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Abstract. In this paper, 2–dominating set and 2–domination number of a fuzzy graph are 
introduced. The 2–domination number 	�� (G), of the fuzzy graph G is the minimum 
cardinality taken over all 2–dominating sets of G. We also prove some results on 2-
dominating set. The exact values of ��(G) for some standard fuzzy graphs are found. 
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1. Introduction 
The study of dominating sets in graphs was started by Ore and Berge [1,9]. The 
domination number and the independent domination number were introduced by 
Cockayne and Hedetniemi [3]. The �-domination in graphs was introduced by Fink and 
Jacobson [4] in the year 1985. The concept of fuzzy relation was introduced by Zadeh 
[12] in his classical paper in 1965. Rosenfeld [10] introduced the notion of fuzzy graph 
and several fuzzy analogs of graph theoretic concepts such as paths, cycles and 
connectedness.  

Somasundram and Somasundram [11] discussed domination in fuzzy graphs. 
They defined domination using effective edges in fuzzy graphs. NagoorGani and 
Chandrasekaran [5] discussed domination in fuzzy graph using strong arcs. NagoorGani 
and Vadivel [7,8] discussed domination, independent domination and irredundance in 
fuzzy graphs using strong arcs. NagoorGani and Prasanna Devi [6] discussed edge 
domination and edge independence in fuzzy graphs. 

 
2. Preliminaries 
A fuzzy graph G =< �, � > is a pair of functions �: � → [0,1]  and �: � × � → [0,1], 
where for all x,y	∈ V, we have �(�, �) 	≤ 	�(�) ∧ �(�). A fuzzy graph H =< �, � > is 
called a fuzzy subgraph of G if �(��) ≤ �(��) for all v� ∈ V and �(�� , ��) 	≤ 	�(�� , ��) for 
all	v�,v� ∈V.  The underlying crisp graph of a fuzzy graph G =< �, � >is denoted by G* 
=<σ*, µ*>, where σ*= { v� ∈V / σ(v�)>0} and µ* ={( v�,v�) ∈	V×V / µ(v�,v�) >0}. An 
edge in G is called an isolated edge if it is not adjacent to any edge in G. A node in G is 
called an isolated node if it is not adjacent to any node in G. A path with �	vertices in a 
fuzzy graph is denoted as� 		. A fuzzy graph G = < �, � > is a complete fuzzy graph if  
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�(�� , ��) 	= 	�(��) ∧ �(��) for all �� , �� 	 ∈ σ*. An arc (�, �) in a fuzzy graph G =<σ,µ> 
is said to be strong if �"(�, �) = �(�, �) then �, � are called strong neighbours. The 
strong neighbourhood of the node	# is defined as  $%(#) 	= {� ∈ �: (#, �) is a strong 
arc}.	A subset D of V is called a dominating set of a fuzzy graph G if for every � ∈	 
V−	D, there exist # ∈ D such that #	dominates �. The domination number, �(G), of a 
fuzzy graph G, is the smallest number of nodes in any dominating set of G. 

The 2-dominating set D of a graph is defined as if for every node � ∈ V−D there 
exist atleast two neighbours in D. In this paper we discuss about 2-dominating set and 2-
domination number of a fuzzy graph. 
 
3. 2-dominating set 
In this section, we define 2-dominating set and 2-domination number of a fuzzy graph 
with suitable examples. We also derive some results on the 2-domination number of the 
fuzzy graphs. 
 
Definition 3.1. A subset D of V is called a 2-dominating set of G if for every node � ∈ 
V−D there exist atleast two strong neighbours in D.  
 
Example 3.2. 

 
      (G) 
  Figure 3.1: 

{), *, +,, {-, *, +, and {), -, *, +,are 2-dominating sets of the fuzzy graph G. 
 
Definition 3.3. The 2-domination number of a fuzzy graph G denoted by ��(G), is the 
minimum cardinality of a 2-dominating set of G. 
 
Example 3.4. 

 
       (G) 
   Figure 3.2: 
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{-, *, .,, {), *, +,, {), -, *, .,, {-, *, +, .,, {), -, *, +,, {), *, +, .,  and {), -, *, +, ., 

are 2-dominating set of the fuzzy graph G. 
⟹		��(G)	= 3.  
 

Definition 3.5. A 2-dominating set D of a fuzzy graph G such that |D| = 	��(G) is called 
a minimum2-dominating set of G. 
 A 2-dominating set D is called a minimal 2-dominatingset if no proper subset of 
D is a 2-dominating set of G. 
Example 3.6. 

 
           (G)  

    Figure 3.3: 
 Here {*, +,, {), -, *,, {), -, +,and {), -, *, +, are all 2-dominating set of the fuzzy 
graph G. 
 The sets {*, +,, {), -, *,	2�3	{), -, +, are minimal 2-dominating sets of G. 
 The set {*, +, is the minimum 2-dominating set of G. 
 
Theorem 3.7. If |$%(�)| ≤ 1, then �  belongs to every 2-dominating set of the fuzzy 
graph G. 
Proof: Let G be a fuzzy graph and � ∈V has atmost one strong neighbour in G. Let D be 
a 2-dominating set of G. 
Case (i): 
 Suppose � has no strong neighbours in G. i.e.,$%(�) = ∅. 
 Then � is not dominated by any node in D, since � is an isolated node in G. Thus 
� should be dominated by itself. 
 Hence � belongs to every 2-dominating set of G. 
Case (ii): 
 Suppose � has only one strong neighbour in G. 
 Suppose � ∉ D. 
 Then � has atmost one strong neighbour in D. But D is a 2-dominating set of G 
i.e., every node � ∈ V−D has atleast two strong neighbours in D. Since � ∉ D and has 
atmost one strong neighbour in D then D is not a 2-dominating set of G, which is a 
contradiction to our assumption. 
 Therefore, � ∈ D, for every 2-dominating set D of G. 
 
Theorem 3.8. Every 2-dominating set of a fuzzy graph G is a dominating set of G. 
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Proof: Let D be a 2-dominating set of the fuzzy graph G. Then every node in V−	D has 
atleast two strong neighbours in D i.e., for every node � ∈ V−D, there exist minimum 
two nodes in D and both dominates		�. 
 Every node in V−D is dominated by atleast two nodes in D. Thus D is a 
dominating set of G. 
 
Corollary 3.9. If G is a fuzzy graph then 	��(G)	≥ 	�(G). 
Proof: By the above theorem, every 2-dominating set of a fuzzy graph G is a dominating 
set of G. Thus every minimum 2-dominating set of G is also a dominating set of G. 
 Therefore, 	��(G)	≥ 	�(G).  
 
Theorem 3.10. Every connected fuzzy graph G has a minimum 2-dominating set D then 
V	– D need not be a 2-dominating set of G. 
Proof: Let D be a 2-dominating set of G and let � ∈	V. 
 Suppose	|$%���| = 1, then � belongs to every 2-dominating set of G.  

Thus � belongs to every minimum 2-dominating set of G. Then V	−	D has either 
no strong neighbour of � or only one strong neighbour of		�. Thus V	– D does not has 
two strong neighbours for	�. 
 ⇒ V	–	D is not a 2-dominating set of G. 
 Suppose every node in D has atleast two strong neighbours in V	−	D.  
 Then in this case, every node in D has atleast two strong neighbours in V−	D. 
Thus V−	D is a 2-dominating set of G.  
 Hence V	– D need not be a 2-dominating set of G. 
 
4. 2-domination number for standard fuzzy graphs 
In this section we discuss about the 2-dominating set and 2-domination number of some 
standard fuzzy graphs.  
 
Theorem 4.1. If 9 = �#, �� is an isolated edge in a fuzzy graph G then both # and � are 
in every 2-dominating set of G. 
Proof: Let 9 = �#, �� is an isolated edge in a fuzzy graph G. then 9 is a strong arc in G 
i.e., # and � are strong neighbours in G. 
 ⇒ $%�#� = {�}and$%��� = {#} 
 ⇒ |$%�#�| = 1and|$%���| = 1 

Since|$%���| = 1, then # belongs to every 2-dominating set of G. Simillarly � 
belongs to every 2-dominating set of G. 

Thus both # and � are in every 2-dominating set of G. 
 
Corollary 4.2. If G is a fuzzy graph and G*= �:� then 	��(G)	= 2�. 
Proof: Let G be fuzzy graph and G*= �:�. 
 :�	is a complete fuzzy graph with two nodes i.e., a strong arc with its nodes. 
 By above theorem, both the vertices of :� is in the 2-dominating set  of G. 
 Thus the fuzzy graph G has all the 2� nodes in the 2-dominating set of G and 
also it will be in the minimum 2-dominating set of G. 
Therefore, 	��(G)	= 2�. 
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Theorem 4.3. If :  is a complete fuzzy graph,	� ≥ 2, then ���: � = 2. 
Proof: :  is a complete fuzzy graph with � nodes. Here every node in :  is a strong 
neighbour to all other nodes in it.  

Thus any two nodes in :  will form a 2-dominating set of :  and it will be a 
minimum 2-dominating set of: . 

Therefore		���: � = 2. 
 

Theorem 4.4. If G is a fuzzy graph and G* is a cycle with n nodes then the 2-domination 
number of G,  

���G� = <=> ?@� A ,> 			BC	D	ℎ2F	GHI9	Jℎ2�	H�9	K92L9FJ	2IM.
=> �A + 1, BC	D	ℎ2F	H�O�	H�9	K92L9FJ	2IM.										> > 

Proof: Let G be a fuzzy graph and G* be a cycle with �	nodes. Let �@, ��, …… , �  be the �	nodes of G. 
Case (i): If G has more than one weakest arc then all the arcs of G are of strong arcs. 

Then  => ?@� A> nodes in G will form a 2-dominating set of G. 

Therefore		���D� = => ?@� A>. 
Case (ii): If G has only one weakest arc then G has � − 1 strong arcs and only one non 
strong arcs.  

If 9 = ��@, ���  is the only one non strong arc in G then|$%��@�| = 1 
and|$%����| = 1.Thus both�@ and �� will be in every 2-dominating set of G. Therefore => �A + 1	>nodes in G will form a 2-dominating set of G.  

Therefore		���D� = => �A +>1. 

 

Corollary 4.5. If �  is a fuzzy path with � nodes then		���D� = => �A + 1>. 
 
Theorem 4.6. Let G be a fuzzy graph and G* is a star with � + 1  nodes,	� ≥ 2 , 
then		���D� = �.  
Proof: Let G be a fuzzy graph and G* is a star with � + 1		nodes. 
 The nodes except the centre node will have only one strong neighbour and it will 
be in every 2-dominating set of G. And the centre will have all other �	nodes as its strong 
neighbours. The nodes except the centre node will form a 2-dominating set and it will be 
the minimum. Therefore		���D� = �. 

 
5. Conclusion 
We defined 2-dominating set and 2-domination number of a fuzzy graph. For some 
standard fuzzy graphs, we have given the exact value of the 2-domination number. 
Further works are to find the relation between 2- domination number with edge 
domination number of fuzzy graphs. 
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