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1. Introduction 
Levine [2] introduced the concept of semi continuous function. Senthilkumaran et al. [7] 
introduced α̂ generalised closed  sets in topological spaces. The purpose of this paper is to 
introduce the concept of totally α̂g continuous function as a generalization of the concept 
of totally continuous function. Several properties of totally α ̂g continuous function are 
obtained. The interior and closure of a subset A of a space X is denoted by int A and cl A 
respectively. 
 
2. Preliminaries 
Definition 2.1. A subset A of topological space X is  said to be α̂ generalised closed (α̂g 
closed) if int clint A⊂A wherever A⊂U and U is open in X .The complement of α̂g 
closed  set in X is α̂g open in X [7]. 
 
Definition 2.2. A function f:(X,τ)→(Y,σ) is said to be totally continuous if the inverse 
image of every open set of Y is clopen  in X [1]. 
 
3. Totally α ̂̂ ̂̂g continuous function 
Definition 3.1. A function f:(X,τ)→(Y,σ) is called totally α ̂g continuous if f-1(V) is α̂g 
clopen in X, for every open set V of Y. 
 The union of two α̂g clopen sets need not be α̂g clopen, but in the following 
theorem, we assume that arbitrary union of α̂g clopen sets in α̂g clopen . 
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Theorem 3.2. The following statements are equivalent for a function f:(X,τ)→(Y,σ) : 
i. f is totally α ̂g continuous. 

ii. For each x∈X and for each open set V of Y containing f(x) there exists a 
α ̂gclopen set U of X such that f(V)⊂V. 

Proof: 
i) ⇒ ii) 
Let x∈X and V be open in Y containing f(x).Then x∈ f-1(V) which is α̂g clopen in 

X. f(f -1(V))⊂V. 
ii)⇒i) 
Let V be open in Y and x∈ f-1(V).Then f(x)∈V. There exists a α̂g clopen set Ux of 

X such that  f(Ux)⊂V. Hence Ux⊂ f-1(V). 
f-1(V)=⋃ Uₓ�∈	¯ˡ(�) , which is α̂g clopen in X. 
 

Remark 3.3. It is clear that every totally α̂g continuous function is α̂g continuous. But the 
converse need not be true can be seen from the following example. 
 
Example 3.4. Let X={a,b,c}, τ={Φ,{a},{a,b},X}, σ={ Φ,{a},{b},{a,b},X}  
α ̂g closed  sets of (X,τ) ={ Φ,{b},{c},{a,c},{b,c},X}. 
Let f: (X,τ)→(X, σ) be the identity function. 
f is α̂g continuous but not totally α̂g continuous as f-1({a,b})={a,b} is not α̂g closed. 
 
Remark 3.5. It is clear that every totally continuous function is totally α̂g continuous. 
But the converse need not be true can be seen from the following example. 
 
Example 3.6. Let X={a,b,c}, τ={Φ,{a},{a,b},X}  
 Define f:(X,τ)→(X,τ) by f(a)=a,f(b)=b,f(c)=a 

f is totally α ̂g continuous but not totally  continuous as f-1({a})={a,c} is not 
closed. 
 
Definition 3.7. A space (X,τ) is said to be α̂g space if every α ̂g open set of X is open in 
X. 
 
Theorem 3.8. A function f:(X,τ)→(Y,σ) is totally α ̂g continuous and X is a α̂g space, 
then f is totally continuous. 
Proof: Let V be open in Y.Then f-1(V) is α̂g clopen in X.As X is a α̂g space, f-1(V) is 
clopen. 
 
Definition 3.9. A topological space X is said to be α̂gconnected if it cannot be written as 
the union of two nonempty disjoint α̂g open sets. 
 
Theorem 3.10. If f is a totally α ̂g continuous function from a α̂g connected space X onto 
any space Y,then Y is an indiscrete space. 
Proof: If possible, let Y be not indiscrete. 
Let A be a proper nonempty open subset of Y.Thenf-1(A) is a proper nonempty α̂g clopen 
subset of X, which is a contradiction to the fact that X is α̂g connected. 
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Theorem 3.11. A topological space (X,τ) is α̂g connected if and only if every totally α̂g 
continuous function from a space (X,τ) into any To space (Y,σ) is constant. 
Proof: Let X be not α̂g connected. 
    Let every totally α ̂g continuous function from (X,τ) to (Y,σ) be constant. 
    Since (X,τ) is not α̂g connected, there exists a proper nonempty α ̂gclopen subset A of 
X.  
    Let Y={a,b}, σ= {Φ,{a},{b},Y} be a topology on Y. 
    Let f:(X,τ)→(Y,σ) be a function such that f(A)={a},f(Y-A)={b}. Then f is non 
constant and totally α ̂g continuous such that Y is To which is a contradiction. Hence X 
must be α̂g connected. 
     Conversely, let X be α̂g connected. Let f:X→Y be totally α ̂g continuous. 

Let a,b be distinct points of X such that f(a)=α ≠β=f(b), α,β∈Y and they are 
distinct. As Y is To, there exists open set U containing α but not β. So U is a proper open 
subset of Y. 

f-1(U) is a proper α̂g clopen subset of X, which contradicts X is α̂g  connected. 
Hence f must be constant. 
 

Theorem 3.12. Let f:(X,τ)→(Y,σ) be a totally α ̂g continuous function and Y is a 
T1space.If A is a nonempty α̂g connected subset of X, then f(A) is a single point. 
Proof: Obvious. 
 
Lemma 3.13. If A ∈α̂g O(X)and B∈α̂g O(Y), then A×B∈α̂g O(X×Y). 
 
Theorem 3.14. If the function fi : Xi →Y i is totally α̂g continuous function  for each 
i=1,2, then f1×f2 : X1×X2→Y1→Y2 defined by (f1×f2)(x1,x2)=( f1(x1),f2(x2)), for each  x1 ∈ 
X1 , x2 ∈ X2 is totally α̂g continuous. 
Proof: Let V1×V2∈O(Y1×Y2).Then V1 ∈ O(Y1), V2 ∈ O(Y2). 

f1
-1(V1) ∈α̂gCO(X1), f2

-1(V2) ∈α̂gCO(X2) 
(f1×f2)

-1(V1×V2)=( f1
-1(V1), f2

-1(V2))= f1
-1(V1)× f2

-1(V2) ∈α̂gCO(X1×X2).Hence 
f1×f2 is totally α ̂g continuous. 
 

Definition 3.15. Let (X,τ) be a topological space. Then the set of all points y in X such 
that x and y cannot be separated by α̂g separation of X is said to be the quasi α̂g 
component of X. 
 
Theorem 3.16. Let f: (X,τ)→(Y,σ) be a totally α ̂g continuous function from a topological 
space X into a T1 space Y. Then f is constant on each quasi α̂g component of X. 
Proof: Let x,y ∈X that lie in the same quasi α̂g component of X. Let f(x)=α≠β=f(y). 
Since Y is T1 ,{α} is closed  in Y and Y-{α} is open in Y. 

Since f is totally α̂g continuous, f-1({α})and f-1(Y-{ α}) are disjoint α̂g clopen 
subsets of  X. 

Further x∈ f-1({α})and y∈ f-1(Y-{ α}) which is a contradiction to the fact that x 
and y belongs to the same quasi α̂g component of X. Hence the theorem. 

 
Definition 3.17. A α̂g frontier of a subset A of X is α̂gfrA= α̂gclA∩α̂gcl(X-A). 
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Theorem 3.18. The set of all points x ∈X in which a function f:(X,τ)→(Y,σ) is not 
totally α̂g continuous is the union of α̂g frontier of the inverse images of open sets 
containing f(x) if arbitrary intersection of α̂g closed  sets in X is α̂g closed  in X. 
Proof: Let A ={x ∈ X: f is not totally α̂g continuous at x}. Let B be the union of α̂g 
frontier of the inverse images of open sets containing f(x). 
 Let x ∈A. Then there exists an open set V of Y containing f(x) such that f(U) is 
not contained in V for each U ∈α̂gO(X) containing x. Hence x ∈α̂gcl(X-f-1(V)). 

On the other hand x ∈ f-1(V)⊂α̂gclf-1(V).So x ∈α̂g fr f-1(V). Hence A⊂B. 
Conversely, let f be totally α ̂g continuous at x ∈X. Let V be open in Y containing 

f(x). Then there exists U∈α̂gCO(X)containing x such that f(U)⊂V.  
That is U⊂f-1(V). Hence x ∈α̂gintf-1(V)  
x∉αĝcl(X-f-1(V).Hence x∉ α ̂gfr f-1(V). So x∉A implies x∉B. Hence B⊂A. 

 
Theorem 3.19. Let {X �:� ∈�} be any family of topological spaces. If f:X→ΠX� is a 
totally α ̂g continuous function. Then P�of: X→X� is totally α ̂g continuous function for 
each � ∈�, where P� is the projection of ΠX� onto X�. 
Proof: We shall consider a fixed � ∈�. Suppose U� is an arbitrary open set in X�. Then  

P�
-1(U�) is open in Π X . Since f is totally α ̂g continuous, we have by 

f-1 (P�
-1(U�))=(P�of)-1( U�) is α̂g clopen in X. Hence the assertion. 

 
Definition 3.20. 

i) A filter base � is said to be α̂g co-convergent to a point x∈X of for any 
U∈α̂gCO(X) containing x, there exists B∈� such that B⊂U. 

ii)  A filter base � is said to be  convergent to a point x∈X of for any 
U∈O(X) containing x, there exists B∈� such that B⊂U. 

 
Theorem 3.21.  If a function f:(X,τ)→(Y,σ) is totally α̂g continuous, then for each points 
x ∈X and each filter base � in X α̂g co-convergent to x, the filter base f(�) is convergent 
to f(x). 
Proof: Let x ∈X and � be any filter base in X α̂g co-convergent to x.  

Since f is totally α ̂g continuous , then for any V ∈O(Y) containing f(x), there 
exists a U ∈α̂gCO(X) containing x such that f(U)⊂V.  

Since � is α̂g co-convergent to x, there exists a B ∈� such that B⊂U. This 
implies f(B)⊂V.  

Hence the filter base f(�) converges to f(x). 
 

4. Covering properties 
Definition 41. A space (X,τ) is said to be α̂gT2 if for any two distinct points x and y of X, 
there exists disjoint α̂g open sets U and V such that x ∈U and y ∈V. 
 
Theorem 4.2. If arbitrary intersection of α̂g closed  sets is α̂g closed  in a topological 
space X, then X is α̂gT2 if and only if for any two distinct points x and y of X, there exists 
a α̂g neighbourhood Ny of y such that x∉ α̂gclNy. 
Proof:  Let X be α̂gT2 . Let x and y be distinct points of X. Then there exists α̂g open sets 
U and V such that x∈U,y∈V and U∩V=�. 

But U∩V=� implies V⊂X-U 
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So y ∈V⊂X-U.Put X-U=Ny, We have α̂gclNy=α ̂gcl(X-U)= X-U=Ny, as X-U is α̂g 
closed. Ny is a α̂g neighbourhood of y such that x∉α̂gclNy. 

Conversely, let X be a topological space such that for any two distinct points x 
and y of X,there exists α̂g neighbourhood Ny of y such that x∉α̂gclNy. 

α ̂gclNy is also a α̂g neighbourhood of y. Since α̂gclNy  α ̂g closed, X- α̂gclNy is α̂g 
open. x∉α̂gclNy implies x∈X-α̂gclNy. 

As Ny is a α̂g neighbourhood of y, there exists a α̂g open set U such that y ∈U 
and(X-α ̂gclNy)∩U=�. 

Hence X is α̂gT2. 
 

Theorem 4.3. If arbitrary intersection of α̂g closed  sets is α̂g closed  in a topological 
space X, then X is α̂gT2 if for any two distinct points x and y of X, there exists a α̂g open 
sets U and V such that x ∈U, y ∈V and α̂gclU∩α̂gclV=�. 
Proof: Let X be a topological space. Let x and y be distinct points of X. 

 Then there exists α̂g open sets U and V such that x ∈U, y ∈V and α̂gclU ∩ 
α ̂gclV=�.  

V is a α̂g neighbourhood of y such that x∉α̂gclV, as x∈α̂gclU. Hence by the 
above theorem X is α̂gT2. 

 
Lemma 4.4. Let arbitrary intersection of α̂g closed  sets be α̂g closed  in a topological 
space X and Let f:(X,τ)→(Y,σ) be a totally α ̂g continuous injective function. If Y is To, 
then X is α̂gT2 . 
Proof: Let x and y be any pair of distinct points of X. Then f(a)≠f(b). Since Y is To,there 
exists an open sets U containing f(x) but not f(y).Then x ∈ f-1(U)and y∉ f-1(U). As f is 
totally α ̂g continuous, f-1(U) is α̂g clopen in X. Also x ∈ f-1(U) and y ∈x -f-1(U). By the 
above theorem, X is α̂gT2 . 
 
Definition 4.5. A space X is said to be α̂g compact if every α ̂g open cover of X has a 
finite subcover. 
 
Definition 4.6. A subset A of a space X is said to be α̂gcocompact relative to X if every 
cover of A by α ̂g clopen sets of X has a finite subcover. 
 
Definition 4.7. A subset A of a space X is said to be α ̂g cocompact if the subspace A is 
α ̂g cocompact. 
 
Theorem 4.8. If arbitrary union of α̂g clopen sets is α̂g clopen for a space X and a 
function f:(X,τ)→(Y,σ) is totally α ̂g continuous and A is α̂g cocompact relative to X, then 
f(A) is compact in Y. 
Proof: Let {Hα:α ∈ I}be any cover of f(A) by open sets of the subspace f(A).For each α 
∈ I, there exists an open set Aα of Y such that Hα=Aα∩ f(A). 
 For each x ∈A, there exists αx∈ I such that f(x) ∈ Aαx and there exists Ux 
∈α̂gCO(X) containing x such that f(Ux)⊂ Aαx . 

 Since the family {Ux :x ∈ A} is a cover of A by α̂g clopen sets of X, there exists 
a finite subset Aoof A such that A⊂∪{ U x :x ∈Ao}.  

Therefore we obtain f(A)⊂∪{f( U x):x ∈Ao} which is a subsets of { Aαx :x ∈Ao}.  
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Thus f(A)=∪ { A αx ∩f(A) : x ∈Ao}=∪{ H αx :x ∈Ao}. 
Hence f(A) is compact. 

 
Corollary 4.9.  If arbitrary union of α̂g clopen sets is α̂g clopen in topological space X 
and if f:(X,τ)→(Y,σ) is totally α ̂g continuous surjective function and X is α̂g cocompact, 
then Y is compact. 
Proof: Follows from the above theorem. 
 
Definition 4.10. A space X is said to be 
Countably α ̂g cocompact if every α ̂g clopen countable cover of X has a finite subcover. 

i) α ̂g co-Lindelof if every α̂g clopen cover of X has a countable subcover. 
 

Theorem 4.11. Let f:(X,τ)→(Y,σ) be a totally α̂g continuous  surjective function. Then 
the following statements hold: 

i) If X is α̂g co-Lindelof, then Y is Lindelof 
ii)  If X is countably α ̂g cocompact,, then Y is countably compact. 

Proof: 
i) Let{V α:α ∈ I} be an open cover of Y. Since f is totally α ̂g   continuous , then {f-

1(Vα):α ∈ I} is a α̂g clopen cover of X. Since X is α ̂g co-Lindelof, there exists a 
countable subset Io of I such that X=∪{f -1(Vα):α ∈ Io}.  

      Then Y=∪{V α:α ∈ Io} and hence Y is Lindelof. 
ii)  Similar to (i). 

 
Definition 4.12. A space X is said to be  

i) α ̂gcoT1, if for each  pair of distinct points x and y of X,there exist α̂g clopen sets 
U and V containing  x and y respectively such that y∉U and x∉V; 

ii)  α ̂gcoT2, if for each  pair of distinct points x and y of X,there exist disjoint α̂g 
clopen sets U and V in X such that x∈U and y∈V. 

 
Theorem 4.13.  If f:(X, τ)→(Y,σ) is a totally α ̂g continuous  injective function and Y is 
T1, then X is α̂gcoT1. 
Proof: Suppose Y is T1, For any distinct points x and y in X, there exists V,W ∈O(Y) 
such that f(x) ∈V,f(y)∉V and f(y) ∈W, f(x)∉W. Since f is totally α̂g  continuous, f-
1(V)and f-1(W) are α̂g clopen subsets of (X,τ) such that x ∈ f-1(V),y∉f-1(V) and y∈ f-1(W), 
x ∉ f-1(W). This shows X is α̂gcoT1. 
 
Theorem 4.14. If f:(X, τ)→(Y,σ) is a totally α ̂g injective function and Y is T2, then X is 
α ̂gcoT2. 
Proof: For any pair of distinct points x and y in X, there exist disjoint open sets U and V 
in Y such that f(x) ∈U and f(y) ∈V.  

Since f is totally α ̂g continuous,f-1(U) and f-1(V) are α̂g clopen in X  containing  x 
and y respectively.  

Therefore f-1(U) ∩ f-1(V)=� because U∩V=�. This shows X is α̂gcoT2. 
 

Definition 4.15. A space X is called α̂g coregular if for each α̂g clopen set F and each 
point x∉F, there exists disjoint open sets U and V  such that F⊂U and x ∈V. 
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Definition 4.16. A space X is said to be α̂g conormal if for any pair of distinct α̂g clopen 
sets F1 and F2, there exists disjoint open sets U and V  such that F1⊂U and F2⊂V. 
 
Theorem 4.17. If f is totally α̂g continuous injective open function from a α̂g coregular 
space X onto a space Y, then Y is regular. 
Proof: Let F be a closed set of Y and y∉F. 
  Take y=f(x). Since f is totally α ̂g continuous, f-1(F) is a α̂gclopen set.  

Take G= f-1(F). We have x∉G. Since X is α̂g coregular, there exists disjoint open 
sets U and V such that G⊂U and x ∈V. 

We obtain that F=f(G)⊂ f(U) and y= f(x) ∈ f(V) such that f(U) and f(V) are 
disjoint open sets. Hence Y is regular. 
 
Theorem 4.18. If f is totally α̂g continuous injective open function from a α̂g conormal 
space X onto a space Y, then Y is normal. 
Proof:  Similar to the above proof. 
 
Definition 4.19. For a function f:(X,τ)→(Y,σ), the subset {(x,f(x)):x ∈X} ⊂X×Y is called 
the graph of f and is denoted by G(f). 
 
Definition 4.20. A graph G(f) of a function f:(X,τ)→(Y,σ) is said to be strongly α ̂g  co-
closed   if for each (x,y) ∈(X×Y)- G(f), there exist U ∈α̂gCO(X) containing x and V 
∈O(Y) containing y such that (U×V)∩ G(f)=�. 
 
Lemma 4.21. A graph G(f) of a function f:(X,τ)→(Y,σ) is strongly αĝ  co-closed in X×Y 
if and only if for each (x,y) ∈(X×Y)- G(f), there exist U ∈α̂gCO(X) containing x and V 
∈O(Y) containing y such that f(U)∩ V=�. 
Proof: Let G(f) be strongly α̂g- co-closed.  
 Let (x,y) ∈(X×Y)- G(f).Then there exist α̂g clopen set  U containing x and V 
∈O(Y) containing y such that (U∩V)× G(f)=�. That is V∩f(X)=�. 

That is V∩f(U)=�. 
Conversely, let for each (x,y) ∈(X×Y)- G(f), there exist U ∈α̂gCO(X) containing x and V 
∈O(Y) containing y such that f(U)∩ V=�. 

Let y∈V. y ∈Y-f(X). That is y≠ f(x) for any x.That is V∩f(X)=�. This implies 
(U×V)∩ (X×f(X))=�. That is(U×V)∩ G(f)=�. 

Theorem 4.22. Let f:(X,τ)→(Y,σ) has a strongly α ̂g co-closed graph G(f). If f is 
injective, then X is α̂gcoT2. 
Proof:  Let x and y be any two distinct points of X.  

Then, we have(x,f(y)) ∈(X×Y)- G(f). 
By the above lemma, there exist α̂g clopen set U of X and V∈O(Y) such that  
(x,f(y)) ∈(U×V) and f(U)∩V=�.  
Hence U∩f-1(V)=�, x∈U and y∈f-1(V).  
Hence X is α̂gcoT2. 

Theorem 4.23. If arbitrary union of α̂g clopen sets is α̂g clopen in a space X and 
f:(X,τ)→(Y,σ) is totally α ̂g   continuous and Y is T2 , then G(f) is strongly α ̂g co-closed in 
the product space X×Y. 
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Proof: Let (x,y) ∈(X×Y)- G(f). Then y≠f(x) and there exist open sets V1 and V2 such that 
f(x)∈V1,y∈V2 and V1∩V2=�. 

From hypothesis, there exists U∈α̂gCO(X,x) such that f(U)⊂V1. 
Therefore, we obtain f(U)∩V2=�. So G(f) is strongly α ̂g co-closed graph. 
 

Definition 4.24. A function f:(X,τ)→(Y,σ) is said to be : 
i) Totally α ̂g irresolute if the preimage of α̂g clopen subset of Y is α̂g clopen in X. 
ii)  Totally pre α̂g clopen if the image of every α ̂g clopen subset of X is α̂g clopen in 

Y 
 
Theorem 4.25. Let f:(X,τ)→(Y,σ)  be surjective and totally α̂g irresolute and totally pre 
α ̂g clopen and g:(Y,σ)→(Z,η) be any function. Then gof: (X,τ)→(Z,η) is totally α̂g  
continuous if and only if g is totally α ̂g  continuous. 
Proof: Let g be totally α ̂g continuous. Let V be open in Z. g-1(V) α̂g clopen in Y.f-1((g-

1(V)) is α̂g clopen in X.  
Hence gof is totally α ̂g continuous. 
Conversely, let gof: (X,τ)→ (Z,η) be totally α ̂g  continuous. Let V be open in Z. 
Then (gof)-1(V) is α̂g clopen in X. That is f-1((g-1(V)) is α̂g clopen.  
Since f is totally pre α̂g clopen, f(f-1((g-1(V))) is α̂g clopen in Y.  
That is g-1(V) is clopen in Y. Hence g is totally α̂g continuous. 
 

Theorem 4.26. Let f:(X,τ)→(Y,σ) has a strongly α ̂gco-closed  graph G(f). If f is 
surjective totally pre α̂g clopen function,then Y is α̂g T2 space 
Proof: Let y1 and y2 be distinct points of Y. Since f is surjective f(x)=y1, for some x∈X. 
(x,y2) ∈(X×Y)- G(f). There exist U∈α̂gCO(X) and V∈O(Y) such that (x,y2)∈U×V and 
(U×V)∩G(f)=�. Then we have f(U) ∩V= � 

Since f is totally pre α̂g clopen such that f(x)=y1∈f(U). Hence Y is α̂g T2. 
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