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Abgtract. Let G be a graph with vertex set V, edge set Eldock set B and let x,

y, Z be three variables each taking value + orhe glick transformation graph

G¥ is the graph whose vertex set is the union ofseteof edges and the set of

blocks of G. For any two vertices u and v iff‘Gwe define X, y, z as follows:

() Letu,vOE.x=+ifuandv are adjacent in G. x = — ifndav are not adjacent
in G.

(i) Letu,vOB. y=+ifuand v are adjacent in G. y = — ifndav are not adjacent
in G.

(iii) Let ud E and v B, z = + if u and v are incident with each othed. z = — if
u and v are not incident with each other in G.

In this paper, we initiate a study of glick transf@tion graphs.

Keywords: glick graph, plick graph, line block graph, blotike forest, glick
transformation graph.
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1. Introduction
By a graph we mean a finite, undirected graph withoops or multiple edges. All
definitions and notations not given in this paperyrbe found in Kulli [1].

If b={uy, u,, ..., u; r=2} is a block of a grapks, then we say that vertax and
block b are incident with each other, as asgeandb and so on. Ib={e, &, ..., &, =1}
is a block ofG, then we say that edge and blockb are incident with each other, as are
& andb and so on. If two distinct blocks andb, are adjacent with a common cutvertex,
then they are adjacent blocks. This idea was iotted by Kulli in [2]. The vertices,
edges and blocks of a graph are called its members.

The glick graphQ(G) of G is the graph whose vertex set is the set of edgés a
blocks of G and two vertices are adjacent if the correspondidges and blocks are
adjacent or the corresponding members are incidém. plick graphP(G) of G is the
graph whose vertex set is the set of edges an#dtfcs and two vertices are adjacent if
the corresponding edges are adjacent or the comdsp members are incident. These
concepts were introduced by Kulli in [3] and wetedsed, for example, in [4, 5, 6, 7 .
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The line block graphy(G) of Gis the graph whose vertex set is the set of edges
and blocks ofG in which two vertices are adjacent if the correspog blocks are
adjacent or the corresponding members are inciddms. concept was introduced in [8]
and was studied, for example, in [9].

The block line foresB{(G) of G is the graph whose vertex set is the set of edges
and blocks ofG in which two vertices are adjacent if the corresfiopg members are
incident. This concept was introduced in [10]. Masther graph valued functions in
graph theory were studied, for example, in [11,112,14, 15, 16, 17, 18, 19].

The block graplB(G) of a graphG is the graph whose vertex set is the set of
blocks of G and two vertices are adjacent if the correspontlingks are adjacent. This
concept was studied by Harary in [20] and furtlés tvas studied, for example, in [21,
22, 23]. The line graph(G) of a graphG is the graph whose vertex set corresponds to
the edges o6 such that two vertices &fG) are adjacent if the corresponding edges of
are adjacent. This concept was studied, for exariip[@4, 25, 26, 27, 28, 29].

Some transformation graphs were studied, for el@np[30, 31].

Let G denote the complement Gf

2. Qlick transformation graphs
The glick graph inspired us to introduce glick sfmmmation graphs. We now define
glick transformation graphs™*whenxor y or zis either + ok

Definition 1. Let G be a graph with vertex s&t edge seE and block seB and letx, y, z
be three variables each taking value +oiThe glick transformation grapB™” is the
graph whose vertex set is the union of the setigés and the set of blocks®f For any
two verticesu andvin G*¥% we definex, y, zas follows.
() Letu,vOE. x=+ifuandvare adjacent if. x=—if uandv are not adjacent iG.
(i) Letu,vOB.y=+if uandvare adjacent is. y=—if uandv are not adjacent in
G.
(i) Let ud E andv O B. z= + if uandv are incident with each other . z=—if uand
v are not incident with each other@
Using the above qglick transformation, we obtainghei distinct glick
transformation graph& -G ", G ", G, G, G ", G, G
By definition, any vertex o6 is not vertex of glick transformation graph, sottha
we consider only graphs without isolated vertices.

Example 2. In Figure 1, a graplg, its glick transformation graph™* andG™ ~ ~are
shown.
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G G™ G~
Figure 1:
Proposition 3. If Gis a nontrivial connected graph, then
(1) G =G " (2) G =G""
3) G =G"" (4) G" =G "".

Proof: Each follows from the definition &8¥*and G .

Proposition 4. If C, is a cycle withp = 3 vertices, then
(1) C,"=C " =W, (2 C,m=C =KUC,

(3) C, =C" (4) C,” =C," = Kpu.

+++

3. Theqglick transfor mation graph G
Among glick transformation graphs one is the glickphQ(G). It is easy to see that

Proposition 5. For any grapl@ without isolated vertices, QG) =G

Remark 6. For any graplG without isolated vertice4,(G) andB(G) are vertex and also
edge disjoint induced subgraphs of G

4. Theglick transformation graph G

Proposition 7. The line block graph.,(G) is a spanning subgraph of the glick
transformation graps ™.

Proof: This follows from definitions of,(G) andG ™.

Theorem 8. For any graplG without isolated vertices,
G =L(G)0L(G).
We now characterize graptsfor whichG =" "= L(G).

Theorem 9. For a nontrivial connected gragh

Ly(G) O G ™.
Furthermorel,(G) =G ~ if and only if every pair of edges (A are adjacent.
Proof: By Proposition 7L.4(G) 0 G ™.
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Suppose.,(G) =G, We now prove that every pair of edgeGare adjacent.
On the contrary, assun@&has two edges, ande, such that they are not adjacent. Then
the corresponding vertices ef ande, are adjacent i, but they are not adjacent in
Lo(G). ThusLy(G) # G, which is a contradiction. This proves that eveayr of edges
in G are adjacent.

Conversely suppose every pair of edges @fare adjacent. Then the
corresponding vertices of edges ®fare not mutually adjacent i6™". ThusG ~" [J
Lp(G) and sinceL,(G) O G, this implies that,(G) =G ™.

lterated glick-transformation grapfs*™ are defined byG") = G(G ") ™" for
n=2whereG) ™ =G

Theorem 10. Let G be a nontrivial connected graph. The graghsand G™" are
isomorphic if and only if5 = K.

Proof: SupposeG = G™*. We now prove thaG = K,. On the contrary, assun@is a
connected graph with> 3 vertices. We consider the following two cases.

Case 1. SupposeG is not a tree. The has at leasb edges and has at least one block.
ThusG ™" has at leagt+1 vertices. Therefore the number vertice§a$ less than that in
G . HenceG # G, a contradiction.

Case 2. SupposéG is a tree. Thel® hasp — 1 edges ang — 1 blocks. The™ " has p—
2 vertices. Hence the number of vertice$sd$ less than that is ~**. ThusG# G, a
contradiction.

From Case 1 and Case 2, we conclude@maK,.

Conversely suppoge = K,. Then clearhyG=G ™.

The following results are immediate.

Corollary 11. Let G bea nontrivial connected graph. Th&w (G") ~, n>1 if and only
if G= Kz.

Corollary 12. Let G be a graph without isolated vertices. Tier (G") ~, n=1 if and
only if G=mkK,, m=1.

5. Theglick transformation graph G *~*.

Proposition 13. The plick graptP(G) is a spanning subgraph of the glick transfornmatio
graphG*~".
Proof: This follows form definitions oP(G) andG *~".

Theorem 14. For a nontrivial connected gra@ghP(G) 0 G * ™.
FurthermoreP(G) = G "7 if and only ifG has at most one cutvertex.
Proof: By Proposition 13P(G) 0 G *~".

SupposeP(G) = G *~*. We now prove thaG has at most one cutvertex. On the
contrary, assumé& has at least two cutvertices. Thénhas two blocksd,; andb, such
that they are not adjacent. Then the correspongirtices otb; andb, are adjacent in
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G "7, but they are not adjacentR{G). ThusP(G) # G *~", a contradiction. This proves
that G has at most one cutvertex.

Conversely suppog® has at most one cutvertex. We now consider theviatig
two cases.
Case 1. SupposéS has no cutvertex. Then clea®yG) =G ",
Case 2. SupposeG has exactly one cutvertex. Then every pair of ook G are
adjacent. Then the corresponding vertices of blo€kaare not mutually adjacent in
G . ThusG "™ O P(G) and sincd?(G) 0 G' 7, it implies thatP(G) =G " ",

From Case 1 and Case 2, we concludeRt@) =G *~".

6. The glick transformation graph G~

Proposition 15. The block line forestB{G) is a spanning subgraph of a glick
transformation grapts ~~".

Proof: This follows from definitions oB{(G) andG ~ .

Theorem 16. For a nontrivial connected grafh

G =B(G)0 (G0 B G
We now characterize grap@sfor whichG =~ = B(G).

Theorem 17. For a nontrivial connected grafh

B(G) G .

FurthermoreB{(G) = G " if and only if G satisfies the following conditions.
() every pair of edges are adjacent.
(i) every pair of blocks are adjacent.

Proof: By Proposition 158(G) 0 G ™.

Supposa{G) =G ~ . LetG be a non trivial connected graph. We prove (i). On
the contrary, assume a pair of edges are not adjaeeG. Then the corresponding
vertices of edges i ~~" are adjacent, but they are not adjace®{@). ThusB(G) # G
~~*, a contradiction. Hencé satisfies (i). We now prove (ii). On the contraagsume a
pair of blocks are not adjacent @. Then corresponding vertices of blocks ifi* Gre
adjacent; but they are not adjacenBj(G). ThusB{G) # G~ ", a contradiction. Henc&
satisfies (ii).

Conversely, suppose every pair of edges are attjaoe G. Then the
corresponding vertices of edges®fare not mutually adjacent i@ ~ ~*. Also suppose
every pair of blocks are adjacent@n Then the corresponding vertices of block&adre
not mutually adjacent i6 ~ =" . ThusG ~~* [ B{G) and sinceB{(G) 0 G~ 7, it implies
thatB(G) =G~ .
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