For k=1, the Theorem (3.4) and Theorem (3.5) reduces to the following.

Theorem 3.6[3]

Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with A and D are regular, M/A and M/D exists. $C(C) \subseteq C(D)$ and $C(B) \subseteq C(A)$. Then Mx = d is solvable iff Ay = b and Dz = c are solvable, $c \ge CA^{-}b$ and $b \ge BD^{-}c$.

P. Jenita

Remark 3.3. In particular, for B=0, the Theorem (3.1) and Theorem (3.4) reduces to the following.

Corollary 3.1.

For the matrix M= $\begin{bmatrix} A & O \\ C & D \end{bmatrix}$ with A and D are k-regular such that

- (i) $R(C) \subseteq R(A^k)$. If xM = b is solvable then yA = c and zD = d are solvable.
- (ii) $C(C) \subseteq C(D^k)$. If Mx = d is solvable then Ay = b and Dz = c are solvable.

REFERENCES

- 1. A. Ben Israel and T.N.E .Greville, *Generalized Inverses: Theory and Applications*, Wiley, New York, 1974.
- K. H. Kim and F. W. Roush, Generalized Fuzzy Matrices, *Fuzzy Sets and Systems*, 4 (1980) 293-315.
- 3. AR.Meenakshi, *Fuzzy Matrix Theory and Applications*, MJP Publishers, Chennai, 2008.
- 4. C. J. Klir and T. A. Folger, *Fuzzy Sets, Uncertainty and Information*, Prentice Hall of India, New Delhi, 1998.
- 5. AR. Meenakshi and P. Jenita, *Generalized regular fuzzy matrices*, Iranian Journal of Fuzzy Systems, 8(2) (2011) 133-141.
- 6. AR. Meenakshi, *On regularity of block fuzzy matrices*, Int. J. Fuzzy Math., 12 (2004) 439-450.