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1. Introduction

Stochastic ordering of fuzzy random variables, ksintio stochastic ordering of random
variables has wide and very important applicabitityeliability theory, epidemic models
and so on. Stochastic orderings of fuzzyrandomabées can effectively be thought of in
a population which is characterized by the paramstese value is not numerical but
linguistic.

In this paper, we discuss about the stochastierimgls of fuzzy random variables
based on Kwakernaak’s [3] fuzzy random variablas wat we follow Piriyakumar and
Renganathan [3], which provides some interestirgpgnties. We consider continuous
random variables with parameters meaand standard deviatioo. It likes a normal
distribution with parameter N 1(0%). We should not use the legal concept of symmetric
form about X%1, when the value of standard deviatiar) {s very minimum. Then the
curve becomes very sharp peak in normal distributibow we get the ordered triple
(2y=p—no, a=H, & = + no), n = 1, 2, 3 of the normal curve it covered 9%7/3 he
remaining area is 0.0027. It spreads over outdidieeocurve | X-p| = 30 on both sides.
It is nearly equal to zero, but evenycut =[], (0> 0 so that the normal curve can be
treated as a triangular fuzzy number with base=(p—0, & = |, & = p+0). Here the
value of standard deviation is minimum, so thatdiee become more sharp.

On the idea of Kurtosis, it likes as a leptokuftic such a curv@,> 0 [i.ey>> 0],
mesokurtic (normal curve, = 3 [i.e.y,=0] and also platykurti§,< 3 [i.e,< 0], the
standard deviationaj is very minimum so that the mesokurtic, leptokurand
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platykurtic may have also equal interval but theximaim heights of these curves are at
a =1 and then we construct thecut of triangular fuzzy number.
Consider

P{-0< R 1 +0} = P{( R - (a-1) o-p) 2 00 (R +(a-1) o—p1) <0}

Here, the first part gives the membership functidérincreasing function and then the
second one is a membership function of decreasinctibn, so that the curve as a union
of increasing and decreasing function of the tnidaigfuzzy number.

Now, we verify the relationship between triangulazzy likelihood ratio order,
triangular fuzzy hazard rate order and trianguleaz§ stochastic orders. The triangular
fuzzy likelihood ratio order is more stronger the triangular fuzzy hazard rate order,
the triangular fuzzy hazard rate order is morengfeo then the triangular fuzzy stochastic
orders and then verify some of its properties.

The organization of the paper is as follows. ®ec? is employed to briefly
mention thea-cut concept in triangular fuzzy random variablethvparameters megn
and standard deviatiom, based on Kwakernaak’s fuzzy random variablesydkumar
and Renganathan et al., [3,4] introduced the fumzglogue of stochastic orderings of
random variables. We adopt our approach in thespepties by applying some new
definitions of triangular fuzzy likelihood ratio @ering, triangular fuzzy hazard rate
ordering and triangular fuzzy stochastic orderinig fuzzy random variables. and
presented.

In section 3, we prove some propositions of tridag fuzzy likelihood ratio
order, triangular fuzzy hazard rate order and ¢iidar fuzzy stochastic order.

2. Preliminaries

In this paper, we analyse about the fuzzy stoahastierings of triangular fuzzy number,
fuzzy likelihood ratio order and fuzzy hazard rateering of triangular fuzzy number
and their properties related to Kwakernaak's fuamydom variables.

Now, we consider every continuous random variabligs parameters meamq
and standard deviatiom. The pattern of triangular fuzzy number has 3dspA(a, &,
a). There exists an increasing function betweerarad a,and a decreasing function
between ato &.

Now, we take the intervals of triangular fuzzymher with A(a=p-0,a%=|, & =
M + o). That is, the upper and lower limit of triangulfuzzy number have equal
distance from a= 1 and they have the maximum heightiat 1, in which the probability
of any continuous fuzzy random variable R can bidewr as

P{u-0< Ru+c} = P{(R. -0 (a-1) -p) 2 0 O (R} +0 (a-1)-p)<0)} and that
each with an interval support which we denote Ry';( Rg ). Here R; and Rg may be

—oo andeo respectively.

If the interval of this triangular fuzzy numbenfeaimited length with respect to
pand o, then we can perform fuzzy likelihood ratio ordiizzy hazard rate order and
fuzzy stochastic orderings of triangular fuzzy neménd their properties.

Finally we prove some properties of triangularzZijuzandom variables such as
triangular fuzzy stochastic orderings, triangulazdy hazard rate orderings and triangular
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fuzzy likelihood ordering etc, for two triangulanzzy random variables R and T with
meangly, [, and standard deviatiows, 0, respectively with (& R<t) and (i T < V).
Here s 9u,—-0y, t = =0, U =1 + G; and v =, + 0.

Definition 2.1. A fuzzy set A is defined as A = {ua(X) : x O A, pa(x) O [0,1]}

Definition 2.2. The support of fuzzy set A is the set of all poinis X such thatia(x)>0
(i.e.,) support (A) = {X fua(x) > 0}.

Definition 2.3. The a-cut of a-level set of fuzzy set A is a set consisting ofsth
elements of the universe X whose membership vaxesed the threshold lewel

(i.e.) Av = {X/ Ua(x) 2a}

Definition 2.4. A fuzzy set A on R must possess at least the fatiguhree properties to
qualify as a fuzzy number.

i. A must be a normal fuzzy set

ii. Ay must be closed interval for everyl [0,1]

iii. The support of A”A must be bounded.

Among the various shapes of fuzzy number, triarrgflazy number (TFN) is

the most popular one.
As per the above definition a triangular fuzzy emis basically a fuzzy set, so

that it satisfies all the concepts of fuzzy sett B have the membership function arise
within the interval only, denoted by A = (@, &).

Definition 2.5. The triangular fuzzy number is a fuzzy numibepresented with 3-

tuples as follows : A = (g8,,a)
This representation is interpreted as membershipction and holds the

following conditions.

® a, to @ is increasing function
(i) & to & is decreasing function
(i) a< a< &
0 forx <a
X —
a fora, <x<a,
a-a
Ha(X) =
a; — X
— fora, <x<a,
a; —a,
0 for x =2 a,
so that thex-cut of triangular fuzzy number is
A= [a) ,a;]

Herea; = (a—a)a +a
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ag =- (- a)a +a
Now, it is possible for applying-cut of fuzzy sets in triangular fuzzy number.

a _ _ A0
DMZG MZG

Q- a;—a,
(& - (2~ a) a-a) 20 @% + (a- &) 0— a) < 0(2.1)

Now, we apply our limits of triangular fuzzy number

-0)+(u+0o
alzu_oaqz(u )2(u ):uae:L1+0

O A (ay, & &) = A (U0, W, H +0)
from equation (2.1),

ay' - (&~ a)a-a= (Ag - (@-1)0-) 2 0 (2.2)
aj +(a-a)a-a=(Ag +(@-1)o-p)< 0 (2.3)
The membership function of triangular fuzzy numiser
Aa={(Ag-(0-1)0-W) 200(A + (a-1) 0-p) < 0}

Definition 2.6. If R and T are triangular fuzzy random variableshwneansu;, g, and
standard deviations;, 0, respectively. The R is said to be triangular fulikglihood
ratio order (TFLRO) which is less then (or) equalt if wheneverst and u< v
Here S ;-0 t= Ho—02

U=pi+0; V=l + 0
P {(R.~(a-1) o,-1) 2 00(Ry + (@-1)0,—) < 0}

P {(Ty ~(@-1) or-) 2 00(T, + @-1)o14:) < 0}
<P {(Rg~(a-1) o) 2 00(Ry + (@-L)or-pu) < 0}

P{(T,y ~(@-1) o) 200 (T, + (@-1)0,—4) < O}
We will write R<"™RO T

Definition 2.7. If R and T are triangular fuzzy random variableshwneansu;, g, and
standard derivation,, o, respectively and that R and T are two triangulazy number

R(a, &, &) and T(a;,a'z,a's) respectively. Then R is said to be triangulazfuhazard

rate ordering (TFHRO) which is less then(or)eqoartif whenever £t and u< v and
if U=y +0; —~o and V 3, + G, - o0, then

P {(R; -(0-1) 0:-11) = 0} P {( Ty —(a—1) 01—41y) = 0}

<P {(T, - (@-1)o-1) = 0} P {( R; - (0-1)o1—1y) = O}
We will write R<™HROT,
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Definition 2.8. If R and T are triangular fuzzy random variableshwneansu;, g, and
standard deviations,, 0, respectively and that R and T are two triangulazy number

R(a, &, &) and T(all,alz,a'?,) respectively. Then R is said to be triangularzfuz
stochastic ordering (TFSO) which is less then(ar¢dgo T, if whenever st and us v
and if t=u2—02—»—00, S =l1—01 > —®

P{(Rg + (@-1) 0~) <O} P{(T + (@-1) 01-py) < 0}

<P{(Rq + (@-L)or-pu) < 0} P{( T, +(a-1)0,~4;) < O}
This implies that R"™°T.

Note 2.9. The number C(constant) in the fuzzy random variahle be WrittenC; = Cg

= C because the fuzzy random variable can be agsdcwith the real number on the
support of fuzzy random variable.

3. Prepositions on triangular fuzzy stochastic order (FSO), triangular fuzzy
likelihood ratio order (TFLRO) and triangular fuzzy hazard rate order (TFHRO)
Proposition 3.1. Suppose C is a number

(i) IfC<T,then C<"ROT

(i) T <C, then T<'™ROC

Pr oof:
® If C<Tthen
P {(Cy~(a-1)or11) 2 00(Cy + (@-1)0z-1;) < O}
P{(Ty - (@-1) o) 2 00(T, + (@-1) o1—puy) < O}
<P {(Cy~(a-1)or-py) 2 00(Cy + (@-1)or—) < 0}
P{(Ty - (0-1) 0-p2) 2 0 0(T, + (0—1) Oo—)< O} (3.2)
Whenever
P(s<C < u} = P{C; —~(a-1)o1-y) 2 00(C; + (a-1)01-Hy)<0}= 1 (3.2)
If C <s and & C then
P{(Cy ~(a-1)o1~:) 2 00(Cy + (@-1)o1~y) <0} = 0 (3.3)
P(t < C < v} = P{(C} ~(a-1)0,2)20 O(C; + (a-1)0,,)<0}= 1 (3.4)
If C <tand v< C then
P {(Cq~(0-1)0,-1) 2 00(Cy + (@-1)0,11) < 0} = 0 (3.5)

Using equation (3.4) in equation (3.1), we mustgho
P {(Ty ~(@-1)o1~) 200(T + (@-1)or—) < 0}
<P {(Cq~(a-1)or-) 2 00(Cy + (@-1)or—u) < 0}

P {( TOI(_ —(a-1)o,-Hz) 200 (TQU + (a—1)o—p) < 0} (3.6)
Usingequation(3.5) in equation (3.1), we get
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0< P{(C;—(a-1)o—y) =00(Cy + (@-1)oy—y) < 0}
P {(Ty ~(a-1)oo-12) 200(Ty + (a-1)or1) < O}
P{s < T<u}= P {(T+ ~(a-1)0,~p;) = 0 0( Ty + (@-1)0,—;) < 0} = 0 (3.7)
Using equation (3.7) in equation (3.6), we get
0< P{(C;—(a-1)o—y) =00(Cy + (@-1)o3—y) < 0}
P {(Ty ~(@-1)oo12) 2 00(Ty, + (a-1)0,1) < 0} (3.8)

It is true.
Usingequation(3.2) in equation (3.6), we get

P {(Ta ~(@-1)0:) 200(Tg + (@-1)os-ps) < 0}
<P (T ~(a-1)011) 2 00 (T + (0-1)0-1) < 0} &9

Since s 4,—0:;< C and t qu,-0,< C
Given C< T Then equation (3.9) becomes

P{(C Ty + ax(a-1) -u))< 0} <

P{C(T, + (a-1) opi12))< 0}

However, this is true.
Since (UL +01) < (V=H2 +0)

Ou=v
This implies that G™™R° T
Similarly,
We get  T<™ROC,

Proposition 3.2.
R STFLRO T — R STFHROT
Proof: Since R<"MRO T

=P{(Rg- (a-1) 0-p2) 2 00 (Ry + (@-1)o,-1) < 0}

P{(T: - (0-1) o;-p) = 00(T, + (@-1)01s) < O}
<P{(Ry- (@-1) o:-1) 200 (R + (@-1)a;;) < 0}

P{( Ty - (0-1) 02-pz) 2 0 0(T, + (a-1)02) < O}
Suppose VvV F, + G- and U 4y + 0y -

Then P {(Rg ~(a-1)0:-2) 2 0} P{( T¢ - (a—-1)01-H) 2 0}

< P {(Rg—~(a-1)o1-p) 2 0} P{( Ty - (a-1)o-t2) 2 0}
This implies that R"TRO T,
Proposition 3.3. R<"TROT = R<™OT

Pr oof:
Since R<"THROT =
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P{( RI& —(0=1)0,—H) = 0 L( R(L,J +(a-1)o,—1) < O}
P{(Ts - (@-Dor) 200 (T, + @-1)or-) <0}

<P {(Rg-(@-Doi-1) 2 00(Ry + @-1)0,-u;) < 0}

P {(Te - (@-1)or1) 200 (T, + (@-1)o-1) < 0}

If we let s =j;—0y — —oo t =0y —00
Then

P{(R;J + (0-1)0,—H2) < O} P{( TQJ + (a-1)0;-py) < 0}

<P{(Ry + @-1)o1-p) < 0} P( T, + (@-1)a-11y) < 0}

This implies that

Proposition 3.4. For any C one has & F° T
- R + CSTFLROT + C

- R _ C STFLRO T_C

Proof: Since R<™ROT o

P {(R. ~(a-1)0,-12) = 00 (RY +(a-1)0,-112) < 0}
P{TL - (a-D)or-p) 200 (T, + (@-1)os-py) < O}
<P {(RL ~(a-1)o,-ts) = 00 (RY +(a-1)0,-p,) < 0}
P{(TL - (a-1)o-1) 200 (T + (a-1)0,-) < O}
<P {(RE~(a-1)0,-1) 2 00 (R +(a-1)0,-12) < 0} + C
P{(TL - (@-1)o1-p) 2 00 (T + (@-1)o—;) <0} + C
<P {(RL ~(a-1)01-ps) 2 00 (R +(a-1)01-j) < 0} + C
P{(TL - (a-1)0-pp) 2 00 (T, + (a-1)0,~) <0} + C
« P{R.-(a-1) o~ (1 C5)) 2 00(R +(a-1)0~ (ot C)) < 0}
P{(T - (@-Dor- (+Cy) 200 (Ty + @-Dor-(u+Cy ) < 0)
<P {(R ~(a-D)or- (u:+ C5)) 2 00(Ry +(@-1)or- (u+ Cy)) < 0)
P {(Ts - (@10 (u+ C)) 200 (T, + @-Do (u+ Cy)) < 0}
= P{((R+O)y~@-1)o-(uz+ C))200( (R + O +(@-1)o-(u+ Cy ) < 0)
P {((T +O)s - (@-Dor-(us+ Cg )20 (T + C) g +@-1)or-(ur+ Cy ) <0}
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<P{( (R + C) ~(@-1or-(ur+ C; )20 (R + C) g +~(a-1)or~(u+ Cy ) < 0}

P{((T +C)g - (a-Dor(o+ Cy )20 (T + C) g +a-1)0,- (ot Cy ) < 0}
=R+ C<™ROT + C.
Similarly

R-C<™RoT - C.

Proposition 3.5. If R <"™RO T, then R<"F°T
Proof: Since R<"™ROT

= P {(R5 ~(a-1)o;-12) 2 0} P{( Ty ~(a-1)01-1s) = 0}
<P {( RI& —(a-1)o1—u) = 0} P{( Tol(_ —(a-1)a—{i,) = 0}

If we let s =;—G; - —o0
P {(Rg~(a-1)o.41) 2 0} <P{( Ty ~(a-1)o.1) 2 0}
Here P{(T,; ~(a-1)o—jt;) 2 0} = 1
P {Rg~(a-1)01-s) 2 0} = 1
which implies that R™™°T.

Proposition 3.6. For any C, one has 8 "R° T
- () R+ C<™™ROT + C

(i) R-C<™ROR-C
Proof: Since R<"MROT

P{( RE ~(a-1)a,-) = 0} P{( Ty -0; (0—1) —jiz) = O}
<P {(R: ~(a-1)01-11) = 0} P{( T,y ~(a-1)a,~1,) = O}
= [P{( Ry ~(0—1)02-1z) = O}+C] [P{( TqL —(0-1)o1-u) = O}+C]
<[P {( Ry ~(a-1)o,~;) = O}+ C] [P{( T; —(a-1)o—2) 2 0} + C]
« P{R-~(-1) 0~ (1 C) 2 0} P {( T} - (a-1)01— (+ C5)) = 0}
<P {(RL ~(a-1)01- (u+ CL)) 2 0} P {( T\ - (a-1)o- (uz+ Cy)) 2 0}
=P {((R+C)g ~(a-1)o~(+ C; )20}
P((T + )y - (a-Dor-(u+ Cy)) 2 0}
<P {((R + C); ~(@-1)or-(ur+ C;))20}

L L

PI(T +C)y - (@-D)or(+ Cy)) 2 0}
which implies that R + @ ""R°T + C
Similarly, R- C<™ROT - C.
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Proposition 3.7.
P{( Tolr_ - (o - 1)02 B U2) >0}
P{( RI& —0,(a -1 -u,) =0}

is non-decreasing for t < sup R.
Proof: Since R<"MROT

P {(R% ~(a-1)0,-1) = 0} P{( T+ -0, (a—1) 1y) = O}

R STFHRO T =

< P {(R§ ~(a-1)or1) 2 0} P{( Ty ~(@-1)0,11;) 2 0}
we get
- P{( Tolr_ - (a _1)01 B U1) >0} SP{( Tolx_ - (a _1)02 B p—z) >0}
P{( RI& - (a _1)01 - “1) >0} P{( RI& - (a _1)02 - U2) >0}
Here RHS is non-decreasing for t < sup R.

Conversely,
If RHS of equation(3.10) is non-decreasing fordup R, then

- P{(RE~(a-1)o;) 2 0} P{( Ty -0, (@-1) 1) 2 0}

(3.10)

L
< P {(Rg-01 (a=1) ~ur) 2 0} P{( T, ~(a-1)o;-) = 0}

However, it automatically holds forsst < sup R

Since P {(R; —(0—1)0,—) =0} =0 for t= sup R.

Proposition 3.8.
R <TFHROT

P{(R; —(a -0, —,) 20} SP{(TO(L —(a-1)o, —,) 20}
P{(R, —(a-Do, —p,) 20} P{(T, - (a -Do, —,) 20}
for s =p;—0:< min {sup R, sup T}
P{(R, — (o -1)o, —,) 20} SP{(TO(L - (a-1)o, —,) 20}
P{(R, —(a-Do, —p,) 20} P{(T; - (a -Do, —,) 20}
for s <t<min {sup R, sup T}
Proof: By definition of R<"™RO T, statement (i) exists and statement (i) alsetexrom

statement (i). Now, we prove statement (i) impkes "R°T,
Note that

P{(R; - (a =10, —1,) 20} P{(T, —(a -Do, —p,) =0}
P{(R; = (a -Do, —p,) 20}  P{(T; —(a —1)o, ;) 20}

for s <t< min {sup R, sup T}

(i)

(ii)

This implies
P {( RS ~(a-1)a412) > 0} P{( T, - (a-1) o141s) > 0}
<P {(R% -0 (a-1) —1) = 0} P{( Ty ~(a-1)0,-11y) = 0}
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for s <t<min {sup R, sup T} (3.11)
If sup T < sup R. Then we can put =0, = sup T in equation (3.11) we get,

P{(T: - (a=1) 0-j1) 2 0} = 0

0 P {(R. ~(a-1)0,-12) 2 0} P{( T - (a=1) 03-p1y) 2 0} = 0
Then we pick s, so P {{; - (a-1) o1-jis) = 0} > 0 to get

P {(Ry~(a-1)o;1) 2 0} = 0

Owe get t= sup R, which is a contradiction.
Osup R sup T we get equation (3.11) holds fat < sup R.

P{( Tolx_ - (a _1)02 B p—z) >0}
P{( RI& —(a _1)02 - U2) >0}

is non-decreasing for t < sup R.
This implies R<"™ROT,

This implies (by Proposition (3.7))

Proposition 3.9. R<"™R°T « for s =p,—0,< min {sup R, sup T}
and t =u,—0,> 0 one has

P{( RI& B (01 B 0-2)(0( _1) B (“1 + p'z)) >O}
P{(R; - (a —1)o, —,) >0}

SP{(T&‘ ~ (01 + 02)((1 _1) - (“1 + p-z)) >O} '
P{( Tolt_ - (a _1)01 - “1) >0}
=for s <min {sup R, sup T} and t > 0 one has
P{( Rcl; B (01 + 0-2)(0' _1) B (:ul + :uz)) 20}
P{(R; - (a-1)o, - 1) 20}
< P{(TaL — (0, +0,)(a -1 - (1, + 1)) 20}
T P(TS-(@-1)o, - p4) 20}
Proof: Let s =u;—0:< sup R, t 3u,—0> 0.
_ R R; — (0, +0,)(@ -1 - (1 + 14,)) >0}
P{( Rcl; —(a _1)01 _/'11) >0}
_ P{( RI& B (01 + O-2)((} _1) - (“1 + U2)) >0}
P{(R: - (a -Da, —p,) >0}
since R > s +t = [;+2) — (01+02)) = R >4,—0; = s.
P{(T, = (0, +0,)(@ =D - (1 + 14,)) >0} _
P{(TaL —(a _1)01 _:ul) >0} -
P{(T, — (0, +0,)(@ =1 — (14, + 14,)) >0}
P{(TaL - Jl(a -D- :ul) >0}

Similarly,
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Therefore, the first= follows from proposition (3.8). The seconrd follows from the
first = and the fact that

P {(R} - (01+0,) (0-1) - (Wy+1)) = 0}

=lim P {(R- (0r+0,) (a-1) - (i) +(1/n))> O}

n - oo

and P {(Ry - (01+0) (a-1) - (My+11z)) > O}

o

©Co~NOo

=lim P {(R}- (01+0,) (a-1) - (Li+Ho)—(1/n)) = 0}

n - oo
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