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Abstract.  In this paper, we introduce and study the notions of fuzzy    η-sets, fuzzy 
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1. Introduction 
In 1986, Tong [12] introduced the notions of A-sets and A-continuity in topological 
spaces and established a decomposition  of  continuity. In 1989, he [13] introduced 
the notions of  B-sets and B-continuity to  obtain another  new  decomposition  of  
continuity and Ganster and Reilly [4] have improved Tong’s decomposition result 
and provided a decomposition of A-continuity. In 2004, Rajamani and Ambika [9], 
introduced the notions of fuzzy   A-sets and fuzzy B-sets to obtain the 
decomposition of fuzzy continuity. In 2004, Santhi and Rajamani [11] introduced 
fuzzy AB-sets and fuzzy  AB-continuity in fuzzy topological spaces. In 2006, Noiri 
and Sayed [6 ] introduced the notions of η-sets and obtained some decompositions. 
In 2008, Jafari et.al. [5] introduced the concept of fuzzy C-sets and obtained a 
decomposition of fuzzy A-continuity.  
 
2. Preliminaries 
Throughout this paper X and Y denote fuzzy topological spaces (X, τ) and (Y, σ) 
respectively. On which no separation axioms are assumed. If λ is a fuzzy set in a 
fuzzy topological space X, fuzzy closure, fuzzy interior, the fuzzy α-closure and 
fuzzy α-interior are denoted by cl(λ),   int (λ), clα(λ) and intα(λ) respectively.     
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Definition 2.1. A  fuzzy set λ in a  fuzzy topological space  X   is  called  
1. a fuzzy pre-open set [2]   if  λ ≤  int(cl (λ)) and a fuzzy pre-closed  set  if             

cl (int(λ))  ≤  λ, 
2. a fuzzy semi-open set  [1]  if λ ≤ cl(int(λ))  and  a fuzzy  semi-closed set if         

int (cl (λ))  ≤  λ, 
3. a fuzzy α-open set  [2] if  λ ≤ int(cl(int(λ))) and  fuzzy α -closed  set  if  

cl(int(cl(λ)))  ≤  λ, 
4. a fuzzy regular-open set [2] if λ = int(cl(λ)) and a fuzzy regular-closed set if        

λ =  cl(int(λ)), 
5. a fuzzy clopen  [3 ] if and only if  it is both fuzzy open and fuzzy closed.  

 
Definition 2.2. A fuzzy set λ in a fuzzy topological space X is called 
1. a fuzzy AB-set [11] if λ ∈ FAB(X)) = {α  ∧  β: α ∈ τ, int(cl(β)) ≤ β ≤ cl(int(β))}, 

2. a fuzzy  A-set [5] if λ ∈ FA(X)  =  {α  ∧  β: α ∈τ, β =cl(int(β))}, 

3. a fuzzy  B-set [9] if λ ∈ FB(X)  =  {α  ∧  β: α ∈ τ, int(cl(β)) ≤ β}, 

4. a fuzzy  LC-set [8] if λ ∈ F LC(X) = {α  ∧  β: α ∈τ, cl(β) = β}. 
      The collection of  all fuzzy AB-set( resp. fuzzy  A-set, fuzzy  B-set, fuzzy  LC-
set) in a fuzzy topological space X will be denoted by FAB(X)(resp. FA(X),  FB(X), 
F LC(X)). 
 
Definition 2.3. A function  f : X → Y  is  called 

1. fuzzy α-continuous [2] if f -1(λ) is fuzzy α-open in X, for each fuzzy open 
set λ in Y, 

2. fuzzy pre-continuous  [2] if f -1(λ) is fuzzy pre-open in X, for each fuzzy 
open set λ in Y, 

3. fuzzy semi- continuous [4] if f -1(λ) is fuzzy semi-open in X, for each fuzzy 
open set λ in Y, 

4. fuzzy A-continuous [5] if f -1(λ) is fuzzy A-set in X, for each fuzzy open set 
λ in Y, 

5. fuzzy B-continuous  [8] if f -1(λ) is fuzzy B-set in X, for each fuzzy open set 
λ in Y, 

6. fuzzy AB-continuous [10] if f -1(λ) is fuzzy AB-set in X, for each fuzzy 
open set λ in Y, 

7. fuzzy LC-continuous [7] if  f -1(λ) is fuzzy LC-set in X, for each fuzzy open 
set λ in Y. 

 
3. Fuzzy η-sets and fuzzy ηζ-sets  
Definition 3.1. A fuzzy set λ  of  a fuzzy  topological space X is  called  a fuzzy η-
set if  λ = α ∧ β, where α  is  fuzzy open  and  β  is a fuzzy  α-closed  set in X.  
Definition 3.2. A fuzzy set  λ  of  a fuzzy  topological space X is  called  a fuzzy ηζ-
set if  λ = α  ∧ β ,where α  is  fuzzy open  and  β  is a fuzzy  clopen  set  in X. The 
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collection of all fuzzy η-sets(resp. fuzzy ηζ-sets) in a fuzzy topological space X will 
be denoted by   Fη (X)( resp. F ηζ(X)). 
 
Definition 3.3. A fuzzy set λ in a fuzzy  topological space X is called a fuzzy 
generalized α-closed (Written as fuzzy gα-closed ) in X if clα (λ) ≤ α whenever λ ≤ 
α and α  is  fuzzy open  in  X. 
 
Theorem 3.4. For a fuzzy set λ in a fuzzy topological space X, the following are 
hold: 

1. Every fuzzy ηζ-set is a fuzzy A-set. 
2. Every fuzzy A-set is a fuzzy LC-set.   

Proof: 1. Let λ be fuzzy ηζ-set. Then  λ = α ∧ β, where α is fuzzy open and β is 
fuzzy clopen. Since every fuzzy clopen set is fuzzy regular closed, β is fuzzy regular 
closed. Hence λ is fuzzy A-set in X.  

3. Let  λ  be fuzzy A-set. Then λ = α ∧ β, where α is fuzzy open and β is fuzzy 
regular closed. Since every fuzzy regular closed set is closed, β is closed. 
Hence λ is a fuzzy LC-set in X.   
 

Theorem 3.5. For a fuzzy set λ in a fuzzy topological space X, the following are 
hold: 

1. Every fuzzy LC-set is a fuzzy η-set. 
2. Every fuzzy η-set is a fuzzy B-set. 

Proof: 1.Let λ be fuzzy LC-set. Then  λ = α  ∧ β, where α is fuzzy open and β is 
fuzzy closed. Since, every fuzzy closed set is fuzzy α-closed, β is fuzzy α-closed. 
Hence  λ is a fuzzy η-set in X.  
2. Let λ be fuzzy η-set. Then λ = α  ∧ β, where α is fuzzy open and β is fuzzy α-
closed. Since every fuzzy α-closed of fuzzy semi-closed, β is fuzzy semi-closed. 
Hence λ  is fuzzy B-set in X. 
For the sets defined above, we have the following implications: 
 

    Fηζ(X)                     FA(X)                      FLC(X) 
     
                                                                                         
                                                                                    
                                                                                     Fη(X)                                                                                         
 
                                     
                                           FAB(X)                           FB(X)                  
      
    None of these implications are reversible as shown from the following examples.  
 
 Example 3.6. Let X = {a, b, c}. Define α1, α2 : X → [0, 1] by  
α1(a) = 0.6   α2(a) = 0.2 
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α1(b) = 0.5   α2(b) = 0.5 
α1(c) = 0.2   α2(c) = 0.4 
 Let τ = {0, α1, 1}. Then (X, τ)  is  a fuzzy topological  space. Now, α2 is a fuzzy η-
set but not a fuzzy AB-set and not a fuzzy LC-set. 
 
Example 3.7. Let X = {a, b, c}. Define α1, α2 : X → [0, 1] by  
α1(a) = 0.3   α2(a) = 0.4 
α1(b) = 0.3   α2(b) = 0.5 
α1(c) = 0.5   α2(c)  = 0.5 
 Let τ = {0, α1, 1}. Then (X, τ)  is  a fuzzy topological  space. Now, α2 is a fuzzy 
AB-set but not a fuzzy η-set.  
 
Example 3.8. Let X = {a, b, c}. Define α1 ,  α2 : X → [0,1] by  
α1(a) = 0.3   α2(a) = 0.7 
α1(b) = 0.4   α2(b) = 0.6 
α1(c) = 0.4   α2 (c) = 0.6 
Let τ = {0, α1, 1}. Then (X, τ)  is  a fuzzy topological  space. Now, α2 is a fuzzy A-
set but not a fuzzy ηζ-set. 
 
Remark 3.9. Example 3.6 and Example 3.7 show that the notions of fuzzy η-sets 
and fuzzy AB-sets are independent. 
 
Theorem 3.10. For a fuzzy set λ of a fuzzy topological space (X,τ), the following 
are equivalent: 

1. λ is fuzzy  α-closed,    
2. λ is a fuzzy η-set and fuzzy gα -closed. 

Proof : (1) ⇒ (2). Since every fuzzy α-closed set is fuzzy gα-closed and every 
fuzzy α-closed set is a fuzzy η-set. 
(2) ⇒ (1). Since λ is a fuzzy η-set, then λ = α ∧ clα(λ), where α is fuzzy open and  
clα(λ)  is fuzzy α-closed. So λ ≤ α and since λ is fuzzy gα-closed then clα(λ) ≤ α. 
Therefore, clα (λ) ≤ α ∧ clα (λ) = λ. But λ ≤ clα(λ). Therefore, λ = clα(λ). Hence, λ is 
fuzzy α-closed. 
 

Theorem 3.11. A fuzzy set λ  in a fuzzy topological space X is fuzzy open if and 
only if it is a fuzzy pre-open set and a fuzzy B-set. 
Proof: Necessity is trivial. 
Sufficiency: Since λ is fuzzy B-set, we have λ = α ∧ β, where α is a fuzzy open set 
and int(cl(β)) ≤ β,  which implies int(cl(β)) ≤ int(β). But we know int(β) ≤ int(cl(β)). 
Since λ is a fuzzy pre-open, We have, 
      λ ≤  int(cl(λ)),  
          = int(cl(α ∧ β)), 

≤ int(cl(α) ∧ cl(β)), 
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          = int(cl(α)) ∧int(cl(β)), 

          = int(cl(α)) ∧int β. 

Now,   λ = α ∧ β, 

          = (α ∧ β) ∧ α, 

          ≤ (int (cl (α)) ∧ int (β)) ∧ α, 

          = (int (cl(α)) ∧ α) ∧ int (β), 

          = α ∧ int (β). 

Now  λ = α ∧ β ≥  α ∧ int (β), we have 

  λ = α ∧ int (β)= int(α) ∧ int (β) = int(α ∧ β), 
    = int (λ). Therefore, λ is fuzzy open. 
 

Theorem 3.12. Let X be a fuzzy topological space. Then a fuzzy set λ is fuzzy open 
if and only if it is both fuzzy α-open and a fuzzy A-set. 
Proof: Necessity is trivial.   
Sufficiency: Let λ = α ∧ β be a fuzzy A-set. Where α is fuzzy open and 
β=cl(int(β)). Since λ is a fuzzy α-open set,  
λ = α ∧ β ≤ int(cl(int(α ∧ β))), 

          = int(cl(int(α) ∧ int(β))), 

          = int(cl(α ∧ int(β))), 

          ≤ int(cl(α) ∧cl(int(β)), 

       = int(cl(α) ∧ β), 

= int(cl(α)) ∧ int(β). 
 Since α ≤  int(cl(α)), we have 
α ∧ β = (α ∧ β) ∧ α, 

          ≤  int(cl(α)) ∧ int(β) ∧ α = α ∧ int(β). 

Since α ∧ β ≥ α ∧ int(β), and so  

λ = α ∧ β = int(α) ∧ int(β) = int(α ∧ β). Therefore λ is a fuzzy open set. 
 
Theorem 3.13. For a fuzzy set λ of a fuzzy topological space (X, τ), the following 
are equivalent: 

1. λ is fuzzy open, 
2. λ is  fuzzy ηζ-set, 
3. λ is  fuzzy α-open and a fuzzy A-set, 
4. λ is  fuzzy pre-open and a fuzzy A-set, 
5. λ is  fuzzy α-open and a fuzzy η-set, 
6. λ  is  fuzzy α-open and fuzzy LC set, 
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7. λ is  fuzzy pre-open and fuzzy LC set, 
8. λ is  fuzzy pre-open and a fuzzy η-set, 
9. λ is  fuzzy pre-open and a fuzzy B-set. 

Proof : (1) ⇒ (2). Since λ is fuzzy open and λ = λ ∧ 1, where the fuzzy set 1 is 
fuzzy clopen, then λ is a fuzzy ηζ-set. 
(2) ⇒ (3). The proof follows from Theorem 3.12. 
(3) ⇒ (4). The result is trivial. 
(4) ⇒ (5). Every fuzzy A-set is a fuzzy η-set. Since λ is a fuzzy A-set, then λ is 
fuzzy semi-open. Now both fuzzy semi-open and fuzzy pre-open are fuzzy α-open. 
(5) ⇒ (6). Since λ is a fuzzy η-set, then λ = α ∧ clα (λ) where α is fuzzy open and 
clα(λ)  is fuzzy α-closed.  Since λ is fuzzy α-open, it is fuzzy β-open set. 
Therefore,λ≤ cl(int(cl(λ))). 
Now,  
  cl(clα( λ)) = cl(λ ∨ (cl(int(cl(λ))))), 
                  = cl(cl(int(cl(λ)))), 
                  = cl(int(cl(λ))), 
                  = clα(λ). 
Hence, clα(λ) is fuzzy closed and λ is fuzzy locally closed. 
(6) ⇒ (7). This is trivial. 
(7) ⇒ (8). Let λ be fuzzy pre-open and fuzzy locally closed by the definition of 
fuzzy locally closed λ ∈ LC(X) = {α ∧ β: α ∈τ, cl(β) = β}. 
Since every fuzzy closed set is fuzzy α-closed, β is fuzzy α-closed this implies λ is a 
fuzzy η-set. 
(8) ⇒ (9). Assume that λ is a fuzzy pre-open and a fuzzy η-set. Since λ is a fuzzy η-
set, λ = α ∧ β, where α is fuzzy open and β is fuzzy α-closed. Since every fuzzy α-
closed set is fuzzy semi-closed, λ is a fuzzy B-set. 
(9) ⇒ (1). The proof follows from Theorem 3.11.  
 
4.Fuzzy η-continuity and fuzzy ηζ-continuity  
Definition 4.1. A function f : X → Y is said to be fuzzy η-continuous(resp. fuzzy 
ηζ-continuous, fuzzy generalized  α-continuous) if  f -1(V) is an fuzzy η –set(resp. 
fuzzy ηζ-set, fuzzy gα-closed set) in X for every fuzzy open set V of Y. 

 
 Fηζ-continuity                FA-continuity                F LC-continuity 

      
                                                      
                                                                  
                                                                   F η -continuity       

        
 

                                    
 
                                    FAB-continuity                 FB-continuity          
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 None of these implications are reversible as shown from the following 

examples.   
 
Example 4.2. Let  X = {a, b, c}  and α1, α2  are fuzzy sets defined by  
α1(a) = 0.3 α2(a) = 0.7 
α1(b) = 0.4 α2(b) = 0.6 
α1(c) = 0.4 α2(c) = 0.6 
Let τ1 = {0, α1, 1}, τ2 = {0, α2, 1}. Then the identity mapping   f : (X, τ1) → (X, τ2)  
is fuzzy A-continuous but not a fuzzy ηζ-continuous. 
 
Example 4.3. Let X = {a, b, c, d} and α1,  α2 are fuzzy sets defined by  
α1(a) = 0.3 α2(a) = 0.7 
α1(b) = 0.4 α2(b) = 0.6 
α1(c) = 0.5 α2(c) = 0.5 
α1(d) = 0.6 α2(d) =0.4 
Let τ1 = {0, α1, 1}, τ2 = {0, α2, 1}. Then the identity mapping   f : (X, τ1) → (X, τ2) is 
fuzzy LC-continuous but not a fuzzy A-continuous. 
 
Example 4.4. Let  X = {a, b, c}  and α1 , α2  are fuzzy sets defined by  
α1(a) = 0.6 α2(a) = 0.2 
α1(b) = 0.5 α2(b) = 0.5 
α1(c) = 0.2 α2(c) = 0.4 
Let τ1 = {0, α1, 1}, τ2 = {0, α2, 1}. Then the identity mapping   f : (X, τ1) → (X, τ2) is 
fuzzy η-continuous but neither  fuzzy LC-continuous nor fuzzy AB-continuous. 
 
Remark 4.5. Example 4.4  we can see that fuzzy η-continuity and fuzzy AB-
continuity are independent. 
 
Theorem 4.6. For a function f : (X, τ) → (Y, σ), the following conditions are  
equivalent: 

1. f  is fuzzy continuous, 
2. f  is fuzzy ηζ -continuous, 
3. f  is fuzzy α-continuous and a fuzzy A-continuous, 
4. f  is fuzzy pre-continuous and a fuzzy A-continuous, 
5. f  is fuzzy α-continuous  and a fuzzy η-continuous, 
6. f  is fuzzy α-continuous  and a fuzzy LC-continuous, 
7. f  is fuzzy pre-continuous and a fuzzy LC-continuous, 
8. f  is fuzzy pre-continuous and a fuzzy η-continuous, 
9. f  is fuzzy pre-continuous and a fuzzy B-continuous. 

 
Proof: The proof  follows from Theorem 3.13.  
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