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Abstract. In this paper an algorithm is proposed to obtain optimal solution to
maximize a fractional linear programming problemosé objective is a fractional
function subject to a system of min-T equationshwi#t continuous Archimedean
triangular co-norm. This algorithm is illustrateg & numerical example.
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1. Introduction

Linear fractional programming problems (LFPP) are special type of linear
programming problem. In this paper, we proposewa meethod for finding an optimal
solution to LFPP subject to a system of fuzzy retatequations constraints. Fuzzy
relation equations (FRE) were first introduced @anéhez [5] and applied to diagnosis
problems.

In section 2 we present some basic defimtidn section 3 locking variable is
defined and theorems are proved to find optimalitgmis. Some rules to reduce the
problem size are presented in section 4. A newrigifgo is proposed which is illustrated
by a numerical example in section 5.

2. Preliminaries
In this section we present basic definitions andesproperties of min-t conorm.

Definition 2.1. (George J.Klir/ Boyuan [3]) A fuzzy union / t-camois a binary
operation on the unit interval that satisfies thiéofving axioms for all, b, d € [0,1].
1. T(a,0) = a(boundary condition)
2. b < dimpliesT(a,b)<T(a,d)(monotonicity)
3. T(a,b) = T(b,a)(commutativity)
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4. T[a,T(b,d)] = T[T(a,b),d] (associativity)

LFPP with FRE constraints 2.2

dep

Maximize Z(p) =-2—— e (1)
2. dp

subjectta o Q =7 (2)
wherep € [0,1]",¢;, d; € R are the co-efficients associated with varighleQ = [q;;]
is ann X m matrix Withqij <1, ris anm dimensional vector with < r<1 and the

operatiore represents the min-T composition operator,wliei®a continuous
Archimedean triangular co-norf.(p, g) = max(p, q)].

Definition 2.3. LetS(Q,r) = {p € [0,1]"|p - Q = r} denote the solution set of (2) and
letl ={1,2,3,.......n} andJ = {1,2,3, .......m} be two index sets. Then, the solution
vectorsp € [0,1]™ of the given problem (2) is obtained by

min{T(pl,q”)}=T], V]E] ....................... (3)

idl

2.2. Propertiesof S(Q,r)

() Letan eIemenB of S(Q, r) be called a minimal solution of (2) if for alle

S(Q,r),p < BimplieSp =p; if forallp € S(Q,r),p = Etheng is the minimal solution
of (2).

(i) Let an elemenp of S(Q,r) be called a maximal solution of (2) if for alle
S(Q,r),p = pimpliesp = p; if forall p € S(Q,r),p = p, thenp is the maximum
solution.

(iii) the solution sef(Q, ) is not empty it always contains a unique mininzdlison

pand it may contain several maximal solutions.$@, ) denote the set of all maximal
solutions.
Also S(Q,7) = Uz [p,p] where the union is taken for @lle S(Q,7).

3. Conditionsfor optimality
Definition 3.1. If S(Q, ) # @, the minimal solutio = {p;/i € I} of (2) is determined
by p. = r?gxa(qij T ) 4)

no U ay <

Wherer(qi]-,rj) - {0 otherwise

Note: Wheng determined by (4) does not satisfy (2), th8(Q,r) = @. That is, the
existence of the minimum soluti@ as determined by (4), is a necessary and sufficie
conditions forS(Q,r) # @.

Definition 3.2. If S(Q,r) # ® andp = (py, P2, D3, -+ - pn) be any solution of (2), then
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is said to be a locking variableﬁ(pi,qij) = 1; for somg € J. The locking set op;is
denoted by(pl) = {] E]|T(pl,q”) = T]} ................. (5)

Lemma 3.3.[9] Let T be the continuous Archimedean t-conorm ang;it> r; for each
i € I for any equation in (2) then the solution $€9,r) = 0.

Lemma 3.4. [9] Let T be the continuous Archimedean t-conorm ang (pi) be the
- — /1€l

l
minimal solution and = (p;);; be any solution of (3). Ip; is locking in the §
equation, thep; is also locking. If; is not a locking variable, then fpyis also non

locking.

Lemma3.5. [9] Let T be a continuous t-conorm, as{Q, r) # ®in(2). If r; = 1 for
some € J, then all variableg;, Vie I are locking in th¢" equation.

Lemma 3.6. [9] Let T be a continuous Archemeadian t-conorm an (p;);¢; be any
solution of (2). Ifp; is only locking in equations with) = 1, thenp; can take any value

in [Bl,l]

Lemma 3.7. [9] Let T be a continuous t-conorm ampd= (pi) be the minimal
= el
solution. If ¢; < 0,Vi € I the cost co efficient in the objective functionthenp; is an

optimal solution of the given problem.

Theorem 3.8. Letp o Q = r be a consistent system of min-T equations withrdiouous
Archimedean t co-norfi andp its minimal solution. There exists an optimal siolu

p* = (p1, P03 - ooe - . Py) 0 (2) such that eithery = p; orp; =1 for allj €.
Proof: Suppose that* is an optimal solution to (1)-(2) and there exit index € I
such thatl > p; > p;.

Gpt Zci P

Itis clear thatZ(p) = —2Z— is monotone on [0,1].

dep+D dip
izk
Accordingly the value gp; can be either increased to 1 or decreased twithout
decreasing the objective value. Therefore, suabpéimal solutiorp® must exists such
that eitherp; = p; orp; =1 forallj €.

Theorem 3.9. If [, (Q) # {@} for somek € I andc;, < d; in the objective function then
any optimal solution hgs, = P

Proof: Since/,(Q) # {@} for somek € I, alsocy, < d.

But1 > py > py,
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C P+ Gp
It is clear that Z(p) = ——2X—— is monotone on [0,1].

dp+D dp

iZk
Now the value ofp;, can be decreased g, without decreasing the objective value.
Therefore any optimal solution hBs= py.

Theorem 3.10. If J,(Q) = {@} for somek € I andc, > d, in the objective function
then any optimal solution hag = 1.

Proof: Since/,(Q) = {@} for somek € I. That implies;, cannot be a locking in any
equation. Also since, > dy.

But1l > p; > py,

cp+tY.cp

Itis clear that Z(p) = ——2X—— is monotone on [0,1].

dp+>.dp

iZk
Now the value ofp;, can be increased to 1 without decreasing thectite value.
Therefore any optimal solution hag, = 1.

Theorem 3.11. If J,(Q) = {@} for somek € I andc, = d;, = 1 in the objective
function then any optimal solution hag = 1 if Zci s} <Z d p, andp, = Bkif

izk i£k

2.6pi>2 dip .
izk izk
Proof: Case (i)
Sincef,(Q) = {@} for somek € I. That impliegp, cannot be a locking in any equation.
Also sincecy, = dj.
Butl > p; > Pk

C P+ Cp
It is clear that Z(p) = —2X—— is monotone on [0,1].

dop+>.dp
izk
Now the value ofp;, can be increased to 1 without decreasing thectize value.
Therefore any optimal solution hag, = 1.
Case (ii)
Since/,(Q) = {@} for somek € I. That impliegp, cannot be a locking in any equation.
Also sincec;, = d,.
But1 > p > py,
C P+ CP
It is clear that Z(p) = —2X—— is monotone on [0,1].
dep+> dip
i£k
Now the value ofp, can be decreased g, without decreasing the objective value.
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Therefore any optimal solution fgs= py.

4. Rulesto reducethe problem.

For the given matrix, we define, the following index sets.
Ji@={€llpioa=n}viel and;={i€llpoq;=r}Vj€]
the index sef; (Q) is nothing but the locking sgi(p;) of (2).

Rule 1: If [;(Q) is singleton set for somjee J, ie., [;(Q) = {t}, thenp; = p, where
P, € (pi)l-el :
Proof: Sincel;(Q) = {t}.

~theJ'equation can be satisfied by the variglyle

If p = (p;);e; be any solution of (2). Then th&¢omponent of this solution must
be locking in the'j equation. By lemma 3.5.

If ; =1 for somej € J, then all variableg; Vi € I are locking in the']
equation.

=> [;(Q)is not a singleton set.

If r; < 1, then by theorem 3.8 we hape= p,.

If we apply rule 2, thé"jcolumn ofQ with j € J,(Q) can be deleted. The row
corresponding t@, can also be deleted from mateix

Rule 2: If 1,(Q) 2 14(Q) for somep g € ] in the matrixQ, then the § column ofQ can
be deleted.

5. Algorithm
Step 1: Find the minimal solutiop = (pi) ) of the given problem by (4)
- — /i€

L
Step 2: If p o Q = r, then go to step 3, otherwise stop the processgiMaa problem is
inconsisten{S(Q,r) = @].
Step 3: Compute index seffs andl; for the given matrix Q. Apply rules 1-2 and
theorems 3.8-3.11 to determine the values of detigriables as many as possible. If all
decision variables have been set, then go to st®phérwise repeat step 3.
Step 4: Obtain optimal solution to the given problem.

5.1. Numerical example
Consider the following LFPP with continuous Archihe@n t-conorm fuzzy relational
equations constraint.

2p1_2p2+ P;+ P, t p5+5p6+ p7+8p8+ Py

MaximizeZ(p) =
p1+7p2+3p3+ Pyt Ps— p6+4p7+2p8+ Py

subjecttgp o Q =r
where
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0.25
0.58
0.72
0.65
0.54
0.95
0.53
0.52

0.60
b = (0.54

0.75
0.75
0.76
0.33
0.90
0.60
0.78
0.80

0.75
0.75
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0.45
0.57
0.59
0.60
0.80
0.58
0.82
0.60

0.68
0.60

0.70
0.75
0.46
0.55
0.73
0.90
0.36
0.54

0.55
0.55

0.68
0.76
0.78
0.63
0.84
0.76
0.84
0.80

0.94
0.76

0.43
0.42
0.45
0.30
0.49
0.82
0.65
0.55

0.33
0.43

0.80
0.60
0.65
0.75
0.80
0.64
0.56
0.65

0.66
0.65

0.35
0.70
0.45
0.16
0.50
0.55
0.45
0.28

0.50
0.50

0.48
0.49
0.50
0.55
0.39
0.45
0.44
0.35

0.48
0.48)

Step 1: Find the minimal solution by (4 )

Thatis p = (0.76,0.65,0.60,0.76,0.50, 0.75,0.65, 0.55,0.43)

Step 2: §ncep o Q =r. Then go to step 3.

Step 3: Comp_ute index sefg(P) andl; for the given matrix Q and apply rules 1 — 2 and
theorems 3.8-3.11 to determine the values of thesidba variables as many as possible.

Consider the above matrix Q.
The index sets are

J(ps) =18} 1 (p2) = 257, 1 (ps) =37} J (ps) = (5}, J (ps) = (1.8}, (ps) =

@25}, 1 (p7) = 73 1 (ps) = 347, J (ps) = (24,689},
L ={5}1,={269},I3 ={3,8},1, = {89}, Is = {1,2,4,6}, I = {9}, I, = {2,3,7,8}, Ig
= {519}1 19 = {9}
Sincel; = {5}, I = {9}, 1o = {9}, implies that the variablgs, andp, are the only
locking variable in T, 6" and §' equations. So, by rule 1 any optimal solution has
ps = BSand Py = Po- Sinceps and pq are also locking in equations {1,2,4,6,8,9}. Hence
these columns and rows correspondingstand py can be deleted from matrix Q. The

reduced matrix Q becomes,
0.45
/ 057
0.59

Q= | 0.60
0.58

\0.82
0.60

0.68
0.76
0.78
0.63
0.76
0.84

0.80
The index sets arg, (21) ={5}, J (EZ) ={57}, ]

J(ps) =53 1 (p7) =173 J (ps) = (7.

I3 ={38},1s ={1,2,4,6}, I, ={2,3,7,8}.

0.80
0.60
0.65

0.75 |
0.64

0.56/
0.65

(ps) = 3737 (ps) = (5},

Sincel; < I, then by rule 2, we delete the colomn 3 of matrix Q
Sincec, < d,, ¢35 <d3, ¢; <dj, thenbytheorem (3.9), we s} = p,, p; = ps,

D, = p7, P2,p3 7, are locking in equations 5,7, deleted the coordimg column of

matrix Q.

Now we have to determine the remaining [1,4,6,&8jslen variables. But all index set

](gi) = 0.
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Sincec; > dq, ¢ > dg, cg > dg, by theorem (3.10).
Wesefp, =1, p, =1, pg =1.
Also, sincec, = d,. Now, we have to determin® ¢, p, and Y. d, p,

i24 i24
That implies_ ¢, p, =15.88
iz4

>'d, p,=11.88
i£4
Since Y ¢ p, > d; p,

iz4 i24
By theorem (3.11) we sgi, = p,. Since all the decision variables have beertisen,
go to step 4.

Step 4: Find the optimal solution to the problem (1) — (2)

9
z:cﬂl

Z(p) = =1.31646.

9

z:diﬂ
=
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