Intern. J. Fuzzy Mathematical Archive Vol. 8, No. 2, 2015, 125-132 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 13 November 2015 www.researchmathsci.org

Totally âg Continuous Functions

V.Senthilkumaran¹, R.Krishnakumar² and Y.Palaniappan³

 ¹Department of Mathematics, Arignar Anna Government Arts College, Musiri-621201 Tamilnadu, India. E.mail: <u>vsenthil1966@gmail.com</u>
²Department of Mathematics, Urumu Dhanalakshmi College Kattur Trichy-620019, Tamilnadu, India. E.Mail: srksacet@yahoo.co.in
³Department of Mathematics, Arignar Anna Government Arts College Musiri-621201 Tamilnadu, India.
³Corresponding author, E.mail: palaniappany48@gmail.com

Received 16 October 2015; accepted 26 October 2015

Abstract. In this paper, $\hat{\alpha}g$ closed sets and $\hat{\alpha}g$ open sets are used to define and investigate a new class of function called totally $\hat{\alpha}g$ continuous function. Relationships between the new class and other classes of existing known functions are established.

Keywords: âg clopen sets, totally âg continuous function

AMS Mathematics Subject Classification (2010): 54C10

1. Introduction

Levine [2] introduced the concept of semi continuous function. Senthilkumaran et al. [7] introduced $\hat{\alpha}$ generalised closed sets in topological spaces. The purpose of this paper is to introduce the concept of totally $\hat{\alpha}$ g continuous function as a generalization of the concept of totally continuous function. Several properties of totally $\hat{\alpha}$ g continuous function are obtained. The interior and closure of a subset A of a space X is denoted by int A and cl A respectively.

2. Preliminaries

Definition 2.1. A subset A of topological space X is said to be $\hat{\alpha}$ generalised closed ($\hat{\alpha}$ g closed) if int clint A \subset A wherever A \subset U and U is open in X. The complement of $\hat{\alpha}$ g closed set in X is $\hat{\alpha}$ g open in X [7].

Definition 2.2. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be totally continuous if the inverse image of every open set of Y is clopen in X [1].

3. Totally $\hat{\alpha}$ g continuous function

Definition 3.1. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called totally $\hat{\alpha}g$ continuous if $f^{-1}(V)$ is $\hat{\alpha}g$ clopen in X, for every open set V of Y.

The union of two $\hat{\alpha}g$ clopen sets need not be $\hat{\alpha}g$ clopen, but in the following theorem, we assume that arbitrary union of $\hat{\alpha}g$ clopen sets in $\hat{\alpha}g$ clopen.

Theorem 3.2. The following statements are equivalent for a function $f:(X,\tau) \rightarrow (Y,\sigma)$:

- i. f is totally $\hat{\alpha}$ g continuous.
- ii. For each $x \in X$ and for each open set V of Y containing f(x) there exists a $\hat{\alpha}$ gclopen set U of X such that $f(V) \subset V$.

Proof:

i) ⇒ ii)

Let $x \in X$ and V be open in Y containing f(x). Then $x \in f^{-1}(V)$ which is $\hat{\alpha}g$ clopen in X. $f(f^{-1}(V)) \subset V$.

ii)⇒i)

Let V be open in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. There exists a $\hat{\alpha}g$ clopen set U_x of X such that $f(U_x) \subset V$. Hence $U_x \subset f^{-1}(V)$.

 $f^{1}(V) = \bigcup_{x \in f^{-1}(v)} \bigcup_{x}$, which is $\hat{\alpha}g$ clopen in X.

Remark 3.3. It is clear that every totally $\hat{\alpha}$ g continuous function is $\hat{\alpha}$ g continuous. But the converse need not be true can be seen from the following example.

Example 3.4. Let $X = \{a, b, c\}, \tau = \{\Phi, \{a\}, \{a, b\}, X\}, \sigma = \{\Phi, \{a\}, \{b\}, \{a, b\}, X\}$ $\hat{\alpha}g$ closed sets of $(X, \tau) = \{\Phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Let f: $(X, \tau) \rightarrow (X, \sigma)$ be the identity function. f is $\hat{\alpha}g$ continuous but not totally $\hat{\alpha}g$ continuous as $f^{-1}(\{a, b\}) = \{a, b\}$ is not $\hat{\alpha}g$ closed.

Remark 3.5. It is clear that every totally continuous function is totally $\hat{\alpha}g$ continuous. But the converse need not be true can be seen from the following example.

Example 3.6. Let $X = \{a,b,c\}, \tau = \{\Phi,\{a\},\{a,b\},X\}$

Define $f:(X,\tau) \rightarrow (X,\tau)$ by f(a)=a, f(b)=b, f(c)=a

f is totally $\hat{\alpha}g$ continuous but not totally continuous as $f^{1}(\{a\})=\{a,c\}$ is not closed.

Definition 3.7. A space (X,τ) is said to be $\hat{\alpha}g$ space if every $\hat{\alpha}g$ open set of X is open in X.

Theorem 3.8. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is totally $\hat{\alpha}g$ continuous and X is a $\hat{\alpha}g$ space, then f is totally continuous.

Proof: Let V be open in Y.Then $f^{-1}(V)$ is $\hat{\alpha}g$ clopen in X.As X is a $\hat{\alpha}g$ space, $f^{-1}(V)$ is clopen.

Definition 3.9. A topological space X is said to be $\hat{\alpha}$ gconnected if it cannot be written as the union of two nonempty disjoint $\hat{\alpha}$ g open sets.

Theorem 3.10. If f is a totally $\hat{\alpha}g$ continuous function from a $\hat{\alpha}g$ connected space X onto any space Y, then Y is an indiscrete space.

Proof: If possible, let Y be not indiscrete.

Let A be a proper nonempty open subset of Y.Thenf⁻¹(A) is a proper nonempty $\hat{\alpha}g$ clopen subset of X, which is a contradiction to the fact that X is $\hat{\alpha}g$ connected.

Totally âg Continuous Functions

Theorem 3.11. A topological space (X,τ) is $\hat{\alpha}g$ connected if and only if every totally $\hat{\alpha}g$ continuous function from a space (X,τ) into any T_o space (Y,σ) is constant. **Proof:** Let X be not $\hat{\alpha}g$ connected.

Let every totally $\hat{\alpha}g$ continuous function from (X,τ) to (Y,σ) be constant.

Since (X,τ) is not $\hat{\alpha}g$ connected, there exists a proper nonempty $\hat{\alpha}g$ clopen subset A of X.

Let $Y = \{a, b\}, \sigma = \{\Phi, \{a\}, \{b\}, Y\}$ be a topology on Y.

Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a function such that $f(A) = \{a\}, f(Y-A) = \{b\}$. Then f is non constant and totally $\hat{\alpha}g$ continuous such that Y is T_o which is a contradiction. Hence X must be $\hat{\alpha}g$ connected.

Conversely, let X be $\hat{\alpha}g$ connected. Let $f:X \rightarrow Y$ be totally $\hat{\alpha}g$ continuous.

Let a,b be distinct points of X such that $f(a)=\alpha \neq \beta = f(b), \alpha, \beta \in Y$ and they are distinct. As Y is T_o, there exists open set U containing α but not β . So U is a proper open subset of Y.

 $f^{1}(U)$ is a proper $\hat{\alpha}g$ clopen subset of X, which contradicts X is $\hat{\alpha}g$ connected. Hence f must be constant.

Theorem 3.12. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a totally $\hat{\alpha}g$ continuous function and Y is a T_1 space. If A is a nonempty $\hat{\alpha}g$ connected subset of X, then f(A) is a single point. **Proof:** Obvious.

Lemma 3.13. If $A \in \hat{\alpha}g O(X)$ and $B \in \hat{\alpha}g O(Y)$, then $A \times B \in \hat{\alpha}g O(X \times Y)$.

Theorem 3.14. If the function $f_i: X_i \to Y_i$ is totally $\hat{\alpha}g$ continuous function for each i=1,2, then $f_1 \times f_2 : X_1 \times X_2 \rightarrow Y_1 \rightarrow Y_2$ defined by $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$, for each $x_1 \in I$ $X_1, x_2 \in X_2$ is totally $\hat{\alpha}g$ continuous.

Proof: Let $V_1 \times V_2 \in O(Y_1 \times Y_2)$. Then $V_1 \in O(Y_1)$, $V_2 \in O(Y_2)$.

 $f_1^{-1}(V_1) \in \hat{\alpha} gCO(X_1), f_2^{-1}(V_2) \in \hat{\alpha} gCO(X_2)$

 $(f_1 \times f_2)^{-1}(V_1 \times V_2) = (f_1^{-1}(V_1), f_2^{-1}(V_2)) = f_1^{-1}(V_1) \times f_2^{-1}(V_2) \in \hat{\alpha}gCO(X_1 \times X_2).$ Hence $f_1 \times f_2$ is totally $\hat{\alpha}g$ continuous.

Definition 3.15. Let (X,τ) be a topological space. Then the set of all points y in X such that x and y cannot be separated by $\hat{\alpha}g$ separation of X is said to be the quasi $\hat{\alpha}g$ component of X.

Theorem 3.16. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a totally $\hat{\alpha}$ g continuous function from a topological space X into a T₁ space Y. Then f is constant on each quasi $\hat{\alpha}$ g component of X.

Proof: Let x,y $\in X$ that lie in the same quasi $\hat{\alpha}g$ component of X. Let $f(x)=\alpha\neq\beta=f(y)$. Since Y is $T_1, \{\alpha\}$ is closed in Y and $Y-\{\alpha\}$ is open in Y.

Since f is totally $\hat{\alpha}$ continuous, $f^{1}(\{\alpha\})$ and $f^{1}(Y-\{\alpha\})$ are disjoint $\hat{\alpha}$ clopen subsets of X.

Further $x \in f^{1}(\{\alpha\})$ and $y \in f^{1}(Y - \{\alpha\})$ which is a contradiction to the fact that x and y belongs to the same quasi $\hat{\alpha}$ g component of X. Hence the theorem.

Definition 3.17. A $\hat{\alpha}$ g frontier of a subset A of X is $\hat{\alpha}$ gfrA= $\hat{\alpha}$ gclA $\cap \hat{\alpha}$ gcl(X-A).

Theorem 3.18. The set of all points $x \in X$ in which a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is not totally $\hat{\alpha}g$ continuous is the union of $\hat{\alpha}g$ frontier of the inverse images of open sets containing f(x) if arbitrary intersection of $\hat{\alpha}g$ closed sets in X is $\hat{\alpha}g$ closed in X.

Proof: Let $A = \{x \in X: f \text{ is not totally } \hat{\alpha}g \text{ continuous at } x\}$. Let B be the union of $\hat{\alpha}g$ frontier of the inverse images of open sets containing f(x).

Let $x \in A$. Then there exists an open set V of Y containing f(x) such that f(U) is not contained in V for each $U \in \hat{\alpha}gO(X)$ containing x. Hence $x \in \hat{\alpha}gcl(X-f^{-1}(V))$.

On the other hand $x \in f^{-1}(V) \subset \hat{\alpha}gclf^{-1}(V)$. So $x \in \hat{\alpha}g$ fr $f^{-1}(V)$. Hence $A \subset B$.

Conversely, let f be totally $\hat{\alpha}$ g continuous at x \in X. Let V be open in Y containing f(x). Then there exists U $\in \hat{\alpha}$ gCO(X)containing x such that f(U) \subset V.

That is $U \subset f^{-1}(V)$. Hence $x \in \hat{\alpha}gintf^{-1}(V)$

x∉ $\hat{\alpha}$ gcl(X-f¹(V).Hence x∉ $\hat{\alpha}$ gfr f¹(V). So x∉A implies x∉B. Hence B⊂A.

Theorem 3.19. Let $\{X_{\lambda}: \lambda \in A\}$ be any family of topological spaces. If $f: X \to \Pi X_{\lambda}$ is a totally $\hat{\alpha}g$ continuous function. Then $P_{\lambda}of: X \to X_{\lambda}$ is totally $\hat{\alpha}g$ continuous function for each $\lambda \in A$, where P_{λ} is the projection of ΠX_{λ} onto X_{λ} .

Proof: We shall consider a fixed $\lambda \in \Lambda$. Suppose U_{λ} is an arbitrary open set in X_{λ} . Then

 $P_{\lambda}{}^{\text{-1}}(U_{\lambda})$ is open in Π X . Since f is totally $\hat{\alpha}g$ continuous, we have by

 $f^{1}(P_{\lambda}^{-1}(U_{\lambda}))=(P_{\lambda}of)^{-1}(U_{\lambda})$ is $\hat{\alpha}g$ clopen in X. Hence the assertion.

Definition 3.20.

- i) A filter base Λ is said to be $\hat{\alpha}$ g co-convergent to a point x \in X of for any U $\in \hat{\alpha}$ gCO(X) containing x, there exists B $\in \Lambda$ such that B \subset U.
- ii) A filter base Λ is said to be convergent to a point $x \in X$ of for any $U \in O(X)$ containing x, there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 3.21. If a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is totally $\hat{\alpha}g$ continuous, then for each points $x \in X$ and each filter base Λ in X $\hat{\alpha}g$ co-convergent to x, the filter base $f(\Lambda)$ is convergent to f(x).

Proof: Let $x \in X$ and Λ be any filter base in X $\hat{\alpha}$ g co-convergent to x.

Since f is totally $\hat{\alpha}g$ continuous, then for any $V \in O(Y)$ containing f(x), there exists a $U \in \hat{\alpha}gCO(X)$ containing x such that $f(U) \subset V$.

Since Λ is $\hat{\alpha}g$ co-convergent to x, there exists a $B \in \Lambda$ such that $B \subset U$. This implies $f(B) \subset V$.

Hence the filter base $f(\Lambda)$ converges to f(x).

4. Covering properties

Definition 41. A space (X,τ) is said to be $\hat{\alpha}gT_2$ if for any two distinct points x and y of X, there exists disjoint $\hat{\alpha}g$ open sets U and V such that $x \in U$ and $y \in V$.

Theorem 4.2. If arbitrary intersection of $\hat{\alpha}g$ closed sets is $\hat{\alpha}g$ closed in a topological space X, then X is $\hat{\alpha}gT_2$ if and only if for any two distinct points x and y of X, there exists a $\hat{\alpha}g$ neighbourhood N_y of y such that $x \notin \hat{\alpha}gclN_y$.

Proof: Let X be $\hat{\alpha}gT_2$. Let x and y be distinct points of X. Then there exists $\hat{\alpha}g$ open sets U and V such that $x \in U, y \in V$ and $U \cap V = \phi$.

But $U \cap V = \phi$ implies $V \subset X - U$

Totally âg Continuous Functions

So $y \in V \subset X$ -U.Put X-U=N_y, We have $\hat{\alpha}gclN_y=\hat{\alpha}gcl(X-U)=X$ -U=N_y, as X-U is $\hat{\alpha}g$ closed. N_y is a $\hat{\alpha}g$ neighbourhood of y such that $x\notin\hat{\alpha}gclN_y$.

Conversely, let X be a topological space such that for any two distinct points x and y of X, there exists $\hat{\alpha}g$ neighbourhood N_y of y such that $x\notin\hat{\alpha}gclN_y$.

 $\hat{\alpha}$ gclN_y is also a $\hat{\alpha}$ g neighbourhood of y. Since $\hat{\alpha}$ gclN_y $\hat{\alpha}$ g closed, X- $\hat{\alpha}$ gclN_y is $\hat{\alpha}$ g open. x $\notin \hat{\alpha}$ gclN_y implies x \in X- $\hat{\alpha}$ gclN_y.

As N_y is a $\hat{\alpha}g$ neighbourhood of y, there exists a $\hat{\alpha}g$ open set U such that $y \in U$ and $(X-\hat{\alpha}gclN_y)\cap U=\phi$.

Hence X is $\hat{\alpha}gT_2$.

Theorem 4.3. If arbitrary intersection of $\hat{\alpha}g$ closed sets is $\hat{\alpha}g$ closed in a topological space X, then X is $\hat{\alpha}gT_2$ if for any two distinct points x and y of X, there exists a $\hat{\alpha}g$ open sets U and V such that $x \in U$, $y \in V$ and $\hat{\alpha}gclU \cap \hat{\alpha}gclV = \boldsymbol{\phi}$.

Proof: Let X be a topological space. Let x and y be distinct points of X.

Then there exists $\hat{\alpha}g$ open sets U and V such that $x \in U$, $y \in V$ and $\hat{\alpha}gclU \cap \hat{\alpha}gclV = \boldsymbol{\phi}$.

V is a $\hat{\alpha}g$ neighbourhood of y such that $x\notin \hat{\alpha}gclV$, as $x\in \hat{\alpha}gclU$. Hence by the above theorem X is $\hat{\alpha}gT_2$.

Lemma 4.4. Let arbitrary intersection of $\hat{\alpha}g$ closed sets be $\hat{\alpha}g$ closed in a topological space X and Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a totally $\hat{\alpha}g$ continuous injective function. If Y is T_o , then X is $\hat{\alpha}gT_2$.

Proof: Let x and y be any pair of distinct points of X. Then $f(a) \neq f(b)$. Since Y is T_o , there exists an open sets U containing f(x) but not f(y). Then $x \in f^1(U)$ and $y \notin f^1(U)$. As f is totally $\hat{\alpha}g$ continuous, $f^1(U)$ is $\hat{\alpha}g$ clopen in X. Also $x \in f^1(U)$ and $y \in x - f^1(U)$. By the above theorem, X is $\hat{\alpha}gT_2$.

Definition 4.5. A space X is said to be $\hat{\alpha}g$ compact if every $\hat{\alpha}g$ open cover of X has a finite subcover.

Definition 4.6. A subset A of a space X is said to be $\hat{\alpha}$ gcocompact relative to X if every cover of A by $\hat{\alpha}$ g clopen sets of X has a finite subcover.

Definition 4.7. A subset A of a space X is said to be $\hat{\alpha}g$ cocompact if the subspace A is $\hat{\alpha}g$ cocompact.

Theorem 4.8. If arbitrary union of $\hat{\alpha}g$ clopen sets is $\hat{\alpha}g$ clopen for a space X and a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is totally $\hat{\alpha}g$ continuous and A is $\hat{\alpha}g$ cocompact relative to X, then f(A) is compact in Y.

Proof: Let $\{H_{\alpha}: \alpha \in I\}$ be any cover of f(A) by open sets of the subspace f(A). For each $\alpha \in I$, there exists an open set A_{α} of Y such that $H_{\alpha}=A_{\alpha}\cap f(A)$.

For each $x \in A$, there exists $\alpha_x \in I$ such that $f(x) \in A_{\alpha x}$ and there exists $U_x \in \hat{\alpha}gCO(X)$ containing x such that $f(U_x) \subset A_{\alpha x}$.

Since the family $\{U_x : x \in A\}$ is a cover of A by $\hat{\alpha}$ g clopen sets of X, there exists a finite subset A_oof A such that A $\subset \cup \{U_x : x \in A_o\}$.

Therefore we obtain $f(A) \subset \bigcup \{ f(U_x) : x \in A_o \}$ which is a subsets of $\{ A_{\alpha x} : x \in A_o \}$.

Thus $f(A)=\cup \{ A_{\alpha x} \cap f(A) : x \in A_o \}=\cup \{ H_{\alpha x} : x \in A_o \}$. Hence f(A) is compact.

Corollary 4.9. If arbitrary union of $\hat{\alpha}g$ clopen sets is $\hat{\alpha}g$ clopen in topological space X and if $f:(X,\tau) \rightarrow (Y,\sigma)$ is totally $\hat{\alpha}g$ continuous surjective function and X is $\hat{\alpha}g$ cocompact, then Y is compact.

Proof: Follows from the above theorem.

Definition 4.10. A space X is said to be

- Countably $\hat{\alpha}g$ cocompact if every $\hat{\alpha}g$ clopen countable cover of X has a finite subcover.
 - i) $\hat{\alpha}g$ co-Lindelof if every $\hat{\alpha}g$ clopen cover of X has a countable subcover.

Theorem 4.11. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be a totally $\hat{\alpha}g$ continuous surjective function. Then the following statements hold:

- i) If X is $\hat{\alpha}g$ co-Lindelof, then Y is Lindelof
- ii) If X is countably $\hat{\alpha}g$ cocompact,, then Y is countably compact.

Proof:

- i) Let { $V_{\alpha}: \alpha \in I$ } be an open cover of Y. Since f is totally $\hat{\alpha}g$ continuous, then {f ${}^{1}(V_{\alpha}): \alpha \in I$ } is a $\hat{\alpha}g$ clopen cover of X. Since X is $\hat{\alpha}g$ co-Lindelof, there exists a countable subset I_{o} of I such that $X=\cup\{f^{1}(V_{\alpha}): \alpha \in I_{o}\}$. Then $Y=\cup\{V_{\alpha}: \alpha \in I_{o}\}$ and hence Y is Lindelof.
- ii) Similar to (i).

Definition 4.12. A space X is said to be

- i) âgcoT₁, if for each pair of distinct points x and y of X, there exist âg clopen sets U and V containing x and y respectively such that y∉U and x∉V;
- ii) âgcoT₂, if for each pair of distinct points x and y of X, there exist disjoint âg clopen sets U and V in X such that x∈U and y∈V.

Theorem 4.13. If $f:(X,\tau)\to(Y,\sigma)$ is a totally $\hat{\alpha}g$ continuous injective function and Y is T_1 , then X is $\hat{\alpha}gcoT_1$.

Proof: Suppose Y is T_1 , For any distinct points x and y in X, there exists V,W $\in O(Y)$ such that $f(x) \in V, f(y) \notin V$ and $f(y) \in W$, $f(x) \notin W$. Since f is totally $\hat{\alpha}g$ continuous, f ¹(V) and f¹(W) are $\hat{\alpha}g$ clopen subsets of (X,τ) such that $x \in f^1(V), y \notin f^1(V)$ and $y \in f^1(W)$, $x \notin f^1(W)$. This shows X is $\hat{\alpha}gcoT_1$.

Theorem 4.14. If $f:(X,\tau)\to(Y,\sigma)$ is a totally $\hat{\alpha}g$ injective function and Y is T_2 , then X is $\hat{\alpha}gcoT_2$.

Proof: For any pair of distinct points x and y in X, there exist disjoint open sets U and V in Y such that $f(x) \in U$ and $f(y) \in V$.

Since f is totally $\hat{\alpha}g$ continuous, $f^{1}(U)$ and $f^{1}(V)$ are $\hat{\alpha}g$ clopen in X containing x and y respectively.

Therefore $f^{1}(U) \cap f^{1}(V) = \phi$ because $U \cap V = \phi$. This shows X is $\hat{\alpha}gcoT_{2}$.

Definition 4.15. A space X is called $\hat{\alpha}g$ coregular if for each $\hat{\alpha}g$ clopen set F and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Totally âg Continuous Functions

Definition 4.16. A space X is said to be $\hat{\alpha}g$ conormal if for any pair of distinct $\hat{\alpha}g$ clopen sets F_1 and F_2 , there exists disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Theorem 4.17. If f is totally $\hat{\alpha}$ g continuous injective open function from a $\hat{\alpha}$ g coregular space X onto a space Y, then Y is regular.

Proof: Let F be a closed set of Y and $y \notin F$.

Take y=f(x). Since f is totally $\hat{\alpha}g$ continuous, $f^{-1}(F)$ is a $\hat{\alpha}g$ clopen set.

Take $G = f^{1}(F)$. We have $x \notin G$. Since X is $\hat{\alpha}g$ coregular, there exists disjoint open sets U and V such that $G \subset U$ and $x \in V$.

We obtain that $F=f(G) \subset f(U)$ and $y=f(x) \in f(V)$ such that f(U) and f(V) are disjoint open sets. Hence Y is regular.

Theorem 4.18. If f is totally $\hat{\alpha}g$ continuous injective open function from a $\hat{\alpha}g$ conormal space X onto a space Y, then Y is normal. **Proof:** Similar to the above proof.

Definition 4.19. For a function $f:(X,\tau) \rightarrow (Y,\sigma)$, the subset $\{(x,f(x)):x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 4.20. A graph G(f) of a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be strongly $\hat{\alpha}g$ coclosed if for each $(x,y) \in (X \times Y)$ - G(f), there exist $U \in \hat{\alpha}gCO(X)$ containing x and V $\in O(Y)$ containing y such that $(U \times V) \cap G(f) = \boldsymbol{\phi}$.

Lemma 4.21. A graph G(f) of a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is strongly $\hat{\alpha}g$ co-closed in $X \times Y$ if and only if for each $(x,y) \in (X \times Y)$ - G(f), there exist $U \in \hat{\alpha}gCO(X)$ containing x and $V \in O(Y)$ containing y such that $f(U) \cap V = \boldsymbol{\phi}$.

Proof: Let G(f) be strongly $\hat{\alpha}g$ - co-closed.

Let $(x,y) \in (X \times Y)$ - G(f). Then there exist $\hat{\alpha}g$ clopen set U containing x and V $\in O(Y)$ containing y such that $(U \cap V) \times G(f) = \phi$. That is $V \cap f(X) = \phi$.

That is $V \cap f(U) = \boldsymbol{\phi}$.

Conversely, let for each (x,y) $\in (X \times Y)$ - G(f), there exist U $\in \hat{\alpha}$ gCO(X) containing x and V $\in O(Y)$ containing y such that f(U) $\cap V = \phi$.

Let $y \in V$. $y \in Y$ -f(X). That is $y \neq f(x)$ for any x. That is $V \cap f(X) = \phi$. This implies $(U \times V) \cap (X \times f(X)) = \phi$. That is $(U \times V) \cap G(f) = \phi$.

Theorem 4.22. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ has a strongly $\hat{\alpha}g$ co-closed graph G(f). If f is injective, then X is $\hat{\alpha}gcoT_2$.

Proof: Let x and y be any two distinct points of X.

Then, we have(x,f(y)) $\in (X \times Y)$ - G(f). By the above lemma, there exist $\hat{\alpha}g$ clopen set U of X and V $\in O(Y)$ such that $(x,f(y)) \in (U \times V)$ and $f(U) \cap V = \boldsymbol{\phi}$. Hence $U \cap f^{-1}(V) = \boldsymbol{\phi}$, $x \in U$ and $y \in f^{-1}(V)$. Hence X is $\hat{\alpha}gcoT_2$.

Theorem 4.23. If arbitrary union of $\hat{\alpha}g$ clopen sets is $\hat{\alpha}g$ clopen in a space X and $f:(X,\tau) \rightarrow (Y,\sigma)$ is totally $\hat{\alpha}g$ continuous and Y is T_2 , then G(f) is strongly $\hat{\alpha}g$ co-closed in the product space X×Y.

Proof: Let $(x,y) \in (X \times Y)$ - G(f). Then $y \neq f(x)$ and there exist open sets V_1 and V_2 such that $f(x) \in V_1, y \in V_2$ and $V_1 \cap V_2 = \phi$.

From hypothesis, there exists $U \in \hat{\alpha} gCO(X,x)$ such that $f(U) \subset V_1$.

Therefore, we obtain $f(U) \cap V_2 = \phi$. So G(f) is strongly $\hat{\alpha}g$ co-closed graph.

Definition 4.24. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be :

- i) Totally $\hat{\alpha}g$ irresolute if the preimage of $\hat{\alpha}g$ clopen subset of Y is $\hat{\alpha}g$ clopen in X.
- ii) Totally pre $\hat{\alpha}$ g clopen if the image of every $\hat{\alpha}$ g clopen subset of X is $\hat{\alpha}$ g clopen in Y

Theorem 4.25. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be surjective and totally $\hat{\alpha}g$ irresolute and totally pre $\hat{\alpha}g$ clopen and $g:(Y,\sigma) \rightarrow (Z,\eta)$ be any function. Then gof: $(X,\tau) \rightarrow (Z,\eta)$ is totally $\hat{\alpha}g$ continuous if and only if g is totally $\hat{\alpha}g$ continuous.

Proof: Let g be totally $\hat{\alpha}g$ continuous. Let V be open in Z. $g^{-1}(V)$ $\hat{\alpha}g$ clopen in Y. $f^{-1}((g^{-1}(V)))$ is $\hat{\alpha}g$ clopen in X.

Hence gof is totally $\hat{\alpha}$ g continuous.

Conversely, let gof: $(X,\tau) \rightarrow (Z,\eta)$ be totally $\hat{\alpha}g$ continuous. Let V be open in Z. Then $(gof)^{-1}(V)$ is $\hat{\alpha}g$ clopen in X. That is $f^{-1}((g^{-1}(V)))$ is $\hat{\alpha}g$ clopen.

Since f is totally pre $\hat{\alpha}g$ clopen, f(f¹((g⁻¹(V))) is $\hat{\alpha}g$ clopen in Y.

That is $g^{-1}(V)$ is clopen in Y. Hence g is totally $\hat{\alpha}g$ continuous.

Theorem 4.26. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ has a strongly $\hat{\alpha}$ gco-closed graph G(f). If f is surjective totally pre $\hat{\alpha}$ g clopen function, then Y is $\hat{\alpha}$ g T₂ space

Proof: Let y_1 and y_2 be distinct points of Y. Since f is surjective $f(x)=y_1$, for some $x \in X$. (x,y₂) $\in (X \times Y)$ - G(f). There exist $U \in \hat{\alpha}gCO(X)$ and $V \in O(Y)$ such that $(x,y_2) \in U \times V$ and $(U \times V) \cap G(f) = \phi$. Then we have $f(U) \cap V = \phi$

Since f is totally pre $\hat{\alpha}g$ clopen such that $f(x)=y_1\in f(U)$. Hence Y is $\hat{\alpha}g$ T₂.

REFERENCES

- 1. R.C.Jain, The role of regularly open sets in general topology, Ph.D., Thesis, Meerut University, Institute of Advanced studies, Meerut, India, 1980.
- 2. N.Levine, Semiopen and semicontinuity in topological spaces, *Amer. Math. Monthly*, 70 (1963) 36-41.
- 3. A.S.Mashhour, M.EAbdEl-Monsef and S.N.ElDeep, On pre continuous and weak precontinuous mapping, *Proc. Math. Phys. Soc. Egypt.* 53 (1982) 47-53
- 4. A.A.Nasef and A.S.Farbag, Completely b-irresolute function, *Proc. Math. Phys. Soc. Egypt*, 74 (1999) 73-86.
- 5. O.Njasted, On some classes of nearly open sets, Pacific. J. Math., 15 (1965) 961-970.
- 6. T.M.Nour, Totally semi continuous functions, *Indian J. Pure. Appl.Math.*, 26(7) (1995) 675-678.
- J.H.Park, Strongly Θ-b continuous function, Acta. Math. Hungar., 110 (4) (2006) 347-359.
- V.Senthilkumaran, R.Krishnakumar and Y.Palaniappan, On ά generalised closed sets, *Intl. J. Math. Archive*, 5(2) (2014)187-191.