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function subject to a system of min-T equations with a continuous Archimedean 
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1. Introduction 
Linear fractional programming problems (LFPP) are a special type of linear 
programming problem. In this paper, we propose a new method for finding an optimal 
solution to LFPP subject to a system of fuzzy relation equations constraints. Fuzzy 
relation equations (FRE) were first introduced by Sanchez [5] and applied to diagnosis 
problems. 
       In section 2 we present some basic definitions. In section 3 locking variable is 
defined and theorems are proved to find optimal solutions. Some rules to reduce the 
problem size are presented in section 4. A new algorithm is proposed which is illustrated 
by a numerical example in section 5. 
 
2. Preliminaries 
In this section we present basic definitions and some properties of min-t conorm. 
 
Definition 2.1. (George J.Klir/ Boyuan [3]) A fuzzy union / t-conorm is a binary 
operation on the unit interval that satisfies the following axioms for all �, �, � ∈ �0,1	. 

1. T(a,0) = a (boundary condition) 
2. b ≤ d implies T(a,b) ≤T(a,d) (monotonicity) 
3. T(a,b) = T(b,a) (commutativity) 
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4. T[a,T(b,d)] = T[T(a,b),d] (associativity) 

 
LFPP with FRE constraints 2.2 
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subject to � ∘ � = �                                                       ………………………………..(2) 
where � ∈ �0,1	�	, �� , �� ∈ � are the co-efficients associated with variable �� , � = ����	 
is an � × � matrix with ��� ≤ 1, � is an � dimensional vector with 0 ≤ �� ≤ 1 and the 
operation ∘ represents the min-T composition operator,where � is a continuous 
Archimedean triangular co-norm. ����, �� = max��, ��	. 
 
Definition 2.3. Let !��, �� = "� ∈ �0,1	�|� ∘ � = �$ denote the solution set of (2) and 
let% = "1,2,3, …… . �$  and ) = "1,2,3, …… .�$  be two index sets. Then, the solution 
vectors � ∈ �0,1	� of the given problem (2) is obtained by  

min
Ii∈

*�+�� , ���,- = �� 	,			∀	/ ∈ )                                                     ……………….....(3) 

 
2.2. Properties of 0�1, 2� 
(i) Let an element � of !��, �� be called a minimal solution of (2) if for all � ∈!��, ��, � ≤ �implies � = �; if for all � ∈ !��, ��, � ≥ � then � is the minimal solution 

of (2). 
(ii) Let an element � of !��, �� be called a maximal solution of (2) if for all � ∈!��, ��, � ≥ �implies � = �; if for all � ∈ !��, ��, � ≥ �, then �  is the maximum 
solution. 
(iii) the solution set !��, �� is not empty it always contains a unique minimal solution �and it may contain several maximal solutions. Let !��, �� denote the set of all maximal 

solutions. 
Also !��, �� = ⋃ 	��	, �	5   where the union is taken for all � ∈ !��, ��. 
 
3. Conditions for optimality 
Definition 3.1. If !��, �� ≠ ∅, the minimal solution � = "��/9 ∈ %$  of (2) is determined 

by ),(max jij
Jji

rqp σ
∈

=                       …………………………………………………..(4) 

where:+��� , ��, = ;�� 									9<	��� < ��0							>?ℎA�B9CA	 D 
 
Note:  When � determined by (4) does not satisfy (2), then  !��, �� = ∅. That is, the 

existence of the minimum solution �, as determined by (4), is a necessary and sufficient 

conditions for !��, �� ≠ ∅. 
 
Definition 3.2. If !��, �� ≠ Φ and � = ��F, �G, �H, ……��� be any solution of (2), then �� 
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is said to be a locking variable if �+�� , ���, = �� for some/ ∈ ). The locking set of �� is 
denoted by	)���� = */ ∈ )I�+�� , ���, = ��-.                                          …………………(5) 
 
Lemma 3.3. [9] Let  � be the continuous Archimedean t-conorm and if ��� > �� for each 9 ∈ % for any equation in (2) then the solution set !��, �� = ∅. 
 

Lemma 3.4. [9]  Let  � be the continuous Archimedean t-conorm and  � = K��L�∈M be the 

minimal solution and � = �����∈M  be any solution of (3). If ��  is locking in the jth  
equation, then �� is also locking. If �� is not a locking variable, then for �� is also non 

locking. 
 
Lemma 3.5. [9] Let T be a continuous t-conorm, and  !��, �� ≠ Φin(2). If  �� = 1 for 
some j∈ ), then all variables �� , ∀i∈ % are locking in the j th equation. 
 
Lemma 3.6. [9] Let � be a continuous Archemeadian t-conorm and � = �����∈M be any 
solution of (2). If �� is only locking in equations with �� = 1, then �� can take any value 
in [�� , 1	. 
 

Lemma 3.7. [9] Let T be a continuous t-conorm and � = K��L�∈M   be the minimal 

solution. If  �� ≤ 0, ∀9 ∈ % the cost co efficient in the objective function ,  then �� is an 

optimal solution of the given problem. 
 
Theorem 3.8. Let � ∘ � = � be a consistent system of min-T equations with a continuous 
Archimedean t co-norm � and � its minimal solution. There exists an optimal solution �∗ = ��F∗, �G∗ , …………��∗� to (2) such that either ��∗ = �� or ��∗ = 1  for all / ∈ ). 
Proof: Suppose that �∗  is an optimal solution to (1)-(2) and there exists an index 9 ∈ %  
such that 1 > ��∗ > ��.  
 It is clear that  
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)(   is monotone on [0,1]. 

Accordingly the value of �O∗   can be either increased to 1 or decreased to �O  without 

decreasing the objective value.  Therefore, such an optimal solution �∗  must exists such 
that either  ��∗ = �� or ��∗ = 1  for all / ∈ ). 
 
Theorem 3.9. If )O��� ≠ "∅$  for some P ∈ %  and �O < �O in the objective function then 
any optimal solution has �O = �O. 
Proof:  Since )O��� ≠ "∅$   for some  P ∈ %,  also �O < �O. 
But 1 > �O∗ > �O, 
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It is clear that  
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Now the value of  �O∗   can be decreased to  �O without decreasing  the objective value. 

Therefore any optimal solution  has�O = �O. 

 
Theorem 3.10. If  )O��� = "∅$  for some  P ∈ % and �O > �O in the objective function 
then any optimal solution has �O = 1. 
Proof: Since )O��� = "∅$  for some  P ∈ %. That implies �O cannot be a locking in any 
equation. Also since �O > �O. 
But 1 > �O∗ > �O, 
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Now the value of  �O∗   can be increased to  1 without decreasing  the objective value. 
Therefore any optimal solution has  �O = 1. 
 
Theorem 3.11. If  )O��� = "∅$  for some  P ∈ % and �O = �O = 1 in the objective 

function then any optimal solution has �O = 1 if ∑∑
≠≠ ki

ii
ki

ii pdpc <   and �O = �Oif  
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Proof: Case (i) 
Since )O��� = "∅$  for some  P ∈ %. That implies �O cannot be a locking in any equation. 
Also since �O = �O. 
But 1 > �O∗ > �O, 

It is clear that  
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Now the value of  �O∗   can be increased to  1 without decreasing  the objective value. 
Therefore any optimal solution has  �O = 1. 
Case (ii) 
Since )O��� = "∅$  for some  P ∈ %. That implies �O cannot be a locking in any equation. 
Also since �O = �O. 
But 1 > �O∗ > �O, 

It is clear that  
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Now the value of  �O∗   can be decreased to  �O without decreasing  the objective value. 
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Therefore any optimal solution  has�O = �O. 

 
4. Rules to reduce the problem. 
For the given matrix �, we define, the following index sets. )���� = */ ∈ )I�� ∘ ��� = ��-, ∀	9 ∈ %  and %� = *9 ∈ %I�� ∘ ��� = ��-, ∀/ ∈ ) 
the index set /���� is nothing but the locking set  )���� of (2). 

 
Rule 1: If %���� is singleton set for some / ∈ ), ie., %���� = "?$, then �� = �Q where 

�Q ∈ +��,�∈M .  
Proof: Since %���� = "?$. 
 ∴theJthequation can be satisfied by the variable �Q. 
 If � = �����∈M be any solution of (2). Then the tth component of this solution must 
be locking in the jth equation. By lemma 3.5. 
 If �� = 1  for some / ∈ ), then all variables  ��∀9 ∈ % are locking in the jth  
equation. 
 => %����is not a singleton set. 
 If �� < 1, then by theorem 3.8 we have �Q = �Q. 
 If we apply rule 2, the jth column of � with / ∈ )Q��� can be deleted. The row 
corresponding to �Q can also be deleted from matrix �. 
 
Rule 2: If %5��� ⊇ %T��� for some �,� ∈ ) in the matrix �, then the qth  column of � can 
be deleted. 
 
5. Algorithm 

Step 1: Find the minimal solution � = K��L�∈M of the given problem by (4 ) 

Step 2: If � ∘ � = �, then go to step 3, otherwise stop the process. The given problem is 

inconsistent �!��, �� = ∅	. 
Step 3: Compute index sets )� and %� for the given matrix Q. Apply rules 1-2 and 
theorems 3.8-3.11 to determine the values of decision variables as many as possible. If all 
decision variables have been set, then go to step 4. Otherwise repeat step 3. 
Step 4: Obtain optimal solution to the given problem. 
 
5.1. Numerical example  
Consider the following LFPP with continuous Archimedean t-conorm fuzzy relational 
equations constraint.        
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subject to � ∘ � = � 
where 
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� =

U
VV
VV
VW
0.25					0.75					0.45					0.70					0.68					0.43					0.80					0.35					0.480.58					0.75					0.57					0.75					0.76					0.42					0.60					0.70					0.490.72					0.76					0.59					0.46					0.78					0.45					0.65					0.45					0.500.65					0.33					0.60					0.55					0.63					0.30					0.75					0.16					0.550.54					0.90					0.80					0.73					0.84					0.49					0.80					0.50					0.390.95					0.60					0.58					0.90					0.76					0.82					0.64					0.55					0.450.53					0.78					0.82					0.36					0.84					0.65					0.56					0.45					0.440.52					0.80					0.60					0.54					0.80					0.55					0.65					0.28					0.350.60					0.75					0.68					0.55					0.94					0.33					0.66					0.50					0.48^

__
__
_̀

 

� = �0.54					0.75					0.60					0.55					0.76					0.43					0.65					0.50					0.48� 
Step 1: Find the minimal solution by (4 ) 
That is   � = �0.76, 0.65, 0.60, 0.76, 0.50, 0.75, 0.65, 0.55, 0.43� 
Step 2: Since � ∘ � = �. Then go to step 3. 

Step 3: Compute index sets )��a� and %� for the given matrix Q and apply rules 1 – 2 and 
theorems 3.8-3.11 to determine the values of the decision variables as many as possible. 
Consider the above matrix Q. 
The index sets are ) K�FL = "5$,  ) K�GL = "2,5,7$,  ) K�HL = "3,7$,  ) K�bL = "5$,  ) K�cL = "1,8$, ) K�dL =
"2,5$,  ) K�eL = "7$,  ) K�fL = "3,4,7$,  ) K�gL = "2,4,6,8,9$. %F = "5$, %G = "2,6,9$, %H = "3,8$, %b = "8,9$, %c = "1,2,4,6$, %d = "9$, %e = "2,3,7,8$, 	%f= "5,9$, %g = "9$. 
Since %F = "5$, %d = "9$, %g = "9$,  implies that the variables �c and �g are the only 
locking variable in 1st , 6th  and 9th  equations. So, by rule 1 any optimal solution has �c = �cand  �g = �g. Since �c and  �g are also locking in equations {1,2,4,6,8,9}. Hence 

these columns and rows corresponding to �c and  �g can be deleted from matrix Q.  The 
reduced matrix Q becomes, 

� =
U
VV
VW
0.45					0.68					0.800.57					0.76					0.600.59					0.78					0.650.60					0.63					0.750.58					0.76					0.640.82					0.84					0.560.60					0.80					0.65^

__
_̀ 

The index sets are,  ) K�FL = "5$,  ) K�GL = "5,7$,  ) K�HL = "3,7$, ) K�bL = "5$,   
) K�dL = "5$,  ) K�eL = "7$,  ) K�fL = "7$. %H = "3,8$, %c = "1,2,4,6$,  %e = "2,3,7,8$. 
Since %H ⊆ %e then by rule 2, we delete the colomn 3 of matrix Q. 
Since �G < �G,  �H < �H,  �e < �e,  then by theorem (3.9) ,  we set  �G = �G,  �H = �H,  �e = �e,  �G,�H,�e,  are locking in equations 5,7, deleted the corresponding column of 

matrix Q. 
Now we have to determine the remaining [1,4,6,8] decision variables. But all index set  ) K��L = ∅. 
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Since �F > �F, �d > �d, �f > �f,  by theorem (3.10). 
We set �F = 1,  �d = 1,  �f = 1. 

Also, since �b = �b. Now, we have to determine  ∑
≠4i

ii pc  and ∑
≠4i

ii pd  

That implies ∑
≠4i

ii pc =15.88 

∑
≠4i

ii pd =11.88 

Since ∑
≠4i

ii pc >∑
≠4i

ii pd  

By theorem (3.11) we set  �b = �b.  Since all the decision variables have been set, then 

go to step 4. 
 
Step 4: Find the optimal solution to the problem (1) – (2) 
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