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Abstract. Let G=(V, E) be a graph. Let S be the set of allimal dominating sets of G.
Let X, y, z be three variables each taking valuar +. The entire transformation graph
G is the graph having NS as the vertex set and for any two vertices uvandv [ S,

u and v are adjacent in“Gif and only if one of the following conditions hist: (i) u, v
OV. x =+ ifu, vOD where D is a minimal dominating set of G. x f 4,iv D where

D is a minimal dominating set of G. (i) u,¥S. y=+ifunvz@.y=—ifunv=09
(iulOVandvOS. z=+ifuldv. z=-if ulv. In this paper, we initiate a study of
entire dominating transformation graphs in domoratiheory. Also we introduce some
fuzzy transformation graphs.

Keywords: dominating graph, semientire dominating graphiremtominating graph,
fuzzy entire dominating graph, transformation

AMS Mathematics Subject Classification (2010): 05C72

1. Introduction
The graphs considered in this paper are finiteirantbd without loops and multiple
edges. Any undefined term here may be found in [1].

Let G=(V, E) be a graph. A séd OV is a dominating set @ if every vertex in
V — Dis adjacent to some vertexh The domination numbefG) of G is the minimum
cardinality of a dominating set &. Recently several domination parameters are given
the books by Kulli in [2, 3, 4].

A dominating seD of G is minimal if everw O D, D —{V} is not a dominating
set ofG.

Let Sbe the set of all minimal dominating sets3of

The entire dominating gragfD(G) of G is the graph with the vertex sét] Sin
which two verticesl, vare adjacent ifi, v D, whereD is a minimal dominating set in
Goru, v Sandun v#@orudVandvis a minimal dominating set i@ containingu.
This concept was introduced by Kulli in [5]. Manyher graph valued functions in
domination theory were studied, for example, in768, 9, 10, 11, 12, 13, 14, 15, 16] and
also graph valued functions in graph theory weudist, for example, in [17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].
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The semientire dominating graftd(G) of G is the graph with the vertex sét] Sin
which two verticeal, v are adjacent ifi, v O D, where D is a minimal dominating set in
G oruld V andv is a minimal dominating set i@ containingu. This concept was
introduced by Kulli in [33].

The dominating grapB(G) of G is the graph with vertex s¥t[l Sin which two
verticesu, v are adjacent iD(G) if ud V andv is a minimal dominating set db
containingu. This concept was introduced in [34].

The middle dominating grapky(G) of G is the graph with vertex s&[ Sin
which two verticesl, vare adjacent iMy(G) if u n v# @whereu, vO Soru V andv
is a minimal dominating set @ containingu. This concept was introduced in [35].

The common minimal dominating gra@D(G) of G in the graph having the
same vertex set & with two verticesin CD(G) adjacent ifu, v D whereD is a
minimal dominating set ifs. This concept was introduced in [36].

The minimal dominating graptMD(G) of G is the graph with minimal
dominating sets as its vertices in which two veRig, vare adjacent iMD(G) if un v
# @. This concept was introduced in [37].

Let G denote the complement Gf

2. Entire dominating transfor mation graphs
Inspired by the definition of the entire dominatiggaph of a graph, we introduce the
following transformation graphs.

Definition 1. Let G = (V, E) be a graph and |&be the set of all minimal dominating sets

of G. Let X, y, zbe three variables each taking value + and’he entire dominating

transformation grapl&™” is the graph havinyS as the vertex set and for any two

verticesu and v in VOS u and v are adjacent if and only if one of the following

conditions holds:

i) u, vZ7V. x =+ if u, vZ7D whereD is a minimal dominating set &. x=—if u, v
/7D whereD is a minimal dominating set @.

i) uvisS.y=+ifunvzay=-ifunv=g

iii) u/Vandv 7S. z=+ifu/lJv.z=—if u Jv.

Using the above entire transformation, Ww&aim eight distinct entire transformation
graphsG™", G, G" ", G, G ,G", GG~

Example 2. In Figure 1, a grapks, its entire transformation grap&™ andG™ ~ ~are
shown.
Proposition 3. For any grapl,

)G =G " i) G =G "

i) GT " T=G " vy G =G "
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3. Theentiretransformation graph G™*
Among entire transformation graphs one is the ertominating grapi®
we have

+++

. Therefore

+++

Proposition 4. For any graplt, ED(G) =G™ .

Remark 5. For any graplG, EJ(G) is a spanning subgraph @&f™".
Remark 6. For any grapl@, D(G) is a spanning subgraph @f*".
Remark 7. For any graplG, My(G) is a spanning subgraph Gf*".

Remark 8. For any graphG, MD(G) and CD(G) are vertex and also edge disjoint
induced subgraphs &,

Theorem A[5]. For any graphG, ED(G) is complete if and only ifG is totally
disconnected.

Theorem 9. For any graplG, G is complete if and only i is totally disconnected.
Proof: This follows from Proposition 4 and Theorem A.

Theorem B[5]. For any graphG, Ed(G)= ED(G) if and only if one of the following
conditions holds.
i) G has exactly one minimal dominating set containihgextices ofG.
i) Every pair of minimal dominating sets @fare disjoint.
Theorem 10. For any graphG, G™
conditions holds.
i) G has exactly one minimal dominating set containihgextices ofG.
i) Every pair of minimal dominating sets @fare disjoint.
Proof: This follows from Proposition 4 and Theorem B.

= Ed(G) if and only if one of the following
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4. Theentiretransformation graph G" ™
We start with some simple observations.

Remark 11. For any graplG, EJ(G) is a spanning subgraph @f .
Remark 12. For any graplG, CD(G) is a spanning subgraph @f ~*.
Remark 13. For any graplG, CD(G) andD(G) are edge disjoint subgraphs®f .

We characterize graphs whose transformation gr@phsare complete.
Theorem 14. The transformation grap&” ="
disconnected.

Proof: SupposeG is totally disconnected. Thed has exactly one minimal dominating
setD containing all vertices db. Letu be the corresponding vertex@fin G*~*. Thus
the vertex set o6" ~* is V O{u}. Since D contains all vertices d& andD is the only
minimal dominating set i1, every two vertices are adjacent@® ~*. ThusG" ~ " is
complete.

Conversely suppos& is complete. We now prove th#& is totally
disconnected. On the contrary, assuGés not totally disconnected. Then there exist
minimal dominating set®; in D, in G. We consider the following two cases.

Case 1. Supposé; n D, # @ Then corresponding vertices@f andD, are not adjacent
in G**, a contradiction.

Case 2. Supposé®; n D, = @ LetD;={uy, Uy, ..., Uy, m21} andD,={vy, Vs, ..., Vs, N =1}
Then there exist vertices in D, andy, in D, such that; andy; are not adjacent 6",
which is a contradiction.

From Case 1 and Case 2, we conclude tBahas exactly one minimal
dominating set which contains all vertices & This implies thatG is totally
disconnected.

is complete if and only if5 is totally

+ -+

Theorem 15. If G is not a nontrivial complete graph, th&éh * contains a triangle.
Proof: SupposészK,, p=2. ThenG has at least one minimal dominating Batontaining
two or more vertices. Lat;, uy, ...,u, 0D, n=2. Then the corresponding vertices o,
U, ...,U, andD in G " are mutually adjacent. Hen@& " " contains a triangle.

Theorem 16. G** = K*,if and only ifG = K,,.
Proof: Supposes = K. Then each vertey of K, forms a minimal dominating set:}.
Thusv; and {4} are adjacent vertices i6" ~*. Since {}n{v}=@ for 1< i, j <p, it
implies that every pair of minimal dominating sate adjacent i6* *. Also since each
minimal dominating set {} contains only one vertex, it follows that no two
corresponding vertices dfare adjacent iG6" . ThusG" " =K",.

Conversely suppos®”  * =K",. We now prove thab =K,. AssumeG #K,. By
Theorem 15, at least two corresponding verticeG 6é in a triangle. Thu§" " #K",
which is a contradiction. Thus = K,
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The above theorem may be written as

Theorem 17. G™" = K", if and only if each minimal dominating set 6f contains
exactly one vertex.

5. Fuzzy transformation graphs
In this section, we present some fuzzy transfommnagiraphs in fuzzy domination theory.

A fuzzy graphG = (V, g, l) is a nonempty s&f together with a pair of functions
o:V 5 [0, 1] andu : VxV - [0, 1] such thap(uv) < o (U)o (v) for allu, vO V.

A subsetD of V is said to be a fuzzy dominating set of a fuzzgpirG if for
everyv 0V — D,there exista1 0 D such thatyg, V) is a strong arc. The fuzzy domination
numbery(G) of a fuzzy graplie is the minimum cardinality of a fuzzy dominatiset of
G. This concept was introduced by Nagoor Gani aral.eh [38]. A fuzzy dominating
setD of a fuzzy graplG is called a minimal fuzzy dominating set®@fif for every node
v D, D —{v}is not a fuzzy dominating set.

Let G=(V, g, W) be a fuzzy graph. L& be the set of all minimal fuzzy dominating
sets ofG.

The fuzzy dominating grapRy(G) of a fuzzy graplG is the fuzzy graph with a
nonempty seV 0 Sand for any two nodes, vin VO § (u, V) is a strong arc it 0 V
andv is a minimal fuzzy dominating set &f containingu.

The fuzzy minimal dominating graghMy(G) of a fuzzy graphG is the fuzzy
graph with a nonempty s8tand for any two nodes, vin S (u, V) is a strong arc ifi n v
Z Q.

The fuzzy common minimal dominating grap@4(G) of a fuzzy graplG is the
fuzzy graph with the same nonempty ¥eisG and for any two nodas, vin 'V, (u, ) is
a strong arc ifi, vOI D, whereD is a minimal fuzzy dominating set @

The fuzzy semientire dominating grap(G) of a fuzzy graptG is the fuzzy
graph with a nonempty s&t[0 Sand for any two nodes, vin VO S (u, V) is a strong
arc if u, vO D, whereD is a minimal fuzzy dominating set @ or uJ V andv is a
minimal fuzzy dominating set @@ containingu.

The fuzzy entire dominating graptiy(G) of a fuzzy graplG is the fuzzy graph
with a nonempty se¥ [0 Sand for any two nodas, vin VO S (u, V) is a strong arc i,

v O D, whereD is a minimal fuzzy dominating set@oru, v Sandun v£ @orulV
andv is a minimal fuzzy dominating set Gf containingu.

We now define fuzzy entire dominating transformatipaphs.

Let G = (V, 0, W) be a fuzzy graph. L& be the set of all minimal fuzzy dominating
sets ofG. Let x, y, zbe three variables each taking value + or — TUmEzyf entire
dominating transformation gragh®” is the fuzzy graph with a nonempty &efl Sand
for any two nodesi, vin VO S,(u, V) is a strong arc if one of the following condition
holds:

i) u, v V. x =+ ifu, vO D whereD is a minimal fuzzy dominating set &f

x = —ifu, v0 D whereD is a minimal fuzzy dominating set Gt

i) uvOSy=+ifunvzey=—ifunv=aq.

iii) uOVandvOSz=+ifulv.z=—ifulw.
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