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Abstract. Let G be a graph with vertex set V, edge set E and block set B and let x, 
y, z be three variables each taking value + or –. The qlick transformation graph 
Gxyz is the graph whose vertex set is the union of the set of edges and the set of 
blocks of G. For any two vertices u and v in Gxyz, we define x, y, z as follows: 
(i) Let u, v ∈E. x = + if u and v are adjacent in G. x = – if u and v are not adjacent 

in G. 
(ii)  Let u,v ∈ B. y= + if u and v are adjacent in G. y = – if u and v are not adjacent 

in G. 
(iii)  Let u ∈ E and v ∈ B, z = + if u and v are incident with each other in G. z = – if 

u and v are not incident with each other in G. 
In this paper, we initiate a study of qlick transformation graphs. 
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1. Introduction 
By a graph we mean a finite, undirected graph without loops or multiple edges. All 
definitions and notations not given in this paper may be found in Kulli [1]. 
 If b = {u1, u2, …, ur; r≥2} is a block of a graph G, then we say that vertex u1 and 
block b are incident with each other, as are u2 and b and so on. If b = {e1, e2, …, es; s≥1} 
is a block of G, then we say that edge e1 and block b are incident with each other, as are 
e2 and b and so on. If two distinct blocks b1 and b2 are adjacent with a common cutvertex, 
then they are adjacent blocks. This idea was introduced by Kulli in [2]. The vertices, 
edges and blocks of a graph are called its members. 
 The qlick graph Q(G) of G is the graph whose vertex set is the set of edges and 
blocks of G and two vertices are adjacent if the corresponding edges and blocks are 
adjacent or the corresponding members are incident. The plick graph P(G) of G is the 
graph whose vertex set is the set of edges and blocks of G and two vertices are adjacent if 
the corresponding edges are adjacent or the corresponding members are incident. These 
concepts were introduced by Kulli in [3] and were studied, for example, in [4, 5, 6, 7 ]. 
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 The line block graph Lb(G) of G is the graph whose vertex set is the set of edges 
and blocks of G in which two vertices are adjacent if the corresponding blocks are 
adjacent or the corresponding members are incident. This concept was introduced in [8] 
and was studied, for example, in [9]. 
 The block line forest Bf(G) of G is the graph whose vertex set is the set of edges 
and blocks of G in which two vertices are adjacent if the corresponding members are 
incident. This concept was introduced in [10]. Many other graph valued functions in 
graph theory were studied, for example, in [11, 12, 13, 14, 15, 16, 17, 18, 19]. 
 The block graph B(G) of a graph G is the graph whose vertex set is the set of 
blocks of G and two vertices are adjacent if the corresponding blocks are adjacent. This 
concept was studied by Harary in [20] and further this was studied, for example, in [21, 
22, 23]. The line graph L(G) of a graph G is the graph whose vertex set corresponds to 
the edges of G such that two vertices of L(G) are adjacent if the corresponding edges of G 
are adjacent. This concept was studied, for example, in [24, 25, 26, 27, 28, 29]. 
 Some transformation graphs were studied, for example, in [30, 31]. 
 Let G  denote the complement of G. 
 
2. Qlick transformation graphs 
The qlick graph inspired us to introduce qlick transformation graphs. We now define 
qlick transformation graphs Gxyz when x or y or z is either + or –. 
 
Definition 1. Let G be a graph with vertex set V, edge set E and block set B and let x, y, z 
be three variables each taking value + or –. The qlick transformation graph Gxyz is the 
graph whose vertex set is the union of the set of edges and the set of blocks of G. For any 
two vertices u and v in Gxyz, we define x, y, z as follows. 
(i)  Let u, v ∈ E. x = + if u and v are adjacent in G. x = – if u and v are not adjacent in G. 
(ii) Let u, v ∈ B. y = + if u and v are adjacent in G. y = – if u and v are not adjacent in 

G. 
(iii)  Let u ∈ E and v ∈ B. z = + if u and v are incident with each other in G. z = – if u and 

v are not incident with each other in G. 
 Using the above qlick transformation, we obtain eight distinct qlick 
transformation graphs: G– – –, G– – +, G– + –, G + – –, G – + +, G+ + –, G+ – +, G+++. 
 By definition, any vertex of G is not vertex of qlick transformation graph, so that 
we consider only graphs without isolated vertices. 
 
Example 2. In Figure 1, a graph G, its qlick transformation graphs G+++ and G– – – are 
shown. 
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   G   G+++    G– – – 

Figure 1: 
 

Proposition 3. If G is a nontrivial connected graph, then  

(1)   G G+++ − − −=    (2)   G G++− − − +=  

(3)  + G G+−+ − −=    (4)   + +G G+− − −= . 
Proof: Each follows from the definition of Gxyz and G . 
 
Proposition 4. If Cp is a cycle with p ≥ 3 vertices, then  
(1) 1p p pC C W+++ +−+

+= =   (2) 1p p pC C K C++− +−−= = U  

(3) p pC C−++ −−+=    (4) 1pp pC C K−−− −+−
+= = . 

 
3. The qlick transformation graph G+++ 
Among qlick transformation graphs one is the qlick graph Q(G). It is easy to see that 
 
Proposition 5. For any graph G without isolated vertices, Q(G) = G+++. 
 
Remark 6. For any graph G without isolated vertices, L(G) and B(G) are vertex and also 
edge disjoint induced subgraphs of G+++. 
 
4. The qlick transformation graph G–++  

Proposition 7. The line block graph Lb(G) is a spanning subgraph of the qlick  
transformation graph G–++. 
Proof: This follows from definitions of Lb(G) and G–++. 
 
Theorem 8. For any graph G without isolated vertices, 

( ) ( )bG L G L G−++ = ∪ . 

 We now characterize graphs G for which G – + + = Lb(G). 
 
Theorem 9. For a nontrivial connected graph G, 

Lb(G) ⊆ G –++. 
Furthermore, Lb(G) = G –++ if and only if every pair of edges in G are adjacent. 
Proof: By Proposition 7, Lb(G) ⊆ G–++. 
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 Suppose Lb(G) = G –++. We now prove that every pair of edges in G are adjacent. 
On the contrary, assume G has two edges e1 and e2 such that they are not adjacent. Then 
the corresponding vertices of e1 and e2 are adjacent in G–++, but they are not adjacent in 
Lb(G). Thus Lb(G) ≠ G–++, which is a contradiction. This proves that every pair of edges 
in G are adjacent. 
 Conversely suppose every pair of edges of G are adjacent. Then the 
corresponding vertices of edges of G are not mutually adjacent in G–++. Thus G –++ ⊆ 
Lb(G) and since Lb(G) ⊆ G–++, this implies that Lb(G) = G –++. 
 Iterated qlick-transformation graphs G–++ are defined by (Gn) –++= G(G n–1) –++ for 
n ≥ 2 where (G1) –++ = G–++. 
 
Theorem 10. Let G be a nontrivial connected graph. The graphs G and G–++ are 
isomorphic if and only if G = K2. 
Proof: Suppose G = G–++. We now prove that G = K2. On the contrary, assume G is a 
connected graph with p ≥ 3 vertices. We consider the following two cases. 
Case 1. Suppose G is not a tree. Then G has at least p edges and has at least one block. 
Thus G–++ has at least p+1 vertices. Therefore the number vertices of G is less than that in 
G–++. Hence G ≠ G–++, a contradiction. 
 
Case 2. Suppose G is a tree. Then G has p – 1 edges and p – 1 blocks. Then G–++ has 2p–
2 vertices. Hence the number of vertices of G is less than that in G – ++. Thus G ≠ G–++, a 
contradiction. 
 From Case 1 and Case 2, we conclude that G = K2. 
 Conversely suppose G = K2. Then clearly G = G –++. 
 The following results are immediate. 
 
Corollary 11. Let G be a nontrivial connected graph. Then G = (Gn) –++, n ≥1 if and only 
if  G = K2. 
 
Corollary 12. Let G be a graph without isolated vertices. Then G = (Gn) –++, n≥1 if and 
only if G = mK2, m≥1. 
 
5. The qlick transformation graph G + – +. 
 
Proposition 13. The plick graph P(G) is a spanning subgraph of the qlick transformation 
graph G + – +. 
Proof: This follows form definitions of P(G) and G + – +. 
 
Theorem 14. For a nontrivial connected graph G, P(G) ⊆ G + – +. 
Furthermore, P(G) = G + – + if and only if G has at most one cutvertex. 
Proof: By Proposition 13, P(G) ⊆ G + – +. 
 Suppose P(G) = G + – +. We now prove that G has at most one cutvertex. On the 
contrary, assume G has at least two cutvertices. Then G has two blocks b1 and b2 such 
that they are not adjacent. Then the corresponding vertices of b1 and b2 are adjacent in  
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G + – +, but they are not adjacent in P(G). Thus P(G) ≠ G + – +, a contradiction. This proves 
that G has at most one cutvertex. 
 Conversely suppose G has at most one cutvertex. We now consider the following 
two cases. 
 
Case 1. Suppose G has no cutvertex. Then clearly P(G) = G + – +. 
Case 2. Suppose G has exactly one cutvertex. Then every pair of blocks in G are 
adjacent. Then the corresponding vertices of blocks of G are not mutually adjacent in  
G +–+. Thus G +–+ ⊆ P(G) and since P(G) ⊆ G+ – +, it implies that P(G) = G + – +. 
 From Case 1 and Case 2, we conclude that P(G) = G + – +. 
 
6. The qlick transformation graph G – – + 
Proposition 15. The block line forest Bf(G) is a spanning subgraph of a qlick 
transformation graph G – – +. 
Proof: This follows from definitions of Bf(G) and G – – +. 
 
Theorem 16. For a nontrivial connected graph G, 

( ) ( ) ( ).fG B G L G B G−−+ = ∪ ∪  

 We now characterize graphs G for which G – – + = Bf(G). 
 
Theorem 17. For a nontrivial connected graph G, 
 Bf(G) ⊆ G – – +. 
Furthermore, Bf(G) = G– – + if and only if G satisfies the following conditions. 

(i) every pair of edges are adjacent. 
(ii)  every pair of blocks are adjacent. 

Proof: By Proposition 15, Bf(G) ⊆ G – – +. 
 Suppose Bf(G) = G – – +. Let G be a non trivial connected graph. We prove (i). On 
the contrary, assume a pair of edges are not adjacent in G. Then the corresponding 
vertices of edges in G – – + are adjacent, but they are not adjacent in Bf(G). Thus Bf(G) ≠ G 
– – +, a contradiction. Hence G satisfies (i). We now prove (ii). On the contrary, assume a 
pair of blocks are not adjacent in G. Then corresponding vertices of blocks in G--+ are 
adjacent; but they are not adjacent in Bf(G). Thus Bf(G) ≠ G – – +, a contradiction. Hence G 
satisfies (ii). 
 Conversely, suppose every pair of edges are adjacent in G. Then the 
corresponding vertices of edges of G are not mutually adjacent in G – – +. Also suppose 
every pair of blocks are adjacent in G. Then the corresponding vertices of blocks of G are 
not mutually adjacent in G – – + . Thus G – – + ⊆ Bf(G) and since Bf(G) ⊆ G – – +, it implies 
that Bf(G) = G – – +.  
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