
Intern. J. Fuzzy Mathematical Archive 
Vol. 1, 2013, 23-36 
ISSN: 2320 –3242 (P), 2320 –3250 (online) 
Published on 31 January 2013 
www.researchmathsci.org 
 

23 
 

International Journal of  

Inspection Cost and Imperfect Quality Items with 
Multiple Imprecise Goals in Supply Chains in an 

Uncertain Environment 
 

A. Nagoor Gani1 and S. Maheswari2 
1PG and Research Department of Mathematics, Jamal Mohamed College 

(Autonomous), Tiruchirappalli–620020. India.  
Email: ganijmc@yahoo.co.in 

 
2Department of Mathematics, Holy Cross College (Autonomous),  

Tiruchirappalli-620002, India.  
E-mail: mahesraam@yahoo.co.in 

 
Received 19 December 2012; accepted 14 January 2013 

 
Abstract. This work presents a Possibilistic Linear Programming (PLP) method of 
solving integrated Manufacturing and Distribution Planning Decisions (MDPD) 
problems with multiple imprecise goals in supply chains under uncertain 
environment. The model aims to minimize total net costs, total delivery time and 
total imperfect quality items with reference to available supply, machine capacities, 
labour levels, quota flexibility, cost budget, forecast demand, warehouse space at 
each destination, inspection cost at each source and imperfect quality items 
transported from origins to destinations. Triangular distribution numbers are used to 
represent imprecise numbers. An industrial case is used to demonstrate the 
application of PLP method for MDPD problem. LINGO software is used to solve 
the problem.  
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1. Introduction 
Supply Chain Management aims to synchronize customer requirements with the 
flow of materials from suppliers to retailers and the decision makers must 
simultaneously handle conflicting goals that govern the use of constrained resources 
within organizations. These goals are required to be optimized frequently. Chen et 
al.,[5] and Petrovic et al.,[14] discussed the commonly seen conflicting goals are 
minimizing the cost, delivery time and number of rejected items and optimizing 
customer service and flexibility. Integrating manufacturing / distribution planning 
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decisions in supply chains is a major issue of effective SCM.  In real world problem 
input data and related parameters are often imprecise. They are not deterministic or 
crisp. So the conventional deterministic mathematical models cannot be applied. 
           In practical MDPD problems, the decision maker must handle multiple 
conflicting goals in a framework of fuzzy aspiration level. Li and Lai [12] and Sabri 
and Beamon[15] presented a possibilistic linear programming (PLP) method for 
solving MDPD problems with multiple imprecise goals in supply chains under fuzzy 
environments. The real success in supply chain management is to satisfy the 
customer completely by supplying all perfect quality items. This can be achieved by 
inspecting all goods that are transported from various sources. In this work, an 
inspection cost at each source is introduced to ensure good quality items. But while 
transporting, items can be broken like glass items. Hence we set the limit for the 
imperfect quality items that may be transported from sources. They can be reworked 
or considered as scrap 
 The proposed method aims to minimize total net costs, total delivery time, 
total number of imperfect quality items with reference to available supply, 
capacities, labour levels, quota flexibility, cost budget constraints at each source, 
inspection cost at each source as well as forecast demand and warehouse space 
constraints at each destination, percentage of imperfect quality items that reach each 
destination. 
 
1.1.  Review of Literature  
Zimmerman [17] introduced fuzzy set theory to solve ordinary LP and 
multiobjective linear programming problem with fuzzy goals and constraint. Hintz 
and Zimmerman[7] presented an approach based on FLP and approximate reasoning 
to solve production planning problems. Fung et al[6] presented fuzzy multiproduct 
aggregate production planning model by Parametric Programming. Li and Lai [12] 
presented a fuzzy compromise programming method to obtain non-dominated 
compromise solution for MOLP. Liang T.F[13] presented integrated MDPD 
problems with multiple imprecise goals in an uncertain environment. Abd El-Wahed 
and Lee[1] designed an interactive fuzzy programming method to determine 
compromise solution for distribution planning problems with multiple fuzzy goals. 
Lee and Kim[11] proposed a hybrid approach to combine analytical and simulation 
models to solve MDPD problems involving multi product and multi time periods in 
supply chains, which introduced flexibility capacity constraint.. Ana Maria and 
Rakesh[2], Jang et al[9], Lee et al [11] and Bilgen and Ozkarahan[3] studied 
deterministic MDPD problem.  
       Kumar et al [10] investigated fuzzy MDPD problems since deterministic models 
are inadequate to solve real world problems. In 1978 Zadeh [17] first created the 
theory of possibility which is related to fuzzy set theory. He showed that much of 
the information on which we make decisions are possibilistic rather than 
probabilistic in nature. Buckley [4] designed a mathematical programming problem 
in which all parameters may be fuzzy variables based on their possibility distribution 
and developed PLP. Hsu and Wang [8] developed possibilistic programming model 
integrating PLP method of Lai. Much of the works concentrated on single goal. But 



Inspection Cost and Imperfect Quality Items with Multiple Imprecise Goals in 
Supply Chains in an Uncertain Environment 

 

25 
 

the present paper includes multiple goals which are conflicting in nature with 
imprecise objective functions. 
 
2. Problem Formulation 
Assume that the logistics center in a supply chain attempts to determine the 
integrated manufacturing / distribution plan for a homogeneous commodity from m 
sources to n destinations. Each source has a supply of commodity available to 
distribute to various destinations and each destination has its expected demand to be 
received from the sources. Generally the capacities demand and cost coefficients are 
imprecise. Hence this work focuses on developing a PLP method for optimizing the 
integrated MDPD plan in an uncertain environment. The method simultaneously 
minimizes the total net costs, total delivery time, total deteriorated items with 
respect to available supply capacities, labour levels, quota flexibility and cost budget 
constraints at each source and destination. 
 
2.1 Assumptions  
1. All the objective functions are imprecise. 
2. The pattern of triangular possibility distribution is adopted to represent the 

imprecise objective functions and related imprecise numbers. 
3. All the objective functions and constraints are linear equations. 
4. The linear membership functions are specified for all fuzzy sets involved. 
5. The minimum operator is used to aggregate all fuzzy sets. 
2.2 Notations  
1. Index Sets : 

i. index for source, for all i = 1, 2, . . . , m. 
ii. index for destination, for all j = 1, 2, . . . , n. 
iii. index for objectives, for all g = 1, 2, . . . , k. 

2.   Decision Variables 
      Qij : number of units distributed from source i to destination j.  
3.   Objective Functions  
      1Z%   -  total net costs ($) 
      2Z%   -  total delivery time (hours) 
      3Z%   -  total number of imperfect quality items  
4.   Parameters 
      pij  - manufacturing cost per unit delivered from source i to destination j 

($/unit). 
      cij  - distribution cost per unit delivered from source i to destination j ($/unit). 
      tij  - distribution time per unit delivered from source i to destination j 

(hours/unit). 
      eij  -  capacity per truck delivered from source i to destination j (units). 
      iS%   -  total supply available for each source i (units). 
      jD%  -  total demand of each destination j (units). 
      lij   - hours of labour per unit produced by each source i (units). 
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      ig%   -  Inspection cost at each source i ($/unit). 

      id%   -  total number of deteriorated items at each source i. 
      ijd%   -  rate of imperfect quality of items transported from each source i to  
   destination j (%) 
      imaxW% -  maximum labour levels available for each source i (man-hour) 
      ija%   -  hours of machine usage per unit produced by each source i (machine 

hour unit) 
      Mimax - maximum machine capacities available for each source i (machine-hour)  
      fij  -   quota flexibility for source i to destination j (%) 
      fimin-   low bound of quota flexibility for source i (units) 
      iB%   -  budget allocated to each source i ($) 
      bij -   warehouse space per unit delivered from source i to destination j 

(ft2/units) 
      Vjmax - maximum warehouse space available for each destination j (ft2) 
 
2.3. Imprecise multi objective possibilistic linear programming model 
2.3.1. Objective Functions 
 The imprecise objective functions are as follows  

1) Minimize total net costs  

  1Min Z%  = 
m n

ij ij i ij
i = 1 j = 1

p  + c  + g Q  ∑∑ % % %      . . .      (1) 

2) Minimize total delivery time  

  2Min Z%  = 
m n

ij
ij

i = 1 j = 1 ij

t
Q

e
 
 
  

∑∑
%

      . . .       (2) 

3) Minimize total number of imperfect quality items 

  3Min Z%  = 
ij ijd Q∑∑ %        . .       . (3) 

where ij ij ij ijp , c , t  and d%%% %  are imprecise coefficients with triangular possibility 
distributions.  
 The total net costs are the sum of the manufacturing, distribution and inspection 
costs over the planning horizon. For each of the objective functions in the original 
PLP model. The Decision Maker (DM) has imprecise goals such as “The objective 
function should be essentially equal to some value”. Accordingly equations (1), (2) 
and (3) are imprecise and incorporate the variations in DM   judgments regarding the 
solutions of multi objective optimization problems in a framework of fuzzy 
aspiration levels. 
 
2.3.2. Constraints 
Constraints on total supply available for each source i. 

  
n

ij i
j

Q   s     i≤ ∀∑ %               . . . (4) 
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Constraints on total demand for each destination j. 

  
n

ij i
j

Q   D     j≤ ∀∑ %                 . . (5) 

Constraints on labour levels and machine capacities for each source i. 

  
n

ij ij imax
j = 1

l Q   W     i≤ ∀∑ %              . . . (6) 

  
n

ij ij imax
j = 1

a Q   M     i≤ ∀∑ %              . . . (7) 

Constraints on budget for each source i. 

  
n

ij ij i ij i
j = 1

p  + c  + g Q   B   i  ≤ ∀ ∑ %% % %                          … (8) 

constraints on quota flexibility for each source i. 

  
ij ij iminf Q   F   i≥ ∀∑              . . . (9) 

Constraints on warehouse space for each destination i. 

  
m

ij ij jmax
i = 1

b Q   V   j≤ ∀∑               . . (10) 

Constraints on the total number of deteriorated items 

  
n

ij ij i
j = 1

d Q   d   i≤ ∀∑ %             . . . (11) 

Non negativity constraints on decision variables Qij ≥ 0  ∀i, ∀j                      . . . (12) 
 
3. Model the imprecise data 

1

0 Zp Zm Z0

A

Z

(II)(I)

B~ ~

~
 

  The possibility distribution can be stated as the degree of occurrence of an 
event with imprecise data. Here DM adopted triangular possibility distribution for 
all imprecise numbers as they are flexible for fuzzy arithmetic operations. For 
example Cij   is based on three prominent data as follows. 
(i) The most pessimistic value ( p

ijC ) that has a very low likelihood of belonging to 
the set of available values (possibility degree = 0 if normalized). 
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(ii) The most possible value ( m
ijC ) that definitely belongs to the set of available 

values (possibility degree = 1 if normalized). 
(iii) The most optimistic value ( 0

ijC ) that has a very low likelihood of belonging to 
the set of available values (possibility degree = 0 if normalized). 

 
3.1. Developing an auxiliary MOLP Model 
3.1.1. Strategy for solving the imprecise objective function 
 The strategy involves simultaneously minimizes the most possible goal of the 
imprecise objective function m

1Z , maximizes the possibility of obtaining lower goal 
value (region I in Fig.1), ( )m p

1 1Z  - Z  and minimizing the risk of obtaining higher goal 

value (region II in Fig.1), ( )0 m
1 1Z  - Z .  The last two goals are relative measures 

from m
1Z , the most possible value of the imprecise total net costs. Equations (13) to 

(15) list the results for three new objective functions of the total net cost in equation 
1. 

Min Z11 = m
1Z  = 

m n
m m m
ij ij i ij

i = 1 j = 1
p  + c  + g Q  ∑∑             . . (13) 

Max Z12 = ( )m p
1 1Z  - Z  = ( ) ( ) ( )

m n
m p m p m p
ij ij ij ij i i ij

i = 1 j = 1
p  - p + c  - c + g  - g  Q  ∑∑        . . . (14) 

Min Z13 = ( )0 m
1 1Z  - Z  = ( ) ( ) ( )

m n
0 m 0 m 0 m
ij ij ij ij i i ij

i = 1 j = 1
p  - p c  - c g  - g  Q + + ∑∑        . . . (15) 

Similarly equations (16 – 18) list this result for the new objective function of total 
delivery time in equation (2) 

Min Z21 = m
2Z  = 

m n
ij

ij
i = 1 j = 1 ij

t
Q

e
 
 
  

∑∑             . . . (16) 

Max Z22 = ( )m p
2 2Z  - Z  = 

m pm n
ij ij

ij
i = 1 j = 1 ij

t  - t
Q

e
 
 
  

∑∑           . . . (17) 

Min Z23 = ( )0 m
2 2Z  - Z  = 

0 mm n
ij ij

ij
i = 1 j = 1 ij

t  - t
Q

e
 
 
  

∑∑           . . . (18) 

Equations (19) – (21) list the results for the new objective functions of total number 
of deteriorated items in equation (3) 

Min Z31 = m
3Z  = 

m n
m
ij ij

i = 1 j = 1
d Q∑∑             . . . (19) 

Max Z32 = ( )m p
3 3Z  - Z  = m p

ij ij ijd  - d  Q  ∑∑           . . . (20) 

Min Z33 = ( )0 m
3 3Z  - Z  = 0 m

ij ij ijd  - d  Q  ∑∑           . . . (21) 

3.1.2. Strategy for solving the imprecise constraints  
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 The available supply for each source, iS% , is imprecise and has a triangular 
possibility distribution with the most and least possible values. The main problem is 
to obtain a crisp representative number for the imprecise supply. We apply weighted 
aggregate method to convert iS% into a crisp number. If the minimum acceptable 
possibility β is specified, the auxiliary crisp inequality constraint then can be 
represented as follows 

 
n

p m 0
ij 1 i,β 2 i,β 3 i,β

j = 1
Q   w S  + w S  + w S≤∑                            .(22) 

where 0 ≤ we ≤ 1, Σ we = 1 (e = 1, 2, 3), w1, w2, w3 represent the corresponding 
weights of the most pessimistic, most possible and most optimistic values of the 
imprecise number respectively. 
Similarly if the minimum acceptable possibility β is given, the auxiliary crisp 
inequality constraints of equations (5) and (6) can be represented as follows  

  
m

p m 0
ij 1 i,β 2 i,β 3 i,β

i = 1

Q   w D  + w D  + w D ,  j≥ ∀∑               . . . (23) 

  
n

p m 0
ij ij 1 i,β 2 i,β 3 i,β

j = 1
l Q   w W  + w W  + w W ,  i≤ ∀∑         . . . (24) 

Fuzzy ranking concept (Tanaka et al 1984, Ramik and Rimaneck 1985, Lai and 
Hwang 1992) is used to convert imprecise inequality constraint (7), (8) and (11). 

  
n

p p
ij,β ij i max,β

j = 1
a Q   M   i≤ ∀∑              . . (25) 

  
n

m m
ij,β ij i max,β

j = 1
a Q   M   i≤ ∀∑            . . . (26) 

  
n

0 0
ij,β ij i max,β

j = 1
a Q   M   i≤ ∀∑            . . . (27) 

Inequality constraint (8) can be represented as follows  

  ( )
n

p p p p
ij,β ij,β i ij i,β

j = 1
P  + C  + g Q   B   i≤ ∀∑          . . . (28) 

  ( )
n

m m m m
ij,β ij,β i ij i,β

j = 1
P  + C  + g Q   B   i≤ ∀∑          . . . (29) 

  ( )
n

0 0 0 0
ij,β ij,β i ij i,β

j = 1
P  + C  + g Q   B   i≤ ∀∑          . . . (30) 

Inequality constraint (11) can be represented as follows  

  
n

p p
ij,β ij i,β

j = 1
d Q   d   i≤ ∀∑            . . . (31) 

  
n

m m
ij,β ij i,β

j = 1
d Q   d   i≤ ∀∑            . . . (32) 
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n

0 0
ij,β ij i,β

j = 1
d Q   d   i≤ ∀∑              . . (33) 

 
3.1.3. Solving the auxiliary MOLP problem  
The auxiliary MOLP problem developed above can be converted into equivalent 
single goal LP problem using Linear Membership Function of Zimmerman (1976, 
78) to represent imprecise goal of DM together with fuzzy decision making concept 
of Bellman and Zadeh (1970), First specifies the Positive Ideal Solution (PIS) and 
Negative Ideal Solution (NIS) of the objective functions (13) to (21) of the auxiliary 
MOLP problem as follows  

1 1

PIS m NIS m
g g g gZ   =  Min Z                         Z   = Max Z     g = 1, 2, 3        . . (34a) 

( ) ( )
2 2

PIS m p NIS m p
g g g g g gZ   =  Max Z  - Z             Z   =  Min Z  - Z     g = 1, 2, 3     . . . (34b) 

( ) ( )
3 3

PIS 0 m NIS 0 m
g g g g g gZ   =  Min Z  - Z             Z   =  Max Z  - Z     g = 1, 2, 3     . . . (34c) 

Furthermore the corresponding linear membership functions for each objective 
function is defined by  

 fg1(Zg1) = 

1 1

1 1

1 1 1

1 1

1 1

PIS
g g

NIS
g g PIS NIS

g g gNIS PIS
g g

PIS
g g

1                        if Z    <    Z

Z - Z
         if Z     Z     Z

Z - Z

0                        if Z    >    Z                  g = 1, 2, 3





≤ ≤




      . . . (35) 

 fg2(Zg2) = 

2 2

2 2

2 2 2

2 2

2 2

PIS
g g

NIS
g g NIS PIS

g g gPIS NIS
g g

NIS
g g

1                        if Z    >    Z

Z  - Z
         if Z     Z     Z

Z - Z

0                        if Z    <    Z                g = 1, 2, 3





≤ ≤




      . . . (36) 

 fg3(Zg3) = 

3 3

3 3

3 3 3

3 3

3 3

PIS
g g

NIS
g g PIS NIS

g g gNIS PIS
g g

NIS
g g

1                        if Z    <    Z

Z - Z
         if Z    Z     Z

Z - Z

0                        if Z    >    Z                g = 1, 2, 3





≤ ≤




      . . . (37) 

The maximum operator of the fuzzy decision making concept of Bellman and Zadeh 
(1970) is used to aggregate all fuzzy sets. Introducing the auxiliary variable              
L enables the auxiliary MOLP single goal LP, from that can be solved efficiently 
using standard simplex method. Consequently the complete ordinary LP model for 
solving the MDPD problems with multiple imprecise goals can be formulated as 
follows. 
Max L  

Subject to  L ≤ 1 1

1 1

NIS
g g
NIS PIS
g g

Z   -    Z
   g  =  1, 2, 3

Z   -   Z
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   L ≤ 2 2

2 2

NIS
g g
PIS NIS
g g

Z   -    Z
   g  =  1, 2, 3

Z   -   Z
 

   L ≤ 3 3

3 3

NIS
g g
NIS PIS
g g

Z   -    Z
   g  =  1, 2, 3

Z   -   Z
 

Equations (9), (10), (22) to (33) and Qij ≥ 0, ∀i, ∀j 
where L value (0 ≤ L ≤ 1) represents the overall DM satisfaction with the 
determined goal values. 
 
3.1.4. Solution procedure algorithm 
Step 1: Formulate the original imprecise multi objective PLP model according to 
equations 1 – 12. 
Step 2: Model the imprecise coefficients and right hand side values using the 
triangular possibility distributions. 
Step 3: Develop the new objective functions of auxiliary MOLP problem for each of 
the imprecise objective functions using equations (13) to (21). 
Step 4: Given the minimum acceptable possibility β and convert the imprecise 
constraints into crisp ones using either the weighted average or the fuzzy ranking 
methods, respectively as equations (21) to (33). 
Step 5: Specify the corresponding linear membership functions for each of the new 
objective functions in the auxiliary MOLP problem using equations (35) to (37) and 
then aggregates the auxiliary MOLP problem into an equivalent ordinary single goal 
LP model by the minimum operator. 
Step 6: Solve and modify the model interactively.  
 
A company produces soft drinks from 3 plants and distributes them to 4 destinations. 
The following table gives the data. 
 

Table 1: Summarized distribution data 

Source 
Destination Supply (in 

000 dozen 
bottle) D1 D2 D3 D4 

S1 
(0.6,0.8,0.9)*/ 

(4.8,6.7)** 
(2.4,3,3.5)/ 
(34,40,44) 

(1.8,2.1,2.3)/ 
(10.6,12,13) 

(1.5,1.8,2)/ 
(14,16,17) (17.2,18,18.8)

S2 
(1.1,1.3,1.4)/ 
(8.6,10,11.2) 

(3.1,3.6,4.1)/ 
(27,32,36) 

(1.4,1.6,1.7)/ 
(13.2,15,16.2)

(2.2,2.5,2.7)/ 
(20,22,23.6) (22.6,24,25.4)

S3 
(1.5,1.8,2.0)/ 
(10.6,12,13) 

(3.1,3.5,3.9)/ 
(26,30,33.2) 

(2.1,2.4,2.7)/ 
(16.2,18,19.4)

(0.8,1,1.1)/ 
(8.6,10,11) (12.6,13,13.4)

Demand 
(in 000 
dozen 
bottle) 

(11.6,12,12.4) (5.7,6,6.3) (15.5,16,16.5) (19.2,20,20.8)  

Note: ‘*’ denotes distribution cost per unit (in $), ‘**’ denotes delivery time per 
truck to carry 100 dozen bottles (hours)) 
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Table 2: 

The inspection cost for one dozen bottles is as follows  
Source Inspection Cost (in $) 

S1 (0.02,0.03,0.04) 
S2 (0.06,0.07,0.08) 
S3 (0.08,0.09,0.10) 

 
Table 3: Summarized imprecise manufacturing data of all sources 

Source ijP%  
($/unit) 

ija%  
(machine 
hr/unit) 

iB%  
(in 000 
dollars) 

i maxW%  
(in 000 

man hours)

i maxM%  
(in 000 

machine 
hours) 

S1 (2.4,3,3.5) (0.19,0.21,0.23) (70,80,90) (5.2,5.6,6.0) (3.6,3.8,4.15) 
S2 (2.3,2.7,3.0) (0.14,0.16,0.18) (115,125,135) (4.8,5.0,5.2) (3.7,3.90,4.35)
S3 (3.0,3.6,4.0) (0.1,0.12,0.14) (60,68,76) (1.9,2.1,2.3) (1.5,1.60,1.95)

 
Table 4: Percentage of imperfect quality items  

 

Source Destination 
D1 D2 D3 D4 

S1 
(0.0046, 

0.005,0.006) 
(0.0035, 

0.004,0.0046) 
(0.0054, 

0.006,0.0065) 
(0.0008, 

0.001,0.0012) 

S2 
(0.0028, 

0.003,0.0032) 
(0.006, 

002,0.0022) 
(0.0008, 

0.001,0.0012) 
(0.0016, 

0.002,0.0022) 

S3 
(0.0016, 

0.002,0.0022) 
(0.0028, 

0.003,0.0032) 
(0.0016, 

0.002,0.0022) 
(0.0035, 

0.004,0.0046) 
 

Table 5: Summarized crisp manufacturing data of all sources  
 

Source 
lij 

(man 
hours/unit) 

bij 
(ft2/unit) 

fij 
(%) 

Fimin 
(units) 

S1 0.30 0.32 0.04 720 
S2 0.20 0.28 0.03 650 
S3 0.15 0.30 0.05 620 

Maximum warehouse space for four distribution centres D1, D2, D3 and D4 are 
4000 ft2, 1700 ft2, 5000 ft2, 5800 ft2 respectively, capacity per truck from each source 
to various destinations is fixed to carry 100 dozen bottles. 
 
3.2 Implementation 
The integrated MDPD problem for the above case focuses on developing an 
interactive PLP method for optimizing the manufacturing / distribution plan in 
uncertain environment. Solution of MDPD problem is expected to minimize total net 
worth, total delivery time and total imperfect quality items subject to constraints on 
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available capacities, labour levels, quota flexibility, budget constraints at each 
source, number of imperfect quality items, forecast demand and warehouse space at 
each distribution center. 
 The interactive solution procedure using the proposed PLP method is as follows. 
First formulate the original multi objective PLP model for the MDPD problem 
according to equation 1 – 12. Second develop the new objective function of the 
auxiliary MOLP for each of the imprecise objective function using equations 13 – 
21. Third, formulate the auxiliary crisp constraints using equations 22 – 33 at β = 
0.5. This work sets w2 = 4/6, w1 = w3 = 1/6. The most likely values w2 = 4/6 are used 
herein because these values are generally most important ones. 
 Specify the PIS and NIS for all the new objective functions in the auxiliary 
MOLP problem and define the corresponding linear membership function for each 
objective function using equations 35, 36, 37. Both intervals of PIS and NIS must 
cover the LP solution. The new objective functions of auxiliary MOLP problem are 
solved using the ordinary single goal LP model and Table 6 presents the 
corresponding sets of PIS and NIS of the initial solution. 
 Additionally this auxiliary MOLP problem can be converted into an equivalent 
ordinary single goal LP form using the minimum operator to aggregate all fuzzy 
sets. Finally LINGO computer software is used to run this ordinary LP model and 
obtains the following results. Table 7 lists the optimal manufacturing / distribution 
plan. 
  1Z%  = ($188409.3, $231717.38, $263901.48)  
  2Z%  = ($5161.17, $8470.46, $11779.75) hours 
  1Z%  = ($159, $173, $197) units 
and over all DM satisfaction is 0.8438 with the determined goal values. The 
objective values using the proposed PLP method should be precise and have 
triangular possibility distribution because the related cost/time coefficients are 
always imprecise in nature. 
 

Table 6: The PIS and NIS for all the objective function  
Objective 
Function 

 Min Zg1 
(g = 1,2) 

Max Zg2 
(g = 1,2) 

Min Zg3 
(g = 1,2) 

(PIS, NIS) 

Z11($) 261488 - - (250000,800000) 
Z12($) - 43380 - (50000,10000) 
Z13($) - - 31160 (30000,80000) 

Z21(hours) 11306 - - (11500,22500) 
Z22(hours) - 1075 - (1200,400) 
Z23(hours) - - 829 (800,2100) 
Z31(units) 169 - - (160,500) 
Z32(units) - 23 - (30,5) 
Z33(units) - - 27 (20,80) 
 

Table 7: The optimal MDPD plan with the proposed PLP method solution 
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Item  Solutions 
Qij (in dozen  Q11 = 10536, Q12 = 0, Q13 = 6233, Q14 = 1231, Q21 = 0,   
bottles)  Q22 = 5762, Q23= 6007, Q24 = 11231, Q31 = 1464, Q32 = 238,  
 Q33 = 3760, Q34 = 7538 
L value  L = 0.8345 
Objective  
Value ($)  Z11 = 231717.38 ; Z12 = 43308.08 ; Z13 = 32184.10 ;  
 1Z%  = (188409.3, 231717.38, 263901.48)* 
 Z21 = 8470.46 ;  Z22 =  3309.29 ; Z23 =  817.46 ; 
 2Z%  = (5161.17, 8470.46, 11779.75)* 
 Z31 = 173;  Z32 =  22 ; Z33 =  24 ; 
 3Z%  = (151, 173, 197)*  
 
Note :  The objective values have triangular distributors of  
  gZ%  =  (Zg1 - Zg2, Zg1, Zg1 + Zg3) g = 1, 2. 
 

Table 8: Comparison of solutions 

Item  
Objective Function 

LP_1  
Min Z1 

LP_2 
Min Z2 

LP_3 
Min Z3 

The proposed 
PLP method 

Max L 

L 100% 100% 100% 0.8438 

Z1 (Total net costs, $) 261488 - - 
(18840903,  
231717.38,  
263901.48) 

Z2 (Total delivery 
time, hours) - 11306 - 

(5161.17, 
8470.46, 

11779.75) 
Z3 (Total Imperfect 

Quality Items) - - 169 (151,173,197) 

 
3.3. Analysis 
The proposed method yields efficient solutions to the integrated MDPD problem 
which can be solved by ordinary LP model .The Decision Maker specifies the most 
possible value of each imprecise data as the precise number. Table 7 compares the 
results obtained using the LP model with those obtained using PLP method. 
According to Table 7 , minimum value of z1 by LP-1 is $261488 , minimum value 
of z2 by LP-2 is 11306 hours and minimum value of z3 by LP-3 is 169 units . These 
figures reveal that the PLP yields compromise solutions, compared to optimal goal 
values by crisp single goal LP model and integrated manufacturing/distribution plan 
is made based on PLP method which has acceptable overall DM satisfaction in 
uncertain environments. 
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4. Conclusion 
This work presents a possibilistic Programming method for solving the integrated 
MDPD problems with multiple imprecise goals in uncertain environment. The 
proposed method aims to minimize the total net costs, total delivery time and the 
number of imperfect quality items with reference to available supply, inspection 
costs, labour levels, quota flexibility, budget, percentage of imperfect quality items 
transported from each source, demand and warehouse space at each destination. An 
industrial example is given to illustrate the method. LINDO software is used to solve 
the problem. The interactive method yields an efficient compromise solution and 
overall Decision Maker satisfaction with the given goal values. 
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