Intern. J. Fuzzy Mathematical Archive Vol. 9, No. 2, 2015, 171-177 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 8 October 2015 www.researchmathsci.org

International Journal of
Fuzzy Mathematical
•
<u>Archive</u>

Maximizing a Fractional Linear Programing Problem Subject to a System of Fuzzy Relational Equation Constraints Under Continuous Archimedean Triangular Co-Norm

Thangaraj Beaula¹ and K.Saraswathi²

¹Department of Mathematics, TBML College, Porayar, Tamil Nadu, S.India Email: edwinbeaula@yahoo.co.in ²Department of Mathematics, Bharathidasan University Constituent College of Arts and Science, Nagapatinam, Tamil Nadu

Received 9 September 2015; accepted 1 October 2015

Abstract. In this paper an algorithm is proposed to obtain an optimal solution to maximize a fractional linear programming problem whose objective is a fractional function subject to a system of min-T equations with a continuous Archimedean triangular co-norm. This algorithm is illustrated by a numerical example.

Keywords: min-T equation, fuzzy relational equations, fractional objective function.

AMS Mathematics Subject Classification (2010): 90C08

1. Introduction

Linear fractional programming problems (LFPP) are a special type of linear programming problem. In this paper, we propose a new method for finding an optimal solution to LFPP subject to a system of fuzzy relation equations constraints. Fuzzy relation equations (FRE) were first introduced by Sanchez [5] and applied to diagnosis problems.

In section 2 we present some basic definitions. In section 3 locking variable is defined and theorems are proved to find optimal solutions. Some rules to reduce the problem size are presented in section 4. A new algorithm is proposed which is illustrated by a numerical example in section 5.

2. Preliminaries

In this section we present basic definitions and some properties of min-t conorm.

Definition 2.1. (George J.Klir/ Boyuan [3]) A fuzzy union / t-conorm is a binary operation on the unit interval that satisfies the following axioms for all $a, b, d \in [0,1]$.

- 1. T(a,0) = a (boundary condition)
- 2. $b \le d$ implies $T(a,b) \le T(a,d)$ (monotonicity)
- 3. T(a,b) = T(b,a) (commutativity)

Thangaraj Beaula and K. Saraswathi

4.
$$T[a,T(b,d)] = T[T(a,b),d]$$
 (associativity)

LFPP with FRE constraints 2.2

n

Maximize
$$Z(p) = \frac{\sum_{i=1}^{n} c_i p_i}{\sum_{i=1}^{n} d_i p_i}$$

subject to $p \circ Q = r$

.....(2)

where $p \in [0,1]^n$, $c_i, d_i \in R$ are the co-efficients associated with variable p_i , $Q = [q_{ij}]$ is an $n \times m$ matrix with $q_{ij} \leq 1$, r is an m dimensional vector with $0 \leq r_j \leq 1$ and the operation \circ represents the min-T composition operator, where T is a continuous Archimedean triangular co-norm. $[T(p,q) = \max(p,q)]$.

Definition 2.3. Let $S(Q,r) = \{p \in [0,1]^n | p \circ Q = r\}$ denote the solution set of (2) and let $I = \{1,2,3,\ldots,n\}$ and $J = \{1,2,3,\ldots,m\}$ be two index sets. Then, the solution vectors $p \in [0,1]^n$ of the given problem (2) is obtained by $\min_{i \in I} \{T(p_i, q_{ij})\} = r_j, \quad \forall j \in J$(3)

2.2. Properties of S(Q, r)

(i) Let an element \underline{p} of S(Q, r) be called a minimal solution of (2) if for all $p \in S(Q, r), p \leq \underline{p}$ implies $p = \underline{p}$; if for all $p \in S(Q, r), p \geq \underline{p}$ then \underline{p} is the minimal solution of (2).

(ii) Let an element \overline{p} of S(Q, r) be called a maximal solution of (2) if for all $p \in S(Q, r), p \ge \overline{p}$ implies $p = \overline{p}$; if for all $p \in S(Q, r), \overline{p} \ge p$, then \overline{p} is the maximum solution.

(iii) the solution set S(Q, r) is not empty it always contains a unique minimal solution pand it may contain several maximal solutions. Let $\overline{S}(Q, r)$ denote the set of all maximal solutions.

Also $S(Q, r) = \bigcup_{\overline{p}} [p, \overline{p}]$ where the union is taken for all $\overline{p} \in \overline{S}(Q, r)$.

3. Conditions for optimality

Definition 3.1. If $S(Q, r) \neq \emptyset$, the minimal solution $\underline{p} = \{\underline{p}_i / i \in I\}$ of (2) is determined by $p_i = \max \sigma(q_{ii}, r_i)$ (4)

by $\underline{p}_{i} = \max_{j \in J} \sigma(q_{ij}, r_{j})$ where $\sigma(q_{ij}, r_{j}) = \begin{cases} r_{j} & \text{if } q_{ij} < r_{j} \\ 0 & \text{otherwise} \end{cases}$

Note: When <u>p</u> determined by (4) does not satisfy (2), then $S(Q,r) = \emptyset$. That is, the existence of the minimum solution <u>p</u>, as determined by (4), is a necessary and sufficient conditions for $S(Q,r) \neq \emptyset$.

Definition 3.2. If $S(Q, r) \neq \Phi$ and $p = (p_1, p_2, p_3, \dots, p_n)$ be any solution of (2), then p_i

Maximizing a Fractional Linear Programing Problem Subject to a System ...

is said to be a locking variable if $T(p_i, q_{ij}) = r_j$ for some $j \in J$. The locking set of p_i is denoted by $J(p_i) = \{j \in J | T(p_i, q_{ij}) = r_j\}$(5)

Lemma 3.3. [9] Let *T* be the continuous Archimedean t-conorm and if $q_{ij} > r_j$ for each $i \in I$ for any equation in (2) then the solution set $S(Q, r) = \emptyset$.

Lemma 3.4. [9] Let *T* be the continuous Archimedean t-conorm and $\underline{p} = (\underline{p}_i)_{i \in I}$ be the minimal solution and $p = (p_i)_{i \in I}$ be any solution of (3). If p_i is locking in the jth equation, then \underline{p}_i is also locking. If \underline{p}_i is not a locking variable, then for p_i is also non locking.

Lemma 3.5. [9] Let *T* be a continuous t-conorm, and $S(Q, r) \neq \Phi$ in(2). If $r_j = 1$ for some $j \in J$, then all variables $p_i, \forall i \in I$ are locking in the j^{ih} equation.

Lemma 3.6. [9] Let *T* be a continuous Archemeadian t-conorm and $p = (p_i)_{i \in I}$ be any solution of (2). If p_i is only locking in equations with $r_j = 1$, then p_i can take any value in $[p_i, 1]$.

Lemma 3.7. [9] Let *T* be a continuous t-conorm and $\underline{p} = (\underline{p}_i)_{i \in I}$ be the minimal solution. If $c_i \leq 0, \forall i \in I$ the cost co efficient in the objective function, then \underline{p}_i is an optimal solution of the given problem.

Theorem 3.8. Let $p \circ Q = r$ be a consistent system of min-T equations with a continuous Archimedean t co-norm *T* and <u>p</u> its minimal solution. There exists an optimal solution $p^* = (p_1^*, p_2^*, \dots, \dots, p_n^*)$ to (2) such that either $p_i^* = \underline{p}_i$ or $p_i^* = 1$ for all $j \in J$. **Proof:** Suppose that p^* is an optimal solution to (1)-(2) and there exists an index $i \in I$ such that $1 > p_i^* > \underline{p}_i$.

It is clear that $Z(p) = \frac{c_k p + \sum_{i \neq k} c_i p_i^*}{d_k p + \sum_{i \neq k} d_i p_i^*}$ is monotone on [0,1].

Accordingly the value of p_k^* can be either increased to 1 or decreased to \underline{p}_k without decreasing the objective value. Therefore, such an optimal solution p^* must exists such that either $p_i^* = p_i$ or $p_i^* = 1$ for all $j \in J$.

Theorem 3.9. If $J_k(Q) \neq \{\emptyset\}$ for some $k \in I$ and $c_k < d_k$ in the objective function then any optimal solution has $\overline{p}_k = p_k$.

Proof: Since $J_k(Q) \neq \{\emptyset\}$ for some $k \in I$, also $c_k < d_k$. But $1 > p_k^* > \underline{p}_k$, Thangaraj Beaula and K. Saraswathi

It is clear that
$$Z(p) = \frac{c_k p + \sum_{i \neq k} c_i p_i^*}{d_k p + \sum_{i \neq k} d_i p_i^*}$$
 is monotone on [0,1].

Now the value of p_k^* can be decreased to \underline{p}_k without decreasing the objective value. Therefore any optimal solution has $\overline{p}_k = p_k$.

Theorem 3.10. If $J_k(Q) = \{\emptyset\}$ for some $k \in I$ and $c_k > d_k$ in the objective function then any optimal solution has $\overline{p}_k = 1$.

Proof: Since $J_k(Q) = \{\emptyset\}$ for some $k \in I$. That implies p_k cannot be a locking in any equation. Also since $c_k > d_k$.

But $1 > p_k^* > \underline{p}_k$,

It is clear that
$$Z(p) = \frac{c_k p + \sum_{i \neq k} c_i p_i^*}{d_k p + \sum_{i \neq k} d_i p_i^*}$$
 is monotone on [0,1].

Now the value of p_k^* can be increased to 1 without decreasing the objective value. Therefore any optimal solution has $\overline{p}_k = 1$.

Theorem 3.11. If $J_k(Q) = \{\emptyset\}$ for some $k \in I$ and $c_k = d_k = 1$ in the objective function then any optimal solution has $\overline{p}_k = 1$ if $\sum_{i \neq k} c_i \overline{p}_i < \sum_{i \neq k} d_i \overline{p}_i$ and $\overline{p}_k = \underline{p}_k$ if

$$\sum_{i \neq k} c_i \overline{p}_i > \sum_{i \neq k} d_i \overline{p}_i$$
Proof: Case (i)

Since $J_k(Q) = \{\emptyset\}$ for some $k \in I$. That implies p_k cannot be a locking in any equation. Also since $c_k = d_k$. But $1 > p_k^* > p_k$,

It is clear that
$$Z(p) = \frac{c_k p + \sum_{i \neq k} c_i p_i^*}{d_k p + \sum_{i \neq k} d_i p_i^*}$$
 is monotone on [0,1].

Now the value of p_k^* can be increased to 1 without decreasing the objective value. Therefore any optimal solution has $\overline{p}_k = 1$.

Case (ii) Since $I_{1}(0) = \{\emptyset\}$

Since $J_k(Q) = \{\emptyset\}$ for some $k \in I$. That implies p_k cannot be a locking in any equation. Also since $c_k = d_k$. But $1 > p_k^* > p_k$,

It is clear that $Z(p) = \frac{c_k p + \sum_{i \neq k} c_i p_i^*}{d_k p + \sum_{i \neq k} d_i p_i^*}$ is monotone on [0,1].

Now the value of p_k^* can be decreased to \underline{p}_k without decreasing the objective value.

Maximizing a Fractional Linear Programing Problem Subject to a System ...

Therefore any optimal solution $has\overline{p}_k = p_k$.

4. Rules to reduce the problem.

For the given matrix Q, we define, the following index sets. $J_i(Q) = \{j \in J \mid p_i \circ q_{ij} = r_j\}, \forall i \in I \text{ and } I_j = \{i \in I \mid p_i \circ q_{ij} = r_j\}, \forall j \in J$ the index set $j_i(Q)$ is nothing but the locking set $J(p_i)$ of (2).

Rule 1: If $I_j(Q)$ is singleton set for some $j \in J$, i.e., $I_j(Q) = \{t\}$, then $\overline{p}_i = p_t$ where $\overline{p}_t \in \left(\overline{p}_i\right)_{i \in I}.$ **Proof:** Since $I_j(Q) = \{t\}.$

: the Jth equation can be satisfied by the variable p_t .

If $p = (p_i)_{i \in I}$ be any solution of (2). Then the tth component of this solution must be locking in the jth equation. By lemma 3.5.

If $r_j = 1$ for some $j \in J$, then all variables $p_i \forall i \in I$ are locking in the jth equation.

 $=> I_i(Q)$ is not a singleton set.

If $r_j < 1$, then by theorem 3.8 we have $\overline{p}_t = p_t$.

If we apply rule 2, the jth column of Q with $j \in J_t(Q)$ can be deleted. The row corresponding to p_t can also be deleted from matrix Q.

Rule 2: If $I_p(Q) \supseteq I_q(Q)$ for some $p,q \in J$ in the matrix Q, then the qth column of Q can be deleted.

5. Algorithm

Step 1: Find the minimal solution $\underline{p} = (\underline{p}_i)_{i \in I}$ of the given problem by (4)

Step 2: If $p \circ Q = r$, then go to step 3, otherwise stop the process. The given problem is inconsistent $[S(Q, r) = \emptyset]$.

Step 3: Compute index sets J_i and I_j for the given matrix Q. Apply rules 1-2 and theorems 3.8-3.11 to determine the values of decision variables as many as possible. If all decision variables have been set, then go to step 4. Otherwise repeat step 3. Step 4: Obtain optimal solution to the given problem.

5.1. Numerical example

Consider the following LFPP with continuous Archimedean t-conorm fuzzy relational equations constraint.

Maximize
$$Z(p) = \frac{2p_1 - 2p_2 + p_3 + p_4 + p_5 + 5p_6 + p_7 + 8p_8 + p_9}{p_1 + 7p_2 + 3p_3 + p_4 + p_5 - p_6 + 4p_7 + 2p_8 + p_9}$$

subject to $p \circ Q = r$ where

Thangaraj Beaula and K. Saraswathi

	/0.25	0.75	0.45	0.70	0.68	0.43	0.80	0.35	0.48
	0.58	0.75	0.57	0.75	0.76	0.42	0.60	0.70	0.49
	0.72	0.76	0.59	0.46	0.78	0.45	0.65	0.45	0.50
	0.65	0.33	0.60	0.55	0.63	0.30	0.75	0.16	0.55
Q =	0.54	0.90	0.80	0.73	0.84	0.49	0.80	0.50	0.39
	0.95	0.60	0.58	0.90	0.76	0.82	0.64	0.55	0.45
	0.53	0.78	0.82	0.36	0.84	0.65	0.56	0.45	0.44
	0.52	0.80	0.60	0.54	0.80	0.55	0.65	0.28	0.35
	\0.60	0.75	0.68	0.55	0.94	0.33	0.66	0.50	$0.48^{/}$
<i>b</i> =	(0.54	0.75	0.60	0.55	0.76	0.43	0.65	0.50	0.48)

Step 1: Find the minimal solution by (4)

That is p = (0.76, 0.65, 0.60, 0.76, 0.50, 0.75, 0.65, 0.55, 0.43)

Step 2: Since $p \circ Q = r$. Then go to step 3.

Step 3: Compute index sets $J_i(\underline{P})$ and I_j for the given matrix Q and apply rules 1-2 and theorems 3.8-3.11 to determine the values of the decision variables as many as possible. Consider the above matrix Q.

The index sets are

$$J\left(\underline{p_{1}}\right) = \{5\}, J\left(\underline{p_{2}}\right) = \{2,5,7\}, J\left(\underline{p_{3}}\right) = \{3,7\}, J\left(\underline{p_{4}}\right) = \{5\}, J\left(\underline{p_{5}}\right) = \{1,8\}, J\left(\underline{p_{6}}\right) = \{2,5\}, J\left(\underline{p_{7}}\right) = \{7\}, J\left(\underline{p_{8}}\right) = \{3,4,7\}, J\left(\underline{p_{9}}\right) = \{2,4,6,8,9\}.$$

$$I_{1} = \{5\}, I_{2} = \{2,6,9\}, I_{3} = \{3,8\}, I_{4} = \{8,9\}, I_{5} = \{1,2,4,6\}, I_{6} = \{9\}, I_{7} = \{2,3,7,8\}, I_{8} = \{5,9\}, I_{9} = \{9\}.$$

Since $I_1 = \{5\}, I_6 = \{9\}, I_9 = \{9\}$, implies that the variables p_5 and p_9 are the only locking variable in 1st, 6th and 9th equations. So, by rule 1 any optimal solution has $\overline{p}_5 = \underline{p}_5$ and $\overline{p}_9 = \underline{p}_9$. Since p_5 and p_9 are also locking in equations $\{1, 2, 4, 6, 8, 9\}$. Hence these columns and rows corresponding to p_5 and p_9 can be deleted from matrix Q. The reduced matrix Q becomes,

$$Q = \begin{pmatrix} 0.45 & 0.68 & 0.80 \\ 0.57 & 0.76 & 0.60 \\ 0.59 & 0.78 & 0.65 \\ 0.60 & 0.63 & 0.75 \\ 0.58 & 0.76 & 0.64 \\ 0.82 & 0.84 & 0.56 \\ 0.60 & 0.80 & 0.65 \end{pmatrix}$$

The index sets are, $J(\underline{p}_1) = \{5\}$, $J(\underline{p}_2) = \{5,7\}$, $J(\underline{p}_3) = \{3,7\}$, $J(\underline{p}_4) = \{5\}$, $J(\underline{p}_6) = \{5\}$, $J(\underline{p}_7) = \{7\}$, $J(\underline{p}_8) = \{7\}$. $I_3 = \{3,8\}, I_5 = \{1,2,4,6\}, I_7 = \{2,3,7,8\}$.

Since $I_3 \subseteq I_7$ then by rule 2, we delete the colomn 3 of matrix Q.

Since $c_2 < d_2$, $c_3 < d_3$, $c_7 < d_7$, then by theorem (3.9), we set $\overline{p}_2 = \underline{p}_2$, $\overline{p}_3 = \underline{p}_3$, $\overline{p}_7 = \underline{p}_7$, p_2, p_3, p_7 , are locking in equations 5,7, deleted the corresponding column of matrix Q.

Now we have to determine the remaining [1,4,6,8] decision variables. But all index set $J(p_i) = \emptyset$.

Maximizing a Fractional Linear Programing Problem Subject to a System ...

Since $c_1 > d_1, c_6 > d_6, c_8 > d_8$, by theorem (3.10). We set $\overline{p}_1 = 1$, $\overline{p}_6 = 1$, $\overline{p}_8 = 1$. Also, since $c_4 = d_4$. Now, we have to determine $\sum_{i \neq 4} c_i \overline{p}_i$ and $\sum_{i \neq 4} d_i \overline{p}_i$ That implies $\sum_{i \neq 4} c_i \overline{p}_i = 15.88$ $\sum_{i \neq 4} d_i \overline{p}_i = 11.88$

Since $\sum_{i \neq 4} c_i \overline{p}_i > \sum_{i \neq 4} d_i \overline{p}_i$

By theorem (3.11) we set $\overline{p}_4 = \underline{p}_4$. Since all the decision variables have been set, then go to step 4.

Step 4: Find the optimal solution to the problem (1) - (2)

$$Z(p) = \frac{\sum_{i=1}^{n} c_i p_i}{\sum_{i=1}^{9} d_i p_i} = 1.31646.$$

REFERENCES

- 1. G.Birkhoff, Lattice Theory, 3rd edition, American Mathematical Society Colloquium Publications, vol.xxv, Providence, R.I., (1967).
- 2. J.G.Brown, A note on fuzzy sets, information and control 18 (1971) 32 39.
- 3. J.G.Klir and B.Yuan: fuzzy sets and fuzzy logic, theory and applications, 64 (1995) 61 64.
- 4. J.A.Goguen, L fuzzy sets, J.Math.Anal., 18 (1967) 145-174.
- E.Sanchez, Resolution of composite fuzzy relation equation and control, 30 (1976) 38 – 48.
- L.A.Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. On systems, Man, and cybernetics, SMC-3 (1973) 28 – 44.
- 7. L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, II, III, *Information Sciences*, 8 (1975) 199 257,.
- 8. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.
- 9. T.Beaula and K.Saraswathi, Maximizing a linear objective function subject to a system of min-t equations with a continuous Archimedean t-conorm, *Annals of Fuzzy Mathematics and Informatics*.