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Abstract. In this paper, we defined a new fuzzy graph named Triple Layered Fuzzy 
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1. Introduction 

Fuzzy logic has developed into a large and deep subject. Zadeh [18] addresses the 
terminology and stresses that fuzzy graphs are a generalization of the calculi of crisp 
graphs. Several other formulations of fuzzy graph problems have appeared in the 
literature. The first definition of fuzzy graph by Kaufman [16] in 1975 was based on 
Zadeh’s fuzzy relations. But it was Rosenfeld [11] in 1975 who considered fuzzy relation 
on fuzzy sets and developed the theory of fuzzy graphs. The author introduced fuzzy 
analogues of several graph theoretic concepts such as subgraphs, paths and 
connectedness, cliques, bridges and cut nodes, etc. During the same time Yeh and Bang 
[12] in 1975 also introduced  fuzzy graphs independently and studied various 
connectedness concepts. 

The degree of a vertex in some fuzzy graphs was discussed by Nagoorgani and 
Radha [6]. Nagoorgani and Malarvizhi have defined different types of fuzzy graphs and 
discussed its relationships with isomerism in fuzzy graphs [7 - 9]. Nagoorgani and Radha 
[6] introduced vertex degree in fuzzy graphs. Fuzzy trees and fuzzy hyper graphs are 
studied in [15] and [17]. Pathinathan  and Rosline [1] defined Double Layered Fuzzy 
graph which gives a 3 – D view to fuzzy graphs. Later they analyzed several properties in 
DLFG [1-5]. In this paper a new fuzzy graph namely Triple Layered Fuzzy Graph 
(TLFG) is defined and is illustrated with examples and some properties in the form of 
theorems. First we go through some of the basic definition if fuzzy graphs. 

2. Preliminaries 

Definition 2.1. [11] A fuzzy graph G is a pair of functions G:(σ,µ) where σ is a fuzzy 
subset of a non empty set S and µ is a symmetric fuzzy relation on σ. The underlying 

crisp graph of G:(σ,µ) is denoted by * * *: ( , )G σ µ   
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Definition 2.2. [13] Let : ( , )G σ µ  be a fuzzy graph, the order of G is defined as 

( ) ( ).
u V

O G uσ
∈

=∑  

Definition 2.3. [13] Let : ( , )G σ µ  be a fuzzy graph, the size of G is defined as 

,

( ) ( , ).
u v V

S G u vµ
∈

= ∑  

Definition 2.4. [6] Let : ( , )G σ µ  be a fuzzy graph, the degree of a vertex u in G is 

defined as ( ) ( , )
v u
v V

d u u vµ
≠
∈

=∑ and is denoted as ( )Gd u . 

 
Definition 2.5. [14] A fuzzy graph : ( , )G σ µ  is said to be a strong fuzzy graph if 

( , ) ( ) ( )u v u vµ σ σ= ∧  for all (u,v) in *µ .  
 
Definition 2.6. [10] Let G be a fuzzy graph, the µ - complement of G is denoted as 

: ( , )Gµ µ µσ µ  where * *σ µ∪  and 
( ) ( ) ( , ) if ( , ) 0

( , )
0 if ( , ) 0

u v u v u v
u v

u v
µ σ σ µ µ

µ
µ
∧ −

=  =

≻

 

 

3. Triple layered fuzzy graph 

Let : ( , )G σ µ  be a fuzzy graph with the underlying crisp graph* * *: ( , )G σ µ . The pair 

( ) : ( , )TL TLTL G σ µ is defined as follows. The node set of ( )TL G  be * * *σ µ µ∪ ∪ . The 

fuzzy subset TLσ  is defined as 
*

*

( ) if 

2 ( ) if 
TL

u u

uv uv

σ σ
σ

µ µ
 ∈= 

∈
 

The fuzzy relation TLµ  on * *σ µ∪  is defined as  

*( )                if ,

( ) ( )   if the edge e  and e   a node in common between them

* *( ) ( )    if  and e  and each e  is incident with u  in clockwise direction.

( )

uv u v

e e have
i j i j

u e u
TL i i i i i i

u
i

µ σ
µ µ

µ σ µ σ µ

σ µ

∈
∧

= ∧ ∈ ∈

∧ * *( )    if  and e  and each e  is incident with u  in anticlockwise direction.

0                       Otherwise

e u
i i i i i

σ µ








 ∈ ∈




 

By definition, * *( , ) ( ) ( ) for all u,v in TL TL TLu v u vµ σ σ σ µ≤ ∧ ∪ . Here TLµ  is a fuzzy 

relation on the fuzzy subsetTLσ . Hence the pair ( ) : ( , )TL TLTL G σ µ  is defined as Triple 

Layered Fuzzy Graph (TLFG).  
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Example 3.1. Consider a fuzzy graph : ( , )G σ µ  with n = 3 vertices whose crisp graph is 
a cycle. 

 

Figure 1: Fuzzy graph : ( , )G σ µ  

Then the triple layered fuzzy graph is given by 

 

Figure 2: Triple layered fuzzy graph ( ) : ( , )TL TLTL G σ µ  

Remark 3.1. For each value of n we can get different TLFG. 

 

4. Theoretical concepts of TLFG 

Theorem 4.1. Order TL(G) = Order(G) + 2 Size(G), where G is a fuzzy graph. 

Proof: As the node set of TL(G) is * * *σ µ µ∪ ∪ and the fuzzy subset TLσ on 

* * *σ µ µ∪ ∪  is defined as 
*

*

( ) if 

2 ( ) if 
TL

u u

uv uv

σ σ
σ

µ µ
 ∈= 

∈
 

Order TL(G) = ( )TL
u VUE E

uσ
∈ ∪
∑   (by definition 2.2) 

       = ( ) ( )TL TL
u V u E

u uσ σ
∈ ∈

+∑ ∑  
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       = ( ) 2 ( )
u V u E

u uσ µ
∈ ∈

+∑ ∑  (by definition of ( )TL uσ  ) 

        = Order (G) + 2 Size (G). 
 

Theorem 4.2. ( ) ( )
,

 T   3    2 ( ) ( ),
i j

i j
e e E

Size L G Size G e eµ µ
∈

= + ∧∑ where G is a fuzzy 

graph and i, j ∈N. 

Proof: ( )
,

 T  ( , )TL
u v VUEUE

Size L G u vµ
∈

= ∑  (by definition 2.3) 

                  
, , , ,

( , ) + 2 ( , ) ( , ) + ( , )
i j i i j i

TL TL i j TL i i TL j i
u v V e e E u V e E u V e E

u v e e u e u eµ µ µ µ
∈ ∈ ∈ ∈ ∈ ∈

= +∑ ∑ ∑ ∑  

   (ui and uj are the end node of ei both in clockwise and anti 
clockwise direction in the third and fourth summation respectively) 

        

, , ,

= size (G) +2 ( ) ( ) ( ) ( ) ( ) ( )
i j i i j i

i j i i j i
e e E u V e E u V e E

e e u e u eµ µ σ µ σ µ
∈ ∈ ∈ ∈ ∈

∧ + ∧ + ∧∑ ∑ ∑
 

         

,

= size (G) + 2 ( ) ( ) ( ) ( ).
i j

i j
e e E e E e E

e e e eµ µ µ µ
∈ ∈ ∈

∧ + +∑ ∑ ∑  

Since in the third  and fourth summation, we are considering only one vertex in 
each edge either clockwise and anticlockwise direction, its membership value is less than 
the value of the vertices. 

    ( )
,

 T = size (G) + 2 ( ) ( ) 2  (G) 
i j

i j
e e E

Size L G e e sizeµ µ
∈

∧ +∑  

 
,

= 3size (G) + 2 ( ) ( )
i j

i j
e e E

e eµ µ
∈

∧∑   

Theorem 4.3. ( ) 3 ( ) 2 ( ( )) .TLE G E G E L G= +  

Proof: Each edge in G is replaced by a two new vertex in TL(G). The pair of adjacent 
edges in G contributes two new edges in TL(G) and  each edge in G is neighbourhood of 
two vertices both in clockwise and anticlockwise direction. Also the vertex which are 
adjacent in G is also adjacent in TL(G).  

Thus, we have *( ) 3 ( )  2 (no of pairwise adjacent edges in G )TLE G E G= +  

    3 ( )  2 ( ( ))E G E L G= + . 

 

Theorem 4.4. If G is a strong fuzzy graph then TL(G) is also a strong fuzzy graph. 

Proof: By definition 2.5, we have ( , ) ( ) ( )u v u vµ σ σ= ∧ for all (u,v) in 
*µ . 

Assume G is a strong fuzzy graph. We need to prove TL(G) is a strong graph. Consider 
an edge (u,v) in TL(G). Then 
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*( )               if ,

( ) ( )  if the edge e  and e   a node in common between them

* *( ) ( )   if  and e  and each e  is incident with u  in clockwise direction.

( ) (

uv u v

e e have
i j i j

TL u e u
i i i i i i

u e
i i

µ σ
µ µ

µ
σ µ σ µ

σ µ

∈
∧

=
∧ ∈ ∈

∧ * *)   if  and e  and each e  is incident with u  in anticlockwise direction.u
i i i i

σ µ








 ∈ ∈


 

Case i: It is trivial from our assumption that G is a strong graph. Thus  

( , ) ( ) ( )u v u vµ σ σ= ∧  for all (u,v) in *
TLµ . 

Case ii: If ( , ) ( ) ( )TL i ju v e eµ µ µ= ∧  and if  *  ,      i ju e v e µ∈= =  are adjacent in G* 

then ( , ) ( ) ( )TL TL i TL ju v e eµ σ σ= ∧  (by the definition of TLσ ) 

Case iii: If ( , ) ( ) ( ) TL i iu v u eµ σ µ= ∧  and each ei is incident to ui in clockwise direction 

in G*. Then  

 ( , ) ( ) ( )TL TL i TL ju v u eµ σ σ= ∧  (by the definition of TLσ ) 

Case iv: If ( , ) ( ) ( ) TL i iu v u eµ σ µ= ∧  and each ei is incident to single ui in 

anticlockwise direction in G*. Then  

 ( , ) ( ) ( )TL TL i TL ju v u eµ σ σ= ∧  (by the definition of TLσ ) 

Hence if G is a strong fuzzy graph, by case i, ii, iii and iv; we have 
( , ) ( ) ( )TL TL TLu v u vµ σ σ= ∧ for all (u,v) in *

TLµ . 

 

Theorem 4.5. Let G be a fuzzy graph then  

*

*

*( )

( )  ( (u ) ( )) + ( (u ) ( ))  if 
( ) ( ) ( )  ( ( ) ( ))              if u

i

G i i j i

TL G
i j i i

e

d u e e u
d u e e u e

µ

σ µ σ µ σ

µ µ σ µ µ
∈

 + ∧ ∧ ∈
=  ∧ + ∧ ∈


∑  

Proof: By definition 2.4, we have ( ) ( , )G
v u
v V

d u u vµ
≠
∈

=∑  

Case i: Let  *u σ∈ , then  

          
*

( ) ( ) ( , ) + ( , ) + ( , )TL G TL TL i i TL j i
v

d u u v u e u e
σ

µ µ µ
∈

= ∑  where ui and uj are the end 

nodes of ei 

*

( , ) + ( (u ) ( )) + ( (u ) ( ))i i j i
v

u v e e
σ

µ σ µ σ µ
∈

= ∧ ∧∑   

(∵in the first summation the vertices which are adjacent in G is also adjacent in TLFG) 
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( ) ( (u ) ( )) + ( (u ) ( ))G i i j id u e eσ µ σ µ= + ∧ ∧  

Case ii: Let  *u µ∈ , then     

* *
( )

, ,

( ) ( , ) + ( , ) ( ) ( ) + (u ) ( )
i j i j

TL G TL i j TL i i i j i i
e e e e

d u e e u e e e e
µ µ

µ µ µ µ σ µ
∈ ∈

= = ∧ ∧∑ ∑  

Remark 4.1. If G is a strong fuzzy graph then the µ - complement of TL(G) is isolated 

vertices. Thus ( ) 0 TLd u = for all * *u in Uσ µ . 

5. Conclusion 
The triple layered fuzzy graph (TLFG) is defined as an extension of DLFG. In this paper 
the TLFG is defined and some of its relationship with the parental graph whose crisp 
graph is a cycle is studied. Further work can be done to develop multi layered fuzzy 
graph and its application in networking. 
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