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Abstract. This paper presents a new method ‘PASEB’ fuzzy imoitfective linear
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1. Introduction
Most of the real life problems exhibit the propestiof multiobjectivity and fuzziness in
nature..Some solution methodologies for solvingdinprogramming problem were given
in references[2-4]. Some examples by Belenson aauK|[1] application is in practice
and a practicable solution method for Multi ObjeetiLinear Programing problems has
yet to be found.

PASEB is an iterative and interactive dolutprocedure developed with special
attention to its practicability. The basis of thethod is the pattern search procedure
proposed by Hooke and Jeeves for unconstrainedhization. PASEB can be used to
determine a Best Compromise Solution to a Multictiye linear programming problem,
provided certain conditions referred to later aatisfied, this is time consuming in
practice. In this paper has been developed di@olprocedure based on PASEB to
solve a Fuzzy Multi-objective linear programminglplem .

The paper is organized as follows: Sectiomt®oduces preliminaries it contains
Fuzzy set, Fuzzy number, Triangular Fuzzy Numbée Fuzzy Arithmetic Operations
under Function Principle, Graded Mean IntegratioretiMd, New Operation on
Triangular Fuzzy Number. Section 3 deals with PASERorithm, Properties. The
PASEB Algorithm for FMOLPP. In Section 4, Proposesnethod for solving fuzzy
multi-objective linear programming problemd=inally, section 5 contains some
concluding remarks
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2. Preliminaries

This section introduces the preliminary notatiofighe area of intuitionistic fuzzy set
theory.

Fuzzy set:A fuzzy set A is defined by A={ (x4(X)): x [0.1]}.In the pair (x, i(X)) the
first element x belong to the classical settle, second element ,(x), belong to the
interval [0,1] called membership function.

Fuzzy number: A fuzzy set A on R must posses at least the fotiguproperties to
quality as a fuzzy number.

i) A must be a normal fuzzy set.

ii) A must be closed interval for evea[0.1]

Triangular fuzzy number

A triangular fuzzy numbeAis denoted ad=(4a, &, &) and is defined by
X-3
T

: : _Ja-x .

the membership function gg; (x) ={—=——,if 8, < x< a
&G~
0, otherwise

Jf 8 < x< @,

The fuzzy arithmetic operations under function principle

SupposeA= (a, &, &) and B = (b, by, by) are two triangular fuzzy numbers. Then the
fuzzy arithmetic operations under function prineipre furnished below.
Addition:

E +B = (& + by, &+ by, &+ by), where g &, & by, b,and Rare any real numbers.
Subtraction:

A-B = (aa— b, & — b, & — by), where a &, & by, b,and kare any real numbers.
Scalar Multiplication:

LetA O R, therh A= (A&, Aa, Aas), %> 0 and

AA = (\ag, Aap, Aay), A< O.
Multiplication:

A.B= (c,c,, G), where
T={ah,ab ah a}, T= ah &min T T & max

If a;, &, &, by, b, bsare all nonzero positive real numbers, then

A.B=(ah, ab, ahb).
Division:
%= (% %, .%).if all bs are non-zero positive real numbers.
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Graded mean integration method

Suppose&z (a1, &, &) is a given triangular fuzzy number. Then the deifiication of
~ +4a +a '

the fuzzy number by graded mean integration meibpdA) = (al%

3. PASEB algorithm

Thanassoulies [1] developed “PASEB”, a solutioncpdure to solve Multi-objective

linear programming problem. This section providespRrties and PASEB Algorithm for
solving fuzzy multi objective linear programmingpplem.

Properties

U(C(xY) > U(C(x¥))— C(xXY) is provided to c(X) .

U(C(Y)= U(C(¥))— C(x) COA) are equally desired wheréixl,2,....... U(C(x)) is
referred to as the DM'S value function.

The PASEB algorithm for FMOLPP
Step 1.Determine’%i=1,2,....... ,N, and a starting feasible solutionb&ofirst current
solution.
Step 2. If the current solution is thé"sonsecutive “similar” solution goto next
process. Otherwise carry out local search.
Step 3.If the current solution is efficient gotoStep:4EKe determine an efficient
solution dominating the current solution and gBtep2.
Step 4 Let X be the optimal solution to the efficiency testingdel. If Xis a basic
solution to pl otherwise determine the DM'S preddrsolution in the direction of
trade offs between the objectives offered by soorebasic variable atxif they are
attractive and goto 2. Other wise repeat the forgdor some non basic variable at
x*. and so on. If no non basic variable &bfters desirable trade off between the
objectives gotdstep 6.
Step 5. If some nonbasic variable &t does not generate feasible non basic solution
to P1 when alter marginally discard it. Oterwis¢éedmine the DM’S preferred in the
direction of trade offs between the objective afteby the variable atxoffers
desirable trade offs between the objectives iep6.
Step 6.The DM to specify one or more pairs of sets okotiyes }Jand |,wish to see
improved and worse respectively, at the curremtitiom likely offer objective
values changed compatible with those expresseahie pair |}, I,
Step 7. Determine the DMS preferred solution in the clien of the pattern of
improving solution established and g&@tep2.
Step 8. Determine, if it exists, an efficient solutionrdimating the current, if the
solution is the same or similar to the current gatiep6 otherwise got&tep2.

4. Numerical example

Consider the following Fuzzy multi objective linganogramming problem
Maximize z=(2,3,4)%+(1,1,1)%+(1,2,3)%+(0.5,1,1.5)%

Maximize "2=(1,1,1) %+(0.5,1,1.5) %+(1,2,3) %+(3,4,5) %

Maximize 2=(0.5,1,1.5) x+(4,5,6) %+(1,1,1) %+(1,2,3) %

Subiject to the constraints
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(1,2,3) %+(0.5,1,1.5)%+(3,4,5) %+(2,3,4) %< (50,60,70)
(1,2,3)%+(3,4,5) %+(1,1,1) %+(1,2,3) %< (40,60,80)
X1,X2,X3,Xs > 0

The set of feasible solution of the above problsmeinoted by x

The DM’'S value function for the above problentaken as follows.

U{C(X)}= On the basis of the DM’'S value functiorthe BCS of(i)
[X1 X, basic variable ;X3 are non basic variableg,x=0]

The constraints will become,
(1,2,3) %+(2,3,4) %= (50,60,70)
(2,3,4)%+(1,2,3) %=(40,60,80)

(c) X 3— (3,6,9)%+(6,9,12) %= (150,189,210)
(d) X 2— (4,6,8)%+(2,4,6) % = (80,120,160)

(-1,0,1) %(4,5,6) % = (70,60,50)
(4,5,6) %= (70,60,50)

%= 70,60,50/4,5,6

=(11.6,12,12.5)
Substitute the value in the above equation wd)get
(2,3,4) %+ (1,2,3)% = (40,60,80)
(2,3,4)%+(11.6,24,37.5) = (40,60,80)

(2,3,2)x (40,60,80)-(11.6,24,37.5)

=(2.5,36,68.4)
Hence x=[(.625,12,34.2),(0,0,0),(0,0,0)(1.6,12,12.5)]

C.X =3(.625,12,34.2)+(0,0,0)+(0,0,0)+(11.6,12,12.5)

=(1.875,36,102.6)+(11.6,12,12.5)

=(13.475,48,115.1)

C.X =(.625,12,34.2)+(0,0,0)+(0,0,0)+4(11.6,12,12.5)

=(.625,12,34.2)+(46.4,48,50)

=(47.025,60,84.2)

caX =-(.625,12,34.2)+(0,0,0)+(0,0,0)+2(11.6,12,12.5)
=-(.625,12,34.2)+(23.2,24,25)

=(23.2,24,25)- (.625,12,34.2)

=(-11,12,24.375)

X4= (3.9,5.8,7.8)
X1=(.96,18.3,25.4)
Max 2=(1,1,1) %-(.5,1,1.5)%+(1,2,3) %+(3,4,5) %

Such that

(1,2,3)%+(.5,1,1.5)%+(3,4,5) %+(2,3,4) %= (50,60,70)
(2,3,4) %+(3,4,5)%+(1,1,1) %+(1,2,3) %= (40,60,80)
(2,3,4) %+(1,1,1)%+(1,2,3) %+(.5,1,1.5)% = (65,66,67)
X = (16.6,20,23.3)
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maximize z =(3,4,5) (16.6,20,23.3)

= (69.9,80,83)

=80
Maximize z = (-1,-1,-1)x-(4,5,6) %+(1,1,1) %+(1,2,3)%
Subiject to the constraints
(1,2,3) %+(.5,.1,1.5)%+(3,4,5) %+(2,3,4) %= (50,60,70)
(2,3,4) %+(3,4,5)%+(1,1,1) %+ (1,2,3)% = (40,60,80)
(2,3,4) %+(1,1,1)%+(1,2,3)%+(.5,.1,1.5)% = (65,66,67)
(1,1,1)%+(.5,.1,1.5)%+(1,2,3)%+(3,4,5)% = (70,80,90)

Maximize z =(4,5,6)(10,15,20)
=(40,75,120)
C(%) = (60,30,-12)
C(%) = (20,80,40)
C(%) = (15,-15,75) )
In view of the linearity of U(c(x)) and the fatiat c(Xis preferred to c(3.The DM’'S
preferred feasible solutions is g(in the direction c(¥, c(X)is
c(x)= c(X)= (66,30,-12)
Maximize z~ =& +&,+&;
such that
Cl_):('é 1:(65,66,67)
Co%-8,=(29,30,31)
CaX-8:=(-12,-12,-12)
At the optimal solution > to z_ =0.x 2 is an efficient basic solution.
At %% in the above problem e is non basic while e ,exaa basic at zero level.
Now the trade offs between the objectives offdrge and diseriable and they are as
follows,
(c(d)) = -g,i=1,2,....... N
a;=-1
(13.48,48,115.1) = (65,66,67)
& = (65,66,67) -(13.48,48,115.1)
= (-50.1,18,51.52)
(47.03,60,84.2)8,= (29,30,31)
& =1(29,30,31)- (47.03,60,84.2)
= (-55.2,-30,-16.03)
(-11,12,24.36}; = (-12,-12,-12)

&= (-12,-12,-12) -(-11,12,24.36)
=(-48,-24,1)
1= 8,/8,= (55.2,30,16.03)/(-50.1,18,51.52)=1.66
ag1= 8:/8,= (-48,-24,1)/(-50.1,18,51.52)=1.33
c(a)=(-1,1.66,1.33)
The feasible solution as along c(eaat c(x) as follows,
C(x)= [+ A[c@)] Eish
where A is the maximal value of. in the following
C(x) =(66,30,-13)#(-1,1.66,1.33)
Max X such that

201



R.Sophiaporchelvi and S.Uma

C.x+ L =(65,66,67)
C,.x-1.66\ = (29,30,31)
Cs.x-1.331 =(-12,-12,-12)
xeX,A>0
Solving this equation
(13.48,48,115.1) * = (65,66,67)
L = (65,66,67)- (13.48,48,115.1)
=(-50.1,18,51.50)
(47.025,60,84.2) -1.66= (29,30,31)
-1.66 =(29,30,31) - (47.025,60,84.2)
=(-18.025,-30,-53.2)
A =(10.8,18,31.9)
(-11,12,24.35) - 1.33 = (-12,-12,-12)
-1.38 =(-12,-12,-12) - (-11,12,24.35)
= (-1,-24,-36.35)
A= (0.75,18,27.26)
Henck= \'=18
The DM’s preferred solution is as follows,
Ci= (48,60,12)
5. Conclusion
PASEB is a relatively simple procedure for obtajnia good solution for MOLP
Problem. In this paper, this method is extendeddiee Fuzzy multi objective linear
programming problem.
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