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Abstract. In this paper, consistency of fuzzy relational equations involving k-regular 
block fuzzy matrices is discussed. Solutions of xM=b, where M is a block fuzzy matrix 
whose diagonal blocks are k-regular are determined in terms of k-generalized inverses of 
the diagonal block matrices.  
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1.Introduction 
 Let Fn be the set of all n×n fuzzy matrices over the fuzzy algebra F=[0,1] under 
the operations (+,·) defined as a+b=max{a,b} and a·b=min{a,b} for all a, b∈F. A study of 
the theory of fuzzy matrices were made by Kim and Roush [2] analogous to that of 
Boolean matrices. A∈Fn  is regular if there exists X such that AXA=A; X is called a 
generalized (g -) inverse of A and is denoted as A- [2]. A{1} denotes the set of all g-
inverses of a regular matrix A. A fuzzy relational equation of the form bxA =  is 
consistent when A is a regular matrix and x=bA- is a solution. Hence the set of all 
solutions Ω(A, b) of bxA =  is non-empty. It is shown that Ω(A, b) has a unique 
maximal element [4, p. 98], however the minimal element is not unique. Recently, a 
development of k-regular fuzzy matrices is made by Meenakshi and Jenita [5] analogous 
to that of generalized inverse of a complex matrix [1] and as a generalization of a regular 
fuzzy matrix [2, 3]. A matrix A∈Fn, is said to be right k-regular (left k-regular) if there 
exists a matrix X∈Fn such that AkXA =Ak

 (AXAk=Ak) for some positive integer k. X is 
called a right k-g-inverse (left k-g-inverse) of A. In particular, for k=1 it reduces to g-
inverses of a fuzzy matrix. However a right k-g-inverse and a left k-g-inverse of a fuzzy 
matrix are distinct (refer example (2.22) of [5]). A k-regular matrix as one that has a 
generalized inverse lays the foundation in the study on fuzzy relational equations. Here, 
solutions of xM=b, where M is a block fuzzy matrix whose diagonal blocks are k-regular 
are determined in terms of k-generalized inverses of the diagonal block matrices as a 
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generalization of results available in the literature [6] on consistency of fuzzy relational 
equations involving block fuzzy matrices whose diagonal blocks are regular(refer p.193-
200 [3]). 
 
2. Notations and Preliminaries 
 For a matrix A∈Fn, let R(A), C(A), AT and A- be row space, column space, 
transpose and g-inverse of A respectively.  
Definition 2.1[5] A matrix A∈Fn, is said to be right k-regular if there exists a matrix 
X∈Fn such that AkXA =Ak

, for some positive integer k. X is called a right k-g-inverse of 
A.  
Let }. AXA AX/ {}1{ kk ==k

rA  
Definition 2.2[5] A matrix A∈Fn, is said to be left k-regular if there exists a matrix Y∈Fn 
such that  AYAk =Ak

, for some positive integer k. Y is called a left k-g-inverse of A.  
Let }. A AYAY/ {}1{ kk ==kAl  
In the sequel, we shall make use of the following results found in [5]. 
 
Lemma 2.1. For A, B∈ Fn and a positive integer k, the following hold. 
(i) If A is right k-regular and )()( kARBR ⊆  then BXAB = for each right k-g-

inverse   X of A. 
(ii)  If A is left k-regular and )()( kACBC ⊆  then AYBB = for each left  

k-g-inverse Y of A. 
 
Lemma 2.2. Let A∈Fn and k be a positive integer, then }.1{}1{ kTTk

r AXAX l∈⇔∈  
 

 
3. Fuzzy Relational Equations of k-Regular Block Fuzzy Matrices  

In this section, we are concerned with fuzzy relational equations of the form 

xM=b, where 







=

DC
BA

M
 
is a block fuzzy matrix whose diagonal blocks A and D are 

k-regular. We have determined conditions under which the consistency of xM=b implies 
those of cyA =  and dzD = where ( )dcb = . 

 
Theorem 3.1. 

Let 







=

DC
BA

M  with A and D are right k-regular, )()( kARCR ⊆ and

)()( kDRBR ⊆ . If bxM =  is solvable then cyA =  and dzD =  are solvable, where
( )dcb = . 

Proof: Since bxM =  is solvable, let ( )γβ=x  is a solution. 

Then, ( )γβ 







DC
BA

= ( )dc ⇒( )DBCA γβγβ ++ = ( )dc  
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Hence we get the equations: cCA =+γβ and dDB =+ γβ .         (1) 

By Lemma (2.1), A is right k-regular, )()( kARCR ⊆ ⇒ ACAC −=  for each 
right k-g-inverse A- of A and D is right k-regular, )()( kDRBR ⊆ ⇒ DBDB −= for 
each right k-g-inverse D- of D.  
Substituting C and B in Equation (1), we get the equations: 

cACA =+ − )( γβ  and dDBD =+− )( γβ . 
Thus cyA =  and dzD =  are solvable and yCA =+ − )( γβ , zBD =+− )( γβ

are the solutions.  
 

Theorem 3.2. 

Let 







=

DC
BA

M  with A and D are right k-regular.  If cyAk =  and dzDk =  

are solvable, kCdDc −≥  and kBcAd −≥  then bxM k =  is solvable when 









=

kk

kk
k

DC
BA

M  and ( )dcb =  

Proof: Since cyAk =  and dzDk =   are solvable, let −= cAy and −= dDz  are the 

Solutions ⇒ cAcA k =−  and dDdD k =− . 
From the given conditions, kCdDc −≥  and kBcAd −≥  we get, 

kCdDcc −+=  and kBcAdd −+= . 

Now, ( )−− DdcA 







kk

kk

DC
BA

= ( )kkkk DDdBCACdDAcA −−−− ++  

        = ( )dBCACdDc kk ++ −−  
        = ( )dc  
        =b 
Thus bxM k =  is solvable.  
Hence the Theorem. 
 
Remark 3.1. For k=1, the Theorem (3.1) and Theorem (3.2) reduces to the following:  
Theorem 3.3[3]. 

Let 







=

DC
BA

M  with A and D are regular with )()( ARCR ⊆ and

)()( DRBR ⊆ . The Schur compliment M/A=D-CA-B and M/D =A-BD-C are fuzzy 

matrix. Then bxM =  is solvable iff cyA =  and dzD =  are solvable,  CdDc −≥   and

BcAd −≥ . 
Theorem 3.4. 
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Let M = 







DC
BA

 with A and D are left k-regular, )()( kACBC ⊆ and

)()( kDCCC ⊆ . If dMx =  is solvable then bAy =  and cDz =  are solvable, where  









=

c
b

d . 

Proof: This can be proved along the same lines as that Theorem (3.1) and by using 
Lemma (2.2) and hence omitted. 
 
Theorem 3.5. 

Let M = 







DC
BA

 with A and D are left k-regular.  If byAk =  and czDk =  

are solvable, bACc k −≥   and cDBb k −≥  then dxM k =  is solvable where 









=

kk

kk
k

DC
BA

M  and 







=

c
b

d . 

Proof: Since byAk =  and czDk =   are solvable, let bAy −=  and cDz −=  are the 

solutions ⇒ bbAAk =−  ; ccDDk =− . 
From the given conditions, bACc k −≥  and cDBb k −≥  we get, 

bACcc k −+=  and cDBbb k −+= . 

Now, 







kk

kk

DC
BA









−

−

cD
bA

= 








+
+

−−

−−

cDDbAC
cDBbAA

kk

kk

 

         = 








+
+

−

−

cbAC
cDBb

k

k

 

         = 







c
b

 

         = d 
Thus dxM k =  is solvable.  
Hence the Theorem. 
 
Remark 3.2. For k=1, the Theorem (3.4) and Theorem (3.5) reduces to the following. 
 
Theorem 3.6[3] 

Let M = 







DC
BA

 with A and D are regular, M/A and M/D exists. 

)()( DCCC ⊆ and )()( ACBC ⊆ . Then dMx =  is solvable iff bAy =  and cDz =
are solvable, bCAc −≥  and cBDb −≥ . 
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Remark 3.3. In particular, for B=0, the Theorem (3.1) and Theorem (3.4) reduces to the 
following. 
 
Corollary 3.1. 

 For the matrix M= 







DC
OA

 with A and D are k-regular such that 

(i) )()( kARCR ⊆ . If bxM =  is solvable then cyA =  and dzD =  are solvable. 
(ii) )()( kDCCC ⊆ . If dMx =  is solvable then bAy =  and cDz =  are solvable. 
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