Intern. J. Fuzzy Mathematical Archive

Vol. 1, 2013, 71-78 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 26 February 2013 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

$\begin{array}{c} Decomposition \ of \ Fuzzy \ \eta-Continuity \ and \ Fuzzy \\ A-Continuity \end{array}$

M. Rajamani¹, V. Inthumathi² and G. Anusuya Devi³
¹Department of Mathematics, N.G.M. College, Pollachi, Tamilnadu-642001
²Department of Mathematics, N.G.M. College, Pollachi, Tamilnadu-642001
Email: inthugops@yahoo.com
³Department of Mathematics, Karpagam University, Coimbatore-21
Email: anusuya.hari@gmail.com*

Received 9 February 2013; accepted 21 February 2013

Abstract. In this paper, we introduce and study the notions of fuzzy η -sets, fuzzy $\eta\zeta$ -sets and we obtain decompositions of fuzzy η -continuity and fuzzy A-continuity in fuzzy topological spaces.

Keywords: Fuzzy η -sets, fuzzy $\eta\zeta$ -sets, fuzzy η -continuity, fuzzy $\eta\zeta$ - continuity, A-continuity.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

In 1986, Tong [12] introduced the notions of A-sets and A-continuity in topological spaces and established a decomposition of continuity. In 1989, he [13] introduced the notions of B-sets and B-continuity to obtain another new decomposition of continuity and Ganster and Reilly [4] have improved Tong's decomposition result and provided a decomposition of A-continuity. In 2004, Rajamani and Ambika [9], introduced the notions of fuzzy A-sets and fuzzy B-sets to obtain the decomposition of fuzzy continuity. In 2004, Santhi and Rajamani [11] introduced fuzzy AB-sets and fuzzy AB-continuity in fuzzy topological spaces. In 2006, Noiri and Sayed [6] introduced the notions of η -sets and obtained some decompositions. In 2008, Jafari et.al. [5] introduced the concept of fuzzy C-sets and obtained a decomposition of fuzzy A-continuity.

2. Preliminaries

Throughout this paper X and Y denote fuzzy topological spaces (X, τ) and (Y, σ) respectively. On which no separation axioms are assumed. If λ is a fuzzy set in a fuzzy topological space X, fuzzy closure, fuzzy interior, the fuzzy α -closure and fuzzy α -interior are denoted by $cl(\lambda)$, int (λ) , $cl_{\alpha}(\lambda)$ and $int_{\alpha}(\lambda)$ respectively.

Definition 2.1. A fuzzy set λ in a fuzzy topological space X is called

- 1. a fuzzy pre-open set [2] if $\lambda \leq int(cl (\lambda))$ and a fuzzy pre-closed set if $cl (int(\lambda)) \leq \lambda$,
- 2. a fuzzy semi-open set [1] if $\lambda \leq cl(int(\lambda))$ and a fuzzy semi-closed set if int $(cl(\lambda)) \leq \lambda$,
- 3. a fuzzy α -open set [2] if $\lambda \leq int(cl(int(\lambda)))$ and fuzzy α -closed set if $cl(int(cl(\lambda))) \leq \lambda$,
- a fuzzy regular-open set [2] if λ = int(cl(λ)) and a fuzzy regular-closed set if λ = cl(int(λ)),
- 5. a fuzzy clopen [3] if and only if it is both fuzzy open and fuzzy closed.

Definition 2.2. A fuzzy set λ in a fuzzy topological space X is called

1. a fuzzy AB-set [11] if $\lambda \in FAB(X)$ = { $\alpha \land \beta$: $\alpha \in \tau$, int(cl(β)) $\leq \beta \leq$ cl(int(β))},

2. a fuzzy A-set [5] if $\lambda \in FA(X) = \{\alpha \land \beta : \alpha \in \tau, \beta = cl(int(\beta))\},\$

3. a fuzzy B-set [9] if $\lambda \in FB(X) = \{ \alpha \land \beta : \alpha \in \tau, int(cl(\beta)) \le \beta \}$,

4. a fuzzy LC-set [8] if $\lambda \in F LC(X) = \{ \alpha \land \beta : \alpha \in \tau, cl(\beta) = \beta \}$.

The collection of all fuzzy AB-set(resp. fuzzy A-set, fuzzy B-set, fuzzy LC-set) in a fuzzy topological space X will be denoted by FAB(X)(resp. FA(X), FB(X), F LC(X)).

Definition 2.3. A function $f: X \rightarrow Y$ is called

- 1. fuzzy α -continuous [2] if $f^{-1}(\lambda)$ is fuzzy α -open in X, for each fuzzy open set λ in Y,
- 2. fuzzy pre-continuous [2] if $f^{-1}(\lambda)$ is fuzzy pre-open in X, for each fuzzy open set λ in Y,
- 3. fuzzy semi- continuous [4] if $f^{-1}(\lambda)$ is fuzzy semi-open in X, for each fuzzy open set λ in Y,
- fuzzy A-continuous [5] if f⁻¹(λ) is fuzzy A-set in X, for each fuzzy open set λ in Y,
- 5. fuzzy B-continuous [8] if $f^{-1}(\lambda)$ is fuzzy B-set in X, for each fuzzy open set λ in Y,
- 6. fuzzy AB-continuous [10] if $f^{-1}(\lambda)$ is fuzzy AB-set in X, for each fuzzy open set λ in Y,
- 7. fuzzy LC-continuous [7] if $f^{-1}(\lambda)$ is fuzzy LC-set in X, for each fuzzy open set λ in Y.

3. Fuzzy η -sets and fuzzy $\eta\zeta$ -sets

Definition 3.1. A fuzzy set λ of a fuzzy topological space X is called a fuzzy η -set if $\lambda = \alpha \land \beta$, where α is fuzzy open and β is a fuzzy α -closed set in X.

Definition 3.2. A fuzzy set λ of a fuzzy topological space X is called a fuzzy $\eta\zeta$ set if $\lambda = \alpha \land \beta$, where α is fuzzy open and β is a fuzzy clopen set in X. The A Decomposition of Fuzzy η -Continuity and Fuzzy A – Continuity

collection of all fuzzy η -sets(resp. fuzzy $\eta\zeta$ -sets) in a fuzzy topological space X will be denoted by F η (X)(resp. F $\eta\zeta$ (X)).

Definition 3.3. A fuzzy set λ in a fuzzy topological space X is called a fuzzy generalized α -closed (Written as fuzzy g α -closed) in X if $cl_{\alpha}(\lambda) \leq \alpha$ whenever $\lambda \leq \alpha$ and α is fuzzy open in X.

Theorem 3.4. For a fuzzy set λ in a fuzzy topological space X, the following are hold:

- 1. Every fuzzy $\eta\zeta$ -set is a fuzzy A-set.
- 2. Every fuzzy A-set is a fuzzy LC-set.

Proof: 1. Let λ be fuzzy $\eta\zeta$ -set. Then $\lambda = \alpha \land \beta$, where α is fuzzy open and β is fuzzy clopen. Since every fuzzy clopen set is fuzzy regular closed, β is fuzzy regular closed. Hence λ is fuzzy A-set in X.

3. Let λ be fuzzy A-set. Then $\lambda = \alpha \land \beta$, where α is fuzzy open and β is fuzzy regular closed. Since every fuzzy regular closed set is closed, β is closed. Hence λ is a fuzzy LC-set in X.

Theorem 3.5. For a fuzzy set λ in a fuzzy topological space X, the following are hold:

- 1. Every fuzzy LC-set is a fuzzy η -set.
- 2. Every fuzzy η -set is a fuzzy B-set.

Proof: 1.Let λ be fuzzy LC-set. Then $\lambda = \alpha \land \beta$, where α is fuzzy open and β is fuzzy closed. Since, every fuzzy closed set is fuzzy α -closed, β is fuzzy α -closed. Hence λ is a fuzzy η -set in X.

2. Let λ be fuzzy η -set. Then $\lambda = \alpha \land \beta$, where α is fuzzy open and β is fuzzy α -closed. Since every fuzzy α -closed of fuzzy semi-closed, β is fuzzy semi-closed. Hence λ is fuzzy B-set in X.

For the sets defined above, we have the following implications:

None of these implications are reversible as shown from the following examples.

Example 3.6. Let $X = \{a, b, c\}$. Define $\alpha_1, \alpha_2 : X \rightarrow [0, 1]$ by $\alpha_1(a) = 0.6$ $\alpha_2(a) = 0.2$

 $\begin{array}{l} \alpha_1(b)=0.5 \quad \alpha_2(b)=0.5 \\ \alpha_1(c)=0.2 \quad \alpha_2(c)=0.4 \\ \text{Let } \tau=\{0,\,\alpha_1,\,1\}. \text{ Then } (X,\,\tau) \text{ is a fuzzy topological space. Now, } \alpha_2 \text{ is a fuzzy } \eta\text{-set but not a fuzzy AB-set and not a fuzzy LC-set.} \end{array}$

Example 3.7. Let $X = \{a, b, c\}$. Define $\alpha_1, \alpha_2 : X \rightarrow [0, 1]$ by $\alpha_1(a) = 0.3$ $\alpha_2(a) = 0.4$ $\alpha_1(b) = 0.3$ $\alpha_2(b) = 0.5$ $\alpha_1(c) = 0.5$ $\alpha_2(c) = 0.5$ Let $\tau = \{0, \alpha_1, 1\}$. Then (X, τ) is a fuzzy topological space. Now, α_2 is a fuzzy AB-set but not a fuzzy η -set.

Example 3.8. Let $X = \{a, b, c\}$. Define $\alpha_1, \alpha_2 : X \rightarrow [0,1]$ by $\alpha_1(a) = 0.3 \quad \alpha_2(a) = 0.7$ $\alpha_1(b) = 0.4 \quad \alpha_2(b) = 0.6$ $\alpha_1(c) = 0.4 \quad \alpha_2(c) = 0.6$ Let $\tau = \{0, \alpha_1, 1\}$. Then (X, τ) is a fuzzy topological space. Now, α_2 is a fuzzy Aset but not a fuzzy $\eta\zeta$ -set.

Remark 3.9. Example 3.6 and Example 3.7 show that the notions of fuzzy η -sets and fuzzy AB-sets are independent.

Theorem 3.10. For a fuzzy set λ of a fuzzy topological space (X,τ) , the following are equivalent:

- 1. λ is fuzzy α -closed,
- 2. λ is a fuzzy η -set and fuzzy $g\alpha$ -closed.

Proof : (1) \Rightarrow (2). Since every fuzzy α -closed set is fuzzy α -closed and every fuzzy α -closed set is a fuzzy η -set.

(2) \Rightarrow (1). Since λ is a fuzzy η -set, then $\lambda = \alpha \wedge cl_{\alpha}(\lambda)$, where α is fuzzy open and $cl_{\alpha}(\lambda)$ is fuzzy α -closed. So $\lambda \leq \alpha$ and since λ is fuzzy g α -closed then $cl_{\alpha}(\lambda) \leq \alpha$.

Therefore, $cl_{\alpha}(\lambda) \leq \alpha \wedge cl_{\alpha}(\lambda) = \lambda$. But $\lambda \leq cl_{\alpha}(\lambda)$. Therefore, $\lambda = cl_{\alpha}(\lambda)$. Hence, λ is fuzzy α -closed.

Theorem 3.11. A fuzzy set λ in a fuzzy topological space X is fuzzy open if and only if it is a fuzzy pre-open set and a fuzzy B-set. **Proof:** Necessity is trivial.

Sufficiency: Since λ is fuzzy B-set, we have $\lambda = \alpha \land \beta$, where α is a fuzzy open set and $int(cl(\beta)) \le \beta$, which implies $int(cl(\beta)) \le int(\beta)$. But we know $int(\beta) \le int(cl(\beta))$. Since λ is a fuzzy pre-open, We have,

- $\lambda \leq \operatorname{int}(\operatorname{cl}(\lambda)),$ = int(cl(\alpha \beta)),
 - $\leq int(cl(\alpha) \wedge cl(\beta)),$

A Decomposition of Fuzzy η -Continuity and Fuzzy A – Continuity

= int(cl(α)) \wedge int(cl(β)),

= int(cl(α)) \wedge int β .

Now, $\lambda = \alpha \wedge \beta$,

 $= (\alpha \wedge \beta) \wedge \alpha$,

 \leq (int (cl (α)) \wedge int (β)) $\wedge \alpha$,

= (int (cl(α)) $\land \alpha$) \land int (β),

 $= \alpha \wedge int (\beta).$

Now $\lambda = \alpha \land \beta \ge \alpha \land \text{ int } (\beta)$, we have

 $\lambda = \alpha \wedge \operatorname{int} (\beta) = \operatorname{int}(\alpha) \wedge \operatorname{int} (\beta) = \operatorname{int}(\alpha \wedge \beta),$

= int (λ). Therefore, λ is fuzzy open.

Theorem 3.12. Let X be a fuzzy topological space. Then a fuzzy set λ is fuzzy open if and only if it is both fuzzy α -open and a fuzzy A-set. **Proof:** Necessity is trivial.

Sufficiency: Let $\lambda = \alpha \land \beta$ be a fuzzy A-set. Where α is fuzzy open and β =cl(int(β)). Since λ is a fuzzy α -open set,

 $\lambda = \alpha \land \beta \leq int(cl(int(\alpha \land \beta))),$

= int(cl(int(α) \wedge int(β))),

= int(cl($\alpha \wedge int(\beta)$)),

 $\leq int(cl(\alpha) \land cl(int(\beta)),$

= int(cl(α) $\wedge \beta$),

= int(cl(α)) \wedge int(β).

Since $\alpha \leq int(cl(\alpha))$, we have

 $\alpha \wedge \beta = (\alpha \wedge \beta) \wedge \alpha$,

 $\leq \operatorname{int}(\operatorname{cl}(\alpha)) \wedge \operatorname{int}(\beta) \wedge \alpha = \alpha \wedge \operatorname{int}(\beta).$

Since $\alpha \land \beta \ge \alpha \land int(\beta)$, and so

 $\lambda = \alpha \land \beta = int(\alpha) \land int(\beta) = int(\alpha \land \beta)$. Therefore λ is a fuzzy open set.

Theorem 3.13. For a fuzzy set λ of a fuzzy topological space (X, τ), the following are equivalent:

- 1. λ is fuzzy open,
- 2. λ is fuzzy $\eta\zeta$ -set,
- 3. λ is fuzzy α -open and a fuzzy A-set,
- 4. λ is fuzzy pre-open and a fuzzy A-set,
- 5. λ is fuzzy α -open and a fuzzy η -set,
- 6. λ is fuzzy α -open and fuzzy LC set,

- 7. λ is fuzzy pre-open and fuzzy LC set,
- 8. λ is fuzzy pre-open and a fuzzy η -set,
- 9. λ is fuzzy pre-open and a fuzzy B-set.

Proof : (1) \Rightarrow (2). Since λ is fuzzy open and $\lambda = \lambda \wedge 1$, where the fuzzy set 1 is fuzzy clopen, then λ is a fuzzy $\eta\zeta$ -set.

 $(2) \Rightarrow (3)$. The proof follows from Theorem 3.12.

 $(3) \Rightarrow (4)$. The result is trivial.

(4) \Rightarrow (5). Every fuzzy A-set is a fuzzy η -set. Since λ is a fuzzy A-set, then λ is fuzzy semi-open. Now both fuzzy semi-open and fuzzy pre-open are fuzzy α -open.

(5) \Rightarrow (6). Since λ is a fuzzy η -set, then $\lambda = \alpha \land cl_{\alpha}$ (λ) where α is fuzzy open and

 $cl_{\alpha}(\lambda)$ is fuzzy α -closed. Since λ is fuzzy α -open, it is fuzzy β -open set. Therefore, $\lambda \leq cl(int(cl(\lambda)))$.

Now,

 $cl(cl_{\alpha}(\lambda)) = cl(\lambda \lor (cl(int(cl(\lambda))))),$

 $= cl(cl(int(cl(\lambda)))),$ = cl(int(cl(\lambda))),

 $= cl_{\alpha}(\lambda).$

Hence, $cl_{\alpha}(\lambda)$ is fuzzy closed and λ is fuzzy locally closed.

(6) \Rightarrow (7). This is trivial.

(7) \Rightarrow (8). Let λ be fuzzy pre-open and fuzzy locally closed by the definition of

fuzzy locally closed $\lambda \in LC(X) = \{ \alpha \land \beta : \alpha \in \tau, cl(\beta) = \beta \}.$

Since every fuzzy closed set is fuzzy α -closed, β is fuzzy α -closed this implies λ is a fuzzy η -set.

(8) \Rightarrow (9). Assume that λ is a fuzzy pre-open and a fuzzy η -set. Since λ is a fuzzy η -set, $\lambda = \alpha \land \beta$, where α is fuzzy open and β is fuzzy α -closed. Since every fuzzy α -closed set is fuzzy semi-closed, λ is a fuzzy B-set.

 $(9) \Rightarrow (1)$. The proof follows from Theorem 3.11.

4. Fuzzy η -continuity and fuzzy $\eta\zeta$ -continuity

Definition 4.1. A function $f: X \to Y$ is said to be fuzzy η -continuous(resp. fuzzy $\eta\zeta$ -continuous, fuzzy generalized α -continuous) if $f^{-1}(V)$ is an fuzzy η -set(resp. fuzzy $\eta\zeta$ -set, fuzzy $g\alpha$ -closed set) in X for every fuzzy open set V of Y.

A Decomposition of Fuzzy η -Continuity and Fuzzy A – Continuity

None of these implications are reversible as shown from the following examples.

Example 4.2. Let $X = \{a, b, c\}$ and α_1, α_2 are fuzzy sets defined by $\alpha_1(a) = 0.3 \ \alpha_2(a) = 0.7$ $\alpha_1(b) = 0.4 \ \alpha_2(b) = 0.6$ $\alpha_1(c) = 0.4 \ \alpha_2(c) = 0.6$ Let $\tau_1 = \{0, \alpha_1, 1\}, \tau_2 = \{0, \alpha_2, 1\}$. Then the identity mapping $f: (X, \tau_1) \rightarrow (X, \tau_2)$ is fuzzy A-continuous but not a fuzzy $\eta\zeta$ -continuous.

Example 4.3. Let $X = \{a, b, c, d\}$ and α_1, α_2 are fuzzy sets defined by $\alpha_1(a) = 0.3 \ \alpha_2(a) = 0.7$ $\alpha_1(b) = 0.4 \ \alpha_2(b) = 0.6$ $\alpha_1(c) = 0.5 \ \alpha_2(c) = 0.5$ $\alpha_1(d) = 0.6 \ \alpha_2(d) = 0.4$ Let $\tau_1 = \{0, \alpha_1, 1\}, \tau_2 = \{0, \alpha_2, 1\}$. Then the identity mapping $f: (X, \tau_1) \rightarrow (X, \tau_2)$ is fuzzy LC-continuous but not a fuzzy A-continuous.

Example 4.4. Let $X = \{a, b, c\}$ and α_1, α_2 are fuzzy sets defined by $\alpha_1(a) = 0.6 \alpha_2(a) = 0.2$ $\alpha_1(b) = 0.5 \alpha_2(b) = 0.5$ $\alpha_1(c) = 0.2 \alpha_2(c) = 0.4$ Let $\tau_1 = \{0, \alpha_1, 1\}, \tau_2 = \{0, \alpha_2, 1\}$. Then the identity mapping $f: (X, \tau_1) \rightarrow (X, \tau_2)$ is fuzzy n-continuous but neither fuzzy LC-continuous nor fuzzy AB-continuous.

Remark 4.5. Example 4.4 we can see that fuzzy η -continuity and fuzzy AB-continuity are independent.

Theorem 4.6. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

- 1. f is fuzzy continuous,
- 2. *f* is fuzzy $\eta \zeta$ -continuous,
- 3. f is fuzzy α -continuous and a fuzzy A-continuous,
- 4. *f* is fuzzy pre-continuous and a fuzzy A-continuous,
- 5. f is fuzzy α -continuous and a fuzzy η -continuous,
- 6. f is fuzzy α -continuous and a fuzzy LC-continuous,
- 7. *f* is fuzzy pre-continuous and a fuzzy LC-continuous,
- 8. f is fuzzy pre-continuous and a fuzzy η -continuous,
- 9. f is fuzzy pre-continuous and a fuzzy B-continuous.

Proof: The proof follows from Theorem 3.13.

REFERENCES

- 1. K.K.Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal. Appl.*, 82 (1981), 14-32.
- 2. A.S.Bin shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, *Fuzzy Sets and Systems*, 44 (1991), 303-308.
- 3. E.Ekici, Generalization of some fuzzy functions, *Bulletin of the Institute of Mathematics Academia Sinica*, 33(3) (2005).
- 4. M.Ganster and I.L.Reilly, A decomposition of continuity, *Acta Math. Hungar.*, 56 (1990), 299-301.
- 5. S.Jafari, K.Viswanathan, M.Rajamani and S.Krishnaprakash, On decomposition of fuzzy A-continuity, *J. Nonlinear Sci. Appl.*, 1(4) (2008), 236-240.
- 6. T.Noiri and O.R.Sayed, On decomposition of continuity, *Acta Math. Hungar.*, 111 (1-2) (2006), 1-8.
- 7. M.Przemski, A decomposition of continuity and α -continuity, *Acta Math. Hungar.*, 61 (1993), 93-98.
- 8. M.Rajamani, On decomposition of fuzzy continuity in fuzzy topological spaces., *Acta Ciencia Indica*, Vol. XXVII M, No.4, 545 (2001).
- 9. M.Rajamani and M.Ambika, Another decomposition of fuzzy continuity in fuzzy topological spaces, proceedings of the Annual conference of KMA and National seminar on Fuzzy Mathematics and Applications, Payyanur, Jan 8-10 (2004) 41-48.
- 10. I.L.Reilly and M.K.Vamanamurthy, On α-continuity in topological spaces, *Acta Math. Hungar.*, 45 (1985), 27-32.
- 11. A.Santhi and M.Rajamani, Fuzzy AB-continuity in fuzzy topological spaces, proceedings of the Annual conference of KMA and National seminar on Fuzzy Mathematics and Applications, Payyanur, Jan 8-10 (2004) 49-55.
- 12. J.Tong, A decomposition of continuity, Acta Math. Hungar., 48 (1986), 11-15.
- 13. J.Tong, On decomposition of continuity in topological spaces, *Acta Math. Hungar.*, 54(1989), 51-55.