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Interval-Valued Fuzzy Matrix. We obtain some characterization of the set of all k-g 
inverses. 
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1. Introduction 
We deal with Interval-Valued Fuzzy Matrices (IVFM) that is, matrices whose 
entries are intervals and all the intervals are subintervals of the interval [0,1]. 
Recently the concept of IVFM a generalization of fuzzy matrix was introduced and 
developed by Shyamal and Pal [5], by extending the max.min operations on fuzzy 
algebra F= [0,1], for elements a,b ∈ F, a+b = max{a,b} and a.b = min {a,b}. In [2], 
Meenakshi and Kaliraja have represented an IVFM as an interval matrix of its lower 
and upper limit fuzzy matrices. In [3], Meenakshi and Jenita have introduced the 
concept of k –regular fuzzy matrix and discussed about inverses associated with a k 
–regular fuzzy matrix as a generalization of results on regular fuzzy matrix 
developed in [1].  A matrix A∈Fn, the set of all nxn fuzzy matrices is said to be 
right (left) k-regular if there exists X(Y) ∈ Fn, such that AkXA = Ak (AYAk=Ak), 
X(Y) is called a right (left) k-g inverse of A, where k is a positive integer. Recently 
we have extended the concept of k-regularity of fuzzy matrices to IVFM and 
determined the structure of k-regular IVFM in [4 ].  
          In this paper, we discuss various k-g inverses of k-regular interval-valued 
fuzzy matrices. In section 2, some basic definitions and results needed are given. In 
section 3, characterization of various k-g inverses of k-regular IVFM are 
determined. 
 
2. Preliminaries 
           In this section, some basic definitions and results needed are given. Let 
(IVFM)n denotes the set of all nxn Interval-Valued Fuzzy Matrices. 
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Definition 2.1.  An Interval-valued Fuzzy Matrix (IVFM) of order mxn is defined as 
A=(aij)mxn, where aij = [aijL, aijU], the ijth element of A is an interval representing  the 
membership value. All the elements of an IVFM are intervals and all the intervals 
are the subintervals of the interval [0,1]. 
          For A =(aij) = ( [aijL, aijU]) and B = (bij) =  ( [bijL, bijU]) of order mxn their sum 
denoted as  A+B defined as , 
A + B = (aij + bij) = ([(aijL + bijL), (aijU + bijU)])                                                    ...(2.1) 
                          =([max{aijL, bijL}, max{aijU, bijU}]) 
         For A = (aij)mxn and B =(bij)nxp their product denoted as AB is defined as, 
                                          n 
        AB = (cij) =     Σ aik bkj                       i=1, 2, …, m  and   j=1, 2, …, p 
                                         k=1 
                     n                      n 
               = [ Σ (aikLbkjL),  Σ (aikUbkjU) ]        i=1, 2, …, m  and   j=1, 2, …, p …(2.2) 
                   k=1                  k=1 
      In particular if aijL = aijU and bijL = bijU then (2.2) reduces to the standard max. 
min composition of Fuzzy Matrices [1]. 
        A ≤ B if and only if aijL ≤ bijL and aijU ≤ bijU     
        In [2], representation of an IVFM as an interval matrix of its lower and upper 
limit fuzzy matrices is introduced and discussed the regularity of an IVFM in terms 
of its lower and upper limit fuzzy matrices.  
                                            
Definition 2.2. For a pair of Fuzzy Matrices E = (eij) and F=(fij) in F m,n    such   that     
E ≤ F, it can be defined that the interval matrix is denoted as [E, F], whose ijth entry 
is the interval with lower limit eij and upper limit fij, that is ([eij,fij]). In particular for 
E = F, IVFM [E,E] reduces to the fuzzy matrix E ∈ F m,n  . 
       For A = (aij) = ([aijL, aijU]) ∈ (IVFM)mn, let us define AL = (aijL) and AU = (aijU). 
Clearly AL and AU belongs to F m,n  such that AL ≤ AU and from Definition (2.2) A  
can be written as A = [AL, AU]                                                                         …(2.3). 
            For A ∈(IVFM)mn,  AT, R (A), C (A) denotes the transpose of A, row space 
of A, column space of A respectively.  
 
Definition 2.3. A matrix A ∈ (IVFM)n   is said to be right  k – regular if there exist a 
matrix X ∈ (IVFM)n , such that Ak X A = Ak , for some positive integer k. X is 
called a right  k – g inverse of A. Let A{1r

k}  = { X /  Ak X A = Ak }. 
 
Definition 2.4. A matrix   A ∈   (IVFM)n   is said to be left  k – regular if there exist 
a matrix Y ∈ (IVFM)n , such that A Y Ak = Ak , for some positive integer k. Y is 
called a left  k – g inverse of A. Let A {1ℓk}  = { Y /  A Y Ak = Ak }. 
        In particular for a fuzzy matrix A, aijL = aijU then Definition (2.3) and Definition 
(2.4) reduce to right left k-regular fuzzy matrices respectively found in [3]. 
        In the sequel we shall make use of the following results on IVFM found in [2] 
and [4]. 
 
Lemma 2.5. For A = [AL, AU] ∈ (IVFM)mn and B = [BL, BU] ∈ (IVFM)np, the 
following hold. 
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(i) AT = [AL
T, AU

T] 
(ii) AB = [ALBL, AUBU]. 
 
Lemma 2.6. For A, B ∈ (IVFM)mn 
         (i) R(B) ⊆R(A) ⇔ B = XA for some X ∈ (IVFM)m 
        (ii) C(B) ⊆C(A) ⇔ B = AY for some Y ∈ (IVFM)n 
 
Theorem 2.7. For A , B∈ (IVFM)n, with R(A) = R(B) and R(Ak) = R(Bk) then A is 
right  k – regular IVFM ⇔ B is right k – regular IVFM. 
 
Theorem 2.8. For A, B∈ (IVFM)n, with C(A) = C(B) and C(Ak) = C(Bk) then A is 
left k – regular IVFM ⇔ B is left k – regular IVFM. 
         
3. Inverses of k-Regular Interval-Valued Fuzzy Matrices 
In this section, we shall introduce the concept of k-g inverses associated with a       
k-regular IVFM as an extension of k-g inverses of a k-regular fuzzy matrix [3] and 
as a generalization of generalized inverses of a regular IVFM [2].  
 
Definition 3.1. A matrix A∈(IVFM)n, is said to have a {3k} inverse if there exists a 
matrix X∈(IVFM)n such that (AkX)T = AkX, for some positive integer k. X is called 
the {3k} inverse of A. Let A{3k}= { X / (AkX)T = AkX}. 
 
Definition 3.2. A matrix A∈(IVFM)n, is said to have a {4k} inverse if there exists a 
matrix X∈(IVFM)n such that (XAk)T = XAk, for some positive integer k. X is called 
the {4k} inverse of A. Let A{4k}= {X / (XAk)T = XAk}. 
 
Remark 3.3. In particular for k=1, Definitions (3.1) and (3.2) reduces to set of {3} 
and {4} inverses respectively of a IVFM and in the case AL = AU, Definitions (3.1) 
and (3.2) reduces to set of {3k} and {4k} inverses respectively of  fuzzy matrices. 
 
Theorem 3.4. Let A = [AL, AU] ∈(IVFM)n. Then A has a {3k} inverse ⇔ AL and 
AU∈Fn have  {3k} inverses. 
 
Proof. Let  A=[AL, AU] ∈(IVFM)n. 
Since A has a {3k} inverse, then there exist  X∈(IVFM)n such that,  (AkX)T = AkX 
 Let X = [XL, XU], then by Lemma(2.5)(ii),               
               (AkX)T = AkX ⇔ [AL

kXL, AU
kXU] T = [AL

kXL, AU
kXU] 

                                       ⇔ [(AL
kXL)T, (AU

kXU)T] = [AL
kXL, AU

kXU] 
                                       ⇔ (AL

kXL)T= AL
kXL  and (AU

kXU)T= AU
kXU. 

Hence A∈(IVFM)n has a {3k}inverse ⇔ AL and AU ∈Fn have{3k}inverses. 
 
Theorem 3.5. Let A = [AL, AU] ∈(IVFM)n. Then A has a {4k} inverse ⇔ AL and 
AU∈Fn have  {4k} inverses. 
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Proof. Let A = [AL, AU] ∈(IVFM)n. 
Since A has a {4k} inverse, then there exist  X∈(IVFM)n, such that (XAk)T = XAk 
  Let X = [XL, XU], then by Lemma(2.5)(ii),               
              (XAk)T = XAk ⇔ [XLAL

k, XUAU
k] T = [XLAL

k, XUAU
k] 

                                      ⇔ [(XLAL
k)T, (XUAU

k)T] = [XLAL
k, XUAU

k] 
                                      ⇔ (XLAL

k)T= XLAL
k

  and (XUAU
k)T= XUAU

k. 
Hence A∈(IVFM)n has a {4k}inverse ⇔ AL and AU ∈Fn have  {4k}inverse. 
 
Theorem 3.6. Let A ∈(IVFM)n and k be a positive integer, 
(i) if X∈A{1r

k}  with R(X) = R(AkX) then, A∈X {1ℓk} 
(ii) if X∈A {1ℓk}with C(X) = C(XAk) then, A∈X{1r

k}   
Proof. 
(i) Since X∈A{1r

k}  by Definition (2.3), AkXA = Ak.  
                 Since R(X) = R(AkX), by Lemma (2.6), X = YAkX, for some 
Y∈(IVFM)n, 
                              XAXk =  YAkX AXk  

                                                                      = YAkXk  

                                                    = YAkXXk-1   = XXk-1= Xk 

Hence A∈X{1ℓk} 
(ii) Proof is similar to (i) and hence omitted. 
 
Theorem 3.7. For A ∈(IVFM)n and for any  G∈(IVFM)n , if AkX = AkG, where X is 
a {1r

k, 3k} inverse of A then G is a {1r
k, 3k} inverse of A. 

Proof. Since X is a {1r
k, 3k} inverse of A, by Definitions (2.3 ) and (3.1), 

                                AkXA = Ak and (AkX)T = AkX. 
Post multiplying by A on both sides of AkX = AkG, we get AkGA = AkXA =Ak  
Since AkX = AkG ⇒ (AkG)T = (AkX)T. = AkX = AkG. 
Hence G is a {1r

k, 3k} inverse of A. 
 
Theorem 3.8. For A ∈(IVFM)n and for any  G∈(IVFM)n , if XAk = GAk, where X is 
a {1ℓk, 4k} inverse of A then G is a {1ℓk, 4k} inverse of A. 
Proof: Proof is similar to that of Theorem(3.7) and hence omitted. 
 
Theorem 3.9. For A ∈(IVFM)n, X is a {1r

k, 3k} inverse of A and G is a                 
{1ℓk, 3}inverse of A then  AkX = AkG. 
Proof. Since X is a {1r

k, 3k} inverse of A, by Definitions (2.3 ) and (3.1) 
                                  AkXA = Ak and (AkX)T = AkX 
Since G is a {1ℓk, 3} inverse of A, by Definition (2.4 ) and Remark (3.3), 
                           AGAk = Ak and (AG)T = AG 
               AkG = (AkXA)G =  (AkX)(AG) 
                                           = (AkX)T (AG)T  
                                           = XT(AT)kGTAT 
                                           = XT(AGAk)T 
                                           = XT(Ak)T 

                                           = (AkX)T  = AkX. Hence the theorem. 
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 Theorem 3.10. For A ∈(IVFM)n, X is a {1ℓk, 4k} inverse of A and G is a                
{1r

 k, 4}inverse of A then XAk = GAk. 
Proof. This can be proved in the same manner as that of Theorem (3.9) and hence 
omitted. 
 
         In general, for an IVFM A, there is no relation between k-regularity of A, ATA 
and AAT. Here, the relation shall be discussed under certain conditions on their row 
spaces. 
 
Theorem 3.11. For A ∈(IVFM)n, with R(A) = R(ATA) and R(Ak) = R((ATA)k) then, 
A is right k-regular ⇔ ATA is right k-regular. 
Proof. This follows from Theorem (2.7), by replacing B by ATA. 
 
Theorem 3.12. For A ∈(IVFM)n, with C(A) = C(AAT) and C(Ak) = C((AAT)k) then, 
A is left k-regular ⇔ AAT is left k-regular. 
Proof. This follows from Theorem(2.8), by replacing B by AAT. 
 
Theorem 3.13. For A ∈(IVFM)n, if ATA is a right k-regular IVFM and               
R(Ak) ⊆ R((ATA)k) then A has a {1r

k, 3k} inverse. In particular for k=1,                      
Y = (ATA)-AT is a {1, 3} inverse of A. 
Proof. Since ATA is right k-regular IVFM, By Definition (2.3),  
                   (ATA)k(ATA)-(ATA) = (ATA)k for some right k-g-inverse (ATA)- of ATA. 
Since R(Ak)⊆R((ATA)k), by Lemma(2.6), Ak = X(ATA)k for some X∈(IVFM)n and 
take Y=( ATA)-AT. 
            AkYA= Ak  (YA) = (X(ATA)k)(( ATA)- ATA) 
                                        = X((ATA)k (ATA)- ATA)) 
                                        = X( ATA)k 
                                        = Ak. 
Take Z = ( ATA)- (Ak)T. 
AkZ =  (Ak)Z  = (X( ATA)k) (( ATA)- (Ak)T) 
                       = X( ATA)k ( ATA)- (ATA)k XT 
                       = X( ATA)k ( ATA)- (ATA) (ATA)k-1 XT 
                       = X( ATA)k (ATA)k-1 XT 
                      = X( ATA)2k-1 XT 
                      = (X( ATA)2k-1 XT)T 
                      = (AkZ)T    
Hence A has a {1r

k, 3k} inverse. In particular for k=1, Y= (ATA)-AT is a {1, 3} 
inverse of A. 
 
Theorem 3.14. For A ∈(IVFM)n, if AAT is a left  k-regular IVFM and                 
C(Ak) ⊆ C((AAT)k) then A has a {1ℓk, 4k} inverse. In particular for k=1,                      
Z= AT (ATA)- is a {1, 4} inverse of A. 
Proof. Proof is similar to Theorem (3.13) and hence omitted. 
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Theorem 3.15. Let A ∈(IVFM)n, be a right k-regular IVFM and R((ATA)k)⊆R(Ak) 
then, ATA has a {3k} inverse. 
Proof. Since A is right k-regular IVFM. By Definition (2.3),             
                AkXA= Ak for some right k-g-inverse X∈(IVFM)n, of A. 
Since R((ATA)k)⊆R(Ak), by Lemma(2.6),    (ATA)k  =  ZAk for some Z∈(IVFM)n 
and take Y = XA. 
                  (ATA)k Y = (ZAk ) (XA) 
                                  = ZAk XA = ZAk = (ATA)k  = ((ATA)k)T  = ((ATA)kY)T   
Hence  ATA has a (3k) inverse. 
 
Theorem 3.16. Let A ∈(IVFM)n, be a left  k-regular IVFM and C((AAT)k)⊆C(Ak) 
then, AAT has a {4k} inverse. 
Proof. This can be proved in the same manner as that of Theorem (3.15) and hence 
omitted. 
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