$\overline{\overline{\text { nnternational Journal of }}}$
Furzy Mathematical
Archive

Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

P. Jenita
Department of Mathematics
Sri Krishna College of Engineering and Technology
Coimbatore - 641008
Email: sureshjenita@yahoo.co.in

Received 5 December 2012; accepted 7 January 2013

Abstract

In this paper, consistency of fuzzy relational equations involving k-regular block fuzzy matrices is discussed. Solutions of $\mathrm{xM}=\mathrm{b}$, where M is a block fuzzy matrix whose diagonal blocks are k-regular are determined in terms of k-generalized inverses of the diagonal block matrices.

Keywords: Fuzzy matrices, k-regular block fuzzy matrices, fuzzy relational equations, k-g-inverses.

AMS Mathematics Subject Classifications (2012): 15B

1.Introduction

Let F_{n} be the set of all $\mathrm{n} \times \mathrm{n}$ fuzzy matrices over the fuzzy algebra $\mathrm{F}=[0,1]$ under the operations $(+, \cdot)$ defined as $a+b=\max \{a, b\}$ and $a \cdot b=\min \{a, b\}$ for $a l l a, b \in F$. A study of the theory of fuzzy matrices were made by Kim and Roush [2] analogous to that of Boolean matrices. $A \in F_{n}$ is regular if there exists X such that $A X A=A ; X$ is called a generalized (g) inverse of A and is denoted as $\mathrm{A}^{-}[2]$. $\mathrm{A}\{1\}$ denotes the set of all g inverses of a regular matrix A. A fuzzy relational equation of the form $x A=b$ is consistent when A is a regular matrix and $\mathrm{x}=\mathrm{bA}^{-}$is a solution. Hence the set of all solutions $\Omega(\mathrm{A}, \mathrm{b})$ of $x A=b$ is non-empty. It is shown that $\Omega(\mathrm{A}, \mathrm{b})$ has a unique maximal element [4, p. 98], however the minimal element is not unique. Recently, a development of k-regular fuzzy matrices is made by Meenakshi and Jenita [5] analogous to that of generalized inverse of a complex matrix [1] and as a generalization of a regular fuzzy matrix [2,3]. A matrix $A \in F_{n}$, is said to be right k-regular (left k-regular) if there exists a matrix $X \in F_{n}$ such that $A^{k} X A=A^{k}\left(A X A^{k}=A^{k}\right)$ for some positive integer $k . X$ is called a right k -g-inverse (left k -g-inverse) of A . In particular, for $\mathrm{k}=1$ it reduces to g inverses of a fuzzy matrix. However a right k-g-inverse and a left k-g-inverse of a fuzzy matrix are distinct (refer example (2.22) of [5]). A k-regular matrix as one that has a generalized inverse lays the foundation in the study on fuzzy relational equations. Here, solutions of $\mathrm{xM}=\mathrm{b}$, where M is a block fuzzy matrix whose diagonal blocks are k-regular are determined in terms of k-generalized inverses of the diagonal block matrices as a

Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

generalization of results available in the literature [6] on consistency of fuzzy relational equations involving block fuzzy matrices whose diagonal blocks are regular(refer p.193200 [3]).

2. Notations and Preliminaries

For a matrix $A \in F_{n}$, let $R(A), C(A), A^{T}$ and A^{-}be row space, column space, transpose and g-inverse of A respectively.
Definition 2.1[5] A matrix $A \in F_{n}$, is said to be right k-regular if there exists a matrix $X \in F_{n}$ such that $A^{k} X A=A^{k}$, for some positive integer k. X is called a right k-g-inverse of A.

Let $A_{r}\left\{1^{k}\right\}=\left\{\mathrm{X} / \mathrm{A}^{\mathrm{k}} \mathrm{XA}=\mathrm{A}^{\mathrm{k}}\right\}$.
Definition 2.2[5] A matrix $A \in F_{n}$, is said to be left k-regular if there exists a matrix $Y \in F_{n}$ such that $A Y A^{k}=A^{k}$, for some positive integer k. Y is called a left k-g-inverse of A.
Let $A_{\ell}\left\{1^{k}\right\}=\left\{\mathrm{Y} / \mathrm{AYA}^{\mathrm{k}}=\mathrm{A}^{\mathrm{k}}\right\}$.
In the sequel, we shall make use of the following results found in [5].
Lemma 2.1. For $\mathrm{A}, \mathrm{B} \in \mathrm{F}_{\mathrm{n}}$ and a positive integer k , the following hold.
(i) If A is right k-regular and $R(B) \subseteq R\left(A^{k}\right)$ then $B=B X A$ for each right k -ginverse X of A .
(ii) If A is left k -regular and $C(B) \subseteq C\left(A^{k}\right)$ then $B=A Y B$ for each left k -g-inverse Y of A .

Lemma 2.2. Let $\mathrm{A} \in \mathrm{F}_{\mathrm{n}}$ and k be a positive integer, then $X \in A\left\{1_{r}^{k}\right\} \Leftrightarrow X^{T} \in A^{T}\left\{1_{\ell}^{k}\right\}$.

3. Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices

In this section, we are concerned with fuzzy relational equations of the form $\mathrm{xM}=\mathrm{b}$, where $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is a block fuzzy matrix whose diagonal blocks A and D are k-regular. We have determined conditions under which the consistency of $\mathrm{xM}=\mathrm{b}$ implies those of $y A=c$ and $z D=d$ where $b=\left(\begin{array}{ll}c & d\end{array}\right)$.

Theorem 3.1.

Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with A and D are right k-regular, $R(C) \subseteq R\left(A^{k}\right)$ and $R(B) \subseteq R\left(D^{k}\right)$. If $x M=b$ is solvable then $y A=c$ and $z D=d$ are solvable, where $b=\left(\begin{array}{ll}c & d\end{array}\right)$.
Proof: Since $x M=b$ is solvable, let $x=\left(\begin{array}{ll}\beta & \gamma\end{array}\right)$ is a solution.
Then, $\left(\begin{array}{ll}\beta & \gamma\end{array}\right)\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left(\begin{array}{ll}c & d\end{array}\right) \Rightarrow\left(\begin{array}{ll}\beta A+\gamma C & \beta B+\gamma D\end{array}\right)=\left(\begin{array}{ll}c & d\end{array}\right)$

P. Jenita

Hence we get the equations: $\beta A+\gamma C=c$ and $\beta B+\gamma D=d$.
By Lemma (2.1), A is right k-regular, $R(C) \subseteq R\left(A^{k}\right) \Rightarrow C=C A^{-} A$ for each right k -g-inverse A^{-}of A and D is right k-regular, $R(B) \subseteq R\left(D^{k}\right) \Rightarrow B=B D^{-} D$ for each right $\mathrm{k}-\mathrm{g}$-inverse D^{-}of D .
Substituting C and B in Equation (1), we get the equations:

$$
\left(\beta+\gamma C A^{-}\right) A=c \text { and }\left(\beta B D^{-}+\gamma\right) D=d
$$

Thus $y A=c$ and $z D=d$ are solvable and $\left(\beta+\gamma C A^{-}\right)=y,\left(\beta B D^{-}+\gamma\right)=z$ are the solutions.

Theorem 3.2.

Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with A and D are right k-regular. If $y A^{k}=c$ and $z D^{k}=d$ are solvable, $c \geq d D^{-} C^{k}$ and $d \geq c A^{-} B^{k}$ then $x M^{k}=b$ is solvable when $M^{k}=\left[\begin{array}{ll}A^{k} & B^{k} \\ C^{k} & D^{k}\end{array}\right]$ and $b=\left(\begin{array}{ll}c & d\end{array}\right)$
Proof: Since $y A^{k}=c$ and $z D^{k}=d$ are solvable, let $y=c A^{-}$and $z=d D^{-}$are the Solutions $\Rightarrow c A^{-} A^{k}=c$ and $d D^{-} D^{k}=d$.

From the given conditions, $c \geq d D^{-} C^{k}$ and $d \geq c A^{-} B^{k}$ we get, $c=c+d D^{-} C^{k}$ and $d=d+c A^{-} B^{k}$.

$$
\text { Now, } \left.\begin{array}{rl}
c A^{-} & d D^{-}
\end{array}\right)\left[\begin{array}{cc}
A^{k} & B^{k} \\
C^{k} & D^{k}
\end{array}\right]=\left(\begin{array}{ll}
c A^{-} A^{k}+d D^{-} C^{k} & C A^{-} B^{k}+d D^{-} D^{k}
\end{array}\right) ~ \begin{aligned}
& \\
& =\left(\begin{array}{ll}
c+d D^{-} C^{k} & C A^{-} B^{k}+d
\end{array}\right) \\
& =\left(\begin{array}{ll}
c & d
\end{array}\right) \\
& =\mathrm{b}
\end{aligned}
$$

Thus $x M^{k}=b$ is solvable.
Hence the Theorem.
Remark 3.1. For $k=1$, the Theorem (3.1) and Theorem (3.2) reduces to the following: Theorem 3.3[3].

Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with A and D are regular with $R(C) \subseteq R(A)$ and
$R(B) \subseteq R(D)$.The Schur compliment $\mathrm{M} / \mathrm{A}=\mathrm{D}-\mathrm{CA}^{-} \mathrm{B}$ and $\mathrm{M} / \mathrm{D}=\mathrm{A}-\mathrm{BD}^{-} \mathrm{C}$ are fuzzy matrix. Then $x M=b$ is solvable iff $y A=c$ and $z D=d$ are solvable, $c \geq d D^{-} C$ and $d \geq c A^{-} B$.
Theorem 3.4.

Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices
Let $\mathrm{M}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with A and D are left k-regular, $C(B) \subseteq C\left(A^{k}\right)$ and $C(C) \subseteq C\left(D^{k}\right)$. If $M x=d$ is solvable then $A y=b$ and $D z=c$ are solvable, where

$$
d=\binom{b}{c} .
$$

Proof: This can be proved along the same lines as that Theorem (3.1) and by using Lemma (2.2) and hence omitted.

Theorem 3.5.

$$
\text { Let } \mathrm{M}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \text { with A and D are left k-regular. If } A^{k} y=b \text { and } D^{k} z=c
$$

are solvable, $c \geq C^{k} A^{-} b$ and $b \geq B^{k} D^{-} c$ then $M^{k} x=d$ is solvable where $M^{k}=\left[\begin{array}{ll}A^{k} & B^{k} \\ C^{k} & D^{k}\end{array}\right]$ and $d=\binom{b}{c}$.
Proof: Since $A^{k} y=b$ and $D^{k} z=c$ are solvable, let $y=A^{-} b$ and $z=D^{-} c$ are the solutions $\Rightarrow A^{k} A^{-} b=b ; D^{k} D^{-} c=c$.

From the given conditions, $c \geq C^{k} A^{-} b$ and $b \geq B^{k} D^{-} c$ we get, $c=c+C^{k} A^{-} b$ and $b=b+B^{k} D^{-} c$.

$$
\text { Now, } \begin{aligned}
{\left[\begin{array}{ll}
A^{k} & B^{k} \\
C^{k} & D^{k}
\end{array}\right]\binom{A^{-} b}{D^{-} c} } & =\binom{A^{k} A^{-} b+B^{k} D^{-} c}{C^{k} A^{-} b+D^{k} D^{-} c} \\
& =\binom{b+B^{k} D^{-} c}{C^{k} A^{-} b+c} \\
& =\binom{b}{c} \\
& =\mathrm{d}
\end{aligned}
$$

Thus $M^{k} x=d$ is solvable.
Hence the Theorem.
Remark 3.2. For $\mathrm{k}=1$, the Theorem (3.4) and Theorem (3.5) reduces to the following.

Theorem 3.6[3]

Let $\mathrm{M}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ with A and D are regular, M / A and M / D exists. $C(C) \subseteq C(D)$ and $C(B) \subseteq C(A)$. Then $M x=d$ is solvable iff $A y=b$ and $D z=c$ are solvable, $c \geq C A^{-} b$ and $b \geq B D^{-} c$.
P. Jenita

Remark 3.3. In particular, for $\mathrm{B}=0$, the Theorem (3.1) and Theorem (3.4) reduces to the following.

Corollary 3.1.

For the matrix $\mathrm{M}=\left[\begin{array}{ll}A & O \\ C & D\end{array}\right]$ with A and D are k-regular such that
(i) $\quad R(C) \subseteq R\left(A^{k}\right)$. If $x M=b$ is solvable then $y A=c$ and $z D=d$ are solvable.
(ii) $\quad C(C) \subseteq C\left(D^{k}\right)$. If $M x=d$ is solvable then $A y=b$ and $D z=c$ are solvable.

REFERENCES

1. A. Ben Israel and T.N.E .Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
2. K. H. Kim and F. W. Roush, Generalized Fuzzy Matrices, Fuzzy Sets and Systems, 4 (1980) 293-315.
3. AR.Meenakshi, Fuzzy Matrix Theory and Applications, MJP Publishers, Chennai, 2008.
4. C. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall of India, New Delhi, 1998.
5. AR. Meenakshi and P. Jenita, Generalized regular fuzzy matrices, Iranian Journal of Fuzzy Systems, 8(2) (2011) 133-141.
6. AR. Meenakshi, On regularity of block fuzzy matrices, Int. J. Fuzzy Math., 12 (2004) 439-450.
