Intern. J. Fuzzy Mathematical Archive —
Vol. 7, No. 2, 2015, 185-194 International Journal of

ISSN: 2320 —3242 (P), 2320 —3250 (online) Fuzzy Mathematical

Published on 22 January 2015 =
www.researchmathsci.org Al'chlve

A Review on Component Based Software Metrics

A.Aloysius*and K.Maheswaran?

'Department of Computer Science, St. Joseph’s Gollagtonomous), Trichy — 620002
TamilNadu, India. e-mail: aloysius1972@gmail.com
Corresponding Author

“Department of Computer Science, St. Joseph’s Gollagtonomous), Trichy — 620002
TamilNadu, India. e-mail: mahesl161@gmail.com

Received 2 November 2014; accepted 15 December 2014

Abstract. In the technological world every day number of wafte’'s are develop and

available in the market but measuring the compjexitd quality of the software is still a

very big challenge. Component based software iggingfield and now-a- days, most
of the software are developed by using the teckmigiicomponent based software
development (CBSD). So that the complexity, timaprefactors were reduced and
reusability is achieved. The success of the CBSijepts can be ensured only from the
metrics that are previously proposed. In this paparious component based metrics
proposed by the researchers have been discussedthand suggested the future
enhancement.

Keywords: Components, component based software developmetrics) black box

1. Introduction

Component-based software development (CBSD) isofribe most important, modern
paradigm and is expected to be at the forefromtesf approaches to the construction of
large and complex software systems. The main dbgof this approach is to minimize
the development effort, time and cost by meansofe and also improves the quality,
productivity and maintainability of the software].[8These advantages are mainly
provided by the reuse of already built-in softwaoenponents. A software component is
a self-contained piece of software that providescfunctionality, has open interfaces
and offers plug-and-play services. It can be regrabs a reusable software element such
as a function, file, module, class or subsystem [5]

2. Existing metrics
Number of software metrics related to software dexity and quality assurances has
been developed in the past and are still beingga®gh

2.1. Metrics for structured and object oriented sy'ems

Several traditional metrics was designed for stmgrt systems among them developers
often found that Wang [25], McCabe's Cyclomatic @bexity metric, Halstead’s
complexity metric and Kafura's and Henry's fan-fan-out are most commonly used
metrics [11,7,10]. For object oriented systems @fmder and Kemerer metrics [6] is a

185

A Review on Component Based Software Metrics

base of all metrics, Misra [21] suggested Compjedtetric of OOP’s Based on
Cognitive Weights and many researchers like Arauokét al. [1,2], Misra et. al [20,21]
proposed the various level of metrics of objedemted programs based on their
perspective including cognitive aspect.

3. Metrics for component based systems

Many researchers like Vernazza et al. extendedCemetric [22], Salman’s [12]
considered components, connectors, interfacescamgpbosition trees as main attributes
that determine structural complexity of a componkased system. Bertoa et al. [4]
proposed the metrics for software components tessctheir usability, Sharma et al.
proposed interface complexity metric for softwammponents by considering interface
methods and their associated properties, argunitgmés and return types [3]. In this
section, various metrics have been discussed pamefng to their complexity, quality
characteristics and reusability of software compbne

3.1. An interface complexity measure of a component

Software complexity cannot be computed by a sirmgeameter of a component /
program / software because it is multidimensiotalbaite of software. The major factors
which contribute to complexity of a component-basedtware system are size and
interface of each component. By taking only inteegfacomplexity into account, Usha
Kumari [23] suggested that, In CBSD, a componelitied with other components and
hence has interfaces with them. Two or more compsnare said to be interfaced if
there is a link between them, where a link meaasdahcomponent submits an event and
other components receive it. The direction of tink Indicates that which component
requests the services or dependent on the otlierfdoe between two components can be
through incoming and outgoing interactions. Thest¢hbtypes of interactions add
complexity to a component-based software system.

Average Incoming Interactions Complexity (AIIC% (1)
Average Outgoing Interactions Complexity (AOIC?——%OIi)

Average Interface Complexity of a Component Basgsiesn
(AIC (CBS)) :LTNI 4 ZE.0L -

m

where m = Number of components in the Componese8&ystem (CBS)

Il = Incoming Interactions Ol = Outing Interact®n

>'= Summation symbol, i = Index variable
In Kumari [23] an interface complexity measure theen proposed which takes into
account — interaction complexity, an important aspgd complexity of a component-
based system. The results show that the effechief garameter on complexity of a
component-based system is quite significant. Tiselt® agree with the intuition that
higher interaction between components increasesctimaplexity because of more
coupling among components. The same has also lweemetically evaluated against
Weyuker's properties.

186

A.Aloysius and K.Maheswaran

3.2. Software quality metrics using component reugslity
Trivedi et al. [14] estimate the software reus&pilh terms of software components we
estimate the following metrics.

3.2.1. System coupling metrics (SCOUP)
The system coupling metrics (SCOUP) for Componeagell Software System (CBSS)

m .
will be scoup =y MU (4)
j=1 ™

Here MV; is the Coupling metrics for component j and mthe number of the
components in CBSS [8].

3.2.2. System cohesion metrics (SCOM)
m .

The systems Cohesion Metrics (COM) for CBSS wil3eOM =2 % (5)
j=1

HereCOM,; is the Cohesion metrics for component j and thésnumber of components
in CBSS [8].

3.2.3. System actual interface metrics (SAIM)
SAIM is the integration of the interface metricstloé total number of components

m .
SAIM = E | 1% 6)(
j=

Here m is the number of components.

3.2.4. Sole system complexity metrics (SSCM)

Sole System Complexity Metrics (SSCM) is the corabon of above three system
metrics with different weights for each metrics.[8]

SSCM =a¢’ * SCOUP #’ * SCOH +y’ * SAIM (7)
Here' o, B’ andy’ and are the weights for system coupling metricdesion metrics,
interface metrics with the condition as+p’+ y' =1.

However, when such data are used to compare thelegity levels among
several software systems, the developers will katich CBSS needs more people and
more time during the coding and testing stageshey may expect the vulnerabilities
will happen in which component according to the ptaxity metrics. The above metrics
help to estimate the software reusability in agafe program. Software components are
one of the major factors that provide the softwaesability. The system will check that
the use of the component based approach in thensystfavorable to the system or not.

3.3. Dependency analysis for component based system

In Component-based development (CBD) paradi@oamponent-based
software system (CBSS) are established usingsea of mutually dependent
components which work together. Some of thesmponents may be developed in-
house, while others may be third-party comptsjemithout source code. The
main objective of this approach is to minimize tevelopment effort, time and cost by
means of software reuse. CBSD advances qualitydugtivity, reliability and
maintainability of the software system [24]. Depencly between components can be
defined as the reliance of a component dmerottomponents to support a specific

187

A Review on Component Based Software Metrics

functionality; therefore, we consider dependency d&snary relationship between two

components: dependent and antecedent. Deperwolapbnent is one that related to
its antecedents where changes in them mighd Eependent to malfunction or fail.

Antecedent is the component that has an effecherdépendent one if it is removed or
modified. Sometimes it may occur that a componémts to take help of other

components to perform its functionality. A qomment A is dependent on

component B means that A must be checked ithanges. Maximization of such

components builds a CBS complex [16]. Interactiom component-based systems
(CBS) takes place when a component delivers interface and other components
use it, and also when a component submievant and other component receives
it. Dependencies are promoted by interactiongheli dependency leads to a complex
system, which results in poor understandingl a higher maintenance cost. [19]
Rani et al. proposed a minimum spanning tree ambrdo analyze dependency in

Component Based Systems (CBS) [9].

3.3.1. Component dependency graph (CDG)

Component Dependency Graph of a CBS is défims G=(S,D,s,t), is a directed
graph, where S is a non empty set of vertices egmtesents a component in the system,
D is a set of dependency edges between two gsrtgach represents a direct
dependency between components, s is a starting hadea terminating node. Fig 1
describes the direct dependency, where

D={(A,B).(B.D),(C.D).(C,B).(C,A).(E,B),(E,D)}

Figure 1: Component dependency graph

A new approach to analyze dependency in Componased System (CBS). This
approach contains the following steps:

1. Construct a Component Dependency Graph (CD@& Gbmponent Based System
(CBS).

2. Assign weights to every edge of Component Depecyl Graph.

3. Calculate the minimum spanning tree for CDG by ane of the existing algorithms
(Prim’s algorithm or Kruskal’s Algorithm).

4. The dependency of the individual component ig thinimum weight of that
component.

First we calculate the dependency of each compoasing Minimum Spanning Tree

(MST) in component based system and then calctiiatdependency of each component
using Analytical Hierarchal Process. Finally walculate the Correlation Coefficient

of the two techniques which shows that the nepre is valid.

188

A.Aloysius and K.Maheswaran

3.4. A complexity metric for black box components CM (BB)

Measuring component complexity plays an importahé in determining CBS system
complexity. Because component complexity affects tomplexity of whole CBS
system, the component complexity is an importamtofa affecting the integration
complexity, understandability, testability, maimability etc of CBS system. But now a
day’'s black box components are being provided bypmnent vendors for reuse and
most of the time source code is not provided wimponents which create difficulty in
measuring component complexity. Kaur et al. [13pposed a complexity metric for
black box component CCM (BB). This metric is based the component interface
specification and use the concept of assigned wsidf black box components most of
the times source code is not available so it iy @éficult to guess or find the variables
and it is also not possible to find the cyclometraanplexity of methods in absence of
source code. Thus the metric includes the conadptaerface methods complexity and
coupling complexity between the components, whigh be determined on the basis of
component specification. Thus the black box compbremplexity may be defined as
the sum of interface methods complexity and cogpliomplexity. The CCM (BB)
metric has been defined to determine the overatiptexity of a black box component.

3.4.1. Interface method complexity metric for blackoox component IMCM (BB)
IMCM(BB) = W+ PCM(M) (8)

where W represents the weight assigned to the categorgtofn value’'s data
type and PCM(M) is Parameters Complexity Metric kdethod which calculates the
complexity caused by parameters.

3.4.2. Parameters complexity metric for method PCMM)
PCM(M) = a*W,s + b*W, + c*W,,, + d*W, + e*W,, 9)

where a,b,c,d,e represent counts andW{,W.,,W.,W,. represent the assigned
weights for very simple, simple, medium, compler &Bry complex data type categories
for parameters of a method . High value of IMCM [BBhows decrease in
understandability and increase in testing effort.

3.4.3. A component coupling complexity metric for lack box component

CCCM(BB)

CCCM (BB) = FICM(BB) + FOCM(BB) (20)
where FICM(BB) is Fan-in Complexity Metric whichemsures the coupling

complexity due to incoming data from the other comgnts and FOCM(BB) is Fan-out

Complexity Metric which measures the coupling coesjily due to outgoing data to

other components.

Advantages of CCM (BB)

Easy to understand and use. No need of source dbde, based on component
specification only. Interface Method Complexity Met provides the estimation of
testing effort and understandability. High value IMCM(BB) for all the interface
methods shows more testing effort and less undetaldlity. Many coupling metrics
consider only the number of interactions to shosvektent of coupling. But CCCM (BB)
not only considers the number of incoming and auntymteractions but it also considers

189

A Review on Component Based Software Metrics

the other factors affecting coupling complexityelikumber of components having impact
on the considered component)(fnumber of components which may be affected by
considered component,{J, number of data items being passed between coenp®and
how many of them are creating data type incomgayilgiroblem. Thus it provides more
precise value of component coupling complexity. sThmetric provides the good
indication of component integration and testingeffHigh coupling complexity means
more integration and testing effort. CCM (BB) imbhs interface methods complexity
and coupling complexity. Thus it gives the ovecalinplexity of component.

3.5. A metrics suite for measuring software compomgs

Venkatesan et al. [24] proposed set of metrics doftware components based on
functional and non-functional aspects of the safewarhe author defines seventeen
metrics for seven component characters. It inclutle=e functional characters namely
the suitability, accuracy and complexity and foan#functional characters namely the
usability, maintainability, reusability and perfaancte. The metrics are arrived at, based
on a metric model and metric tree was shown in Eig.

CBSE
Metrics

N\

Non

. Functional
Functional

A N\
AN -

L N Yz \
Producer Consumes Producer Consumet

Maintainability

Reusabilit

Performanc

Figure 2: Metric tree

190

A.Aloysius and K.Maheswaran

3.5.1. Suitability metric
Required Functionality (RF)

RF Number of required functionalities provided by the component

~ Total number of functionalities required by the Component — based

Extra Functionality (EF)
EF No. of extra functionalities provided by the component

~ Total no. of functionalities required by the Component — based system
3.5.2. Component complexity metric

Component Coupling (COC)
coC - Number of other components sharing attribute or method

Total number of possible sharing pairs in the component — based application
Constraints Complexity (CTC)
CTC

Number of constraints

Number of properties and operations in an interface

Configuration Complexity (CFC)
CFC = Number of Configuration

Number of context of use of the component

3.5.3. Reusability metric
The various classifications of reusability metigshown in Figure 3

Reusability
| * fia ity ‘ Portability | Confidence
External Maturity Certification
Dependency [ED)] [Mat] [Cer]

Figure 3. Component Reusability Tree
Portability:
External Dependency (ED)

ED — Number of methods with parameters passed and returns values
"~ Total number of Methods (Excluding Read/Write Methods)

Confidence

Maturity [Mat] Certification [Cer]

Mat = DF + CR P .
DF = No. of Faults Detected. _ 1 (If Certification Exists)
Cer =| 0 (otherwise)

CR = No. of Change Requests,

191

A Review on Component Based Software Metrics

In above eight different metric are shown with exgpto suitability, complexity and
reusability of a software component. Venkatesaal.¢24] proposed another nine metrics
with respect to usability, Maintainability, Perfoanmce Accuracy. All the Seventeen
metrics are validated with case study.

4. Future directions
CBSD is increasingly adopted technique in softwslereelopment, but selecting the more
appropriate less complex components for CBS to keegomplexity low, is still a
difficult task. Thus appropriate evaluation of campnt complexity is a critical activity
in the component selection process. Many reseacpeoposed various types of
complexity metrics for measuring component complexBut many of the existing
metrics are based on the source code or intertaillslef component which may not be
available in case of black box components. Anoth®ortant issue of measuring the
metrics is cognitive aspect of programming. Nonehaf researchers were concentrate
Cognitive complexity of component based programmifgisting metrics are not
appropriate for determining component complexithud from Table-1 the following
aspects in metrics to be developed for componesgdaoftware in future.

1) To choose less complexity based on the depepdetween the components.

2) To measure the component complexity with / withgoing into internal
details (Black box) of components.

3) To identify Cognitive complexity of software cponents.

Component _ _ Asmfetrfigf
Interface Quality Complexity .
complexi S Dependency - Measuring
plexity | metric using analvsis metric for Soft
Metric reusability Y Black Box c ortware
Metric omponents
AlIC v - - -
AOIC v - - -
AIC v - - -
SCOUP i v i i v
[Coupling]
SAIM- - v - -
SSCM-
- v - - v
[Complexity]
MST using CDG - - v -
IMCM(BB) - - - v
PCM(M) - - - v
CCCM(BB) - - - v
Reusability v
Suitability v
Cognitive
Complexity X X X X X
v' - available X — not available

Table 1: Case study of various metric

192

A.Aloysius and K.Maheswaran

5. Conclusion

This survey presents various metrics of componaset software using their interface
complexity, quality aspect using reusability, degency and complexity of black box.
Even though the component based software develdpimeéncreasingly being adopted
for software development. But measuring the black bomponent complexity during
component selection is still a difficult task. Bsing metrics we can guess the component
understandability, testability, integration effocpmplexity of an interface, black box,
analyze the dependency using minimum spanning &ggroach with component
dependency graph and quality aspect of componémy vsusability. Thus there is a need
of complexity metric that can measure the componentplexity with all the aspects of
the software.

REFERENCES

1. L.Arockiam, A.Aloysius and J.Charles Selvaraj, HExted weighted class
complexity: a new of software complexity for objedt oriented systems,
Proceedings of International Conference on Semditimisiness and Enterprise
computing (SEEC), pp. 77-80, 2009.

2. L.Arockiam and A.Aloysius, On validating class legegnitive complexity metrics,
CiiT International Journal of Software Engineerimgpd Technology2(3) (2010)
152-157.

3. A.Sharma, R.Kumar and P.S.Grover, Evaluation of merity for software
components, International Journal of Software Engineering andndivledge
Engineering,19(5) (2008) 919-931.

4. M.F.Bertoa, J.M.Troya and A.Vallecillo, Measuringpet usability of software
componentsJournal of Systems and Softwar®(3) (2006) 427-439.

5. L.F.Capretz, A new component-based software lifelecymodel, Journal of
Computer Sciengd (1) (2005) 76-82.

6. S.R.Chidamber and C.F.Kemerer, A metrics suiteofgject oriented designEEE
Transactions on Software Engineering0(6) (1994) 476-49.

7. Halstead, Elements of Software Science, New Yolsewer North Holland, 1977.

8. J.Chen etal, Complexity metrics for component-dassoftware systems,
International Journal of Digital Content Technologyd its Applications5 (3),
(2011)235-244.

9. Jyoti Rani and Kirti Seth, Dependency analysisdmmponent based systems using
minimum spanning trednternational Journal of Computer Applications(2012)
11-16.

10. D.Kafura and S. Henry, Software quality metribmsed on interconnectivity,
Journal of Systems and Softwa2€2) (1981) 121-131.

11. McCabe, A Complexity Measuré&EE Trans. on Software Eng@GE-2 (4) (1976)
308-320.

12. N.Salman, Complexity metrics as predictors of naivability and integrability of
software componentdpurnal of Arts and Science? (2006) 39-50.

13. N.Kaur and A.Singh, A complexity metric for blackxcomponentsinternational
Journal of Soft Computing and Engineeri8g§2) (2013) 179-184.

193

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A Review on Component Based Software Metrics

P.Trivedi and R.Kumar, Software metrics to estimatgftware quality using
software component reusabilitinternational Journal of Computer Science(2)
(2012)144-149.

R.S.Chillar et al, Measuring complexity of compohkased system using weighted
assignment technique, 2nd International Conferemclaformation Communication
and Management, 55, (2012),

Ratneshwer and A.Tripathi, Dependence analysiscarhponent based software
through assumptionfnternational Journal of Computer Science Issi&d) (2011)
149-159.

S.Khimta, P.S.Sandhu and A.S.Brar, A complexity snea for java bean based
software component§Vorld Academy of Science Engineering and TechnpR2)y
(2008) 479-482.

S.Misra and K.l.Akman, Weighted class complexitynaasure of complexity for
object oriented systendpurnal of Information Science and Engineerig (2008)
1689-1708.

A.Sharma, P.S.Grover and R.Kumar, Dependency sisalfor component-based
software systems, 34(4) (2012) 1-6.

S.Misra, I.LAkman and M.Koyuncu, An inheritance cdexity metric for object-
oriented code: A cognitive approadmdian Academy of Science36(3) (2011)
317-337.

S.Mishra, An object oriented complexity metric lhgm cognitive weights, Proc.
6th IEEE International Conference on Cognitive Inforina{ICCI'07), 2007.
T.Vernazza and G.Granatella, Defining metrics faftvgare components, D
Proceedings of the World Multiconference on SystsmiCybernetics and
Informatics, XI (2000) 16-23.

U.Kumari and S.Upadhyaya, An interface complexigasure for component-based
software systemdnternational Journal of Computer Applicatiqri3s(1) (2012) 46-
52.

V.P.Venkatesan and M.Krishnamoorthy, A metrics foreasuring software
components)CIT, 4(2) (2009) 138-153.

Y.Wang and J.Shao, A new measure of software coditplbased on cognitive
weights,Can. J. Elect. Comput. En@8(2) (2003) 69-74.

194

