
Intern. J. Fuzzy Mathematical Archive
Vol. 7, No. 2, 2015, 185-194
ISSN: 2320 –3242 (P), 2320 –3250 (online)
Published on 22 January 2015
www.researchmathsci.org

185

International Journal of

A Review on Component Based Software Metrics
A.Aloysius1 and K.Maheswaran2

1Department of Computer Science, St. Joseph’s College (Autonomous), Trichy – 620002
TamilNadu, India. e-mail: aloysius1972@gmail.com

Corresponding Author
2Department of Computer Science, St. Joseph’s College (Autonomous), Trichy – 620002

TamilNadu, India. e-mail: mahes161@gmail.com

Received 2 November 2014; accepted 15 December 2014

Abstract. In the technological world every day number of software’s are develop and
available in the market but measuring the complexity and quality of the software is still a
very big challenge. Component based software is emerging field and now-a- days, most
of the software are developed by using the technique of component based software
development (CBSD). So that the complexity, time, error factors were reduced and
reusability is achieved. The success of the CBSD projects can be ensured only from the
metrics that are previously proposed. In this paper, various component based metrics
proposed by the researchers have been discussed and then suggested the future
enhancement.

Keywords: Components, component based software development, metrics, black box

1. Introduction
Component-based software development (CBSD) is one of the most important, modern
paradigm and is expected to be at the forefront of new approaches to the construction of
large and complex software systems. The main objective of this approach is to minimize
the development effort, time and cost by means of reuse and also improves the quality,
productivity and maintainability of the software [8]. These advantages are mainly
provided by the reuse of already built-in software components. A software component is
a self-contained piece of software that provides clear functionality, has open interfaces
and offers plug-and-play services. It can be regarded as a reusable software element such
as a function, file, module, class or subsystem [5].

2. Existing metrics
Number of software metrics related to software complexity and quality assurances has
been developed in the past and are still being proposed.

2.1. Metrics for structured and object oriented systems
Several traditional metrics was designed for structured systems among them developers
often found that Wang [25], McCabe’s Cyclomatic complexity metric, Halstead’s
complexity metric and Kafura’s and Henry’s fan-in, fan-out are most commonly used
metrics [11,7,10]. For object oriented systems Chidamber and Kemerer metrics [6] is a

A Review on Component Based Software Metrics

186

base of all metrics, Misra [21] suggested Complexity Metric of OOP’s Based on
Cognitive Weights and many researchers like Arockiam et al. [1,2], Misra et. al [20,21]
proposed the various level of metrics of object oriented programs based on their
perspective including cognitive aspect.

3. Metrics for component based systems
Many researchers like Vernazza et al. extended the CK metric [22], Salman’s [12]
considered components, connectors, interfaces, and composition trees as main attributes
that determine structural complexity of a component based system. Bertoa et al. [4]
proposed the metrics for software components to access their usability, Sharma et al.
proposed interface complexity metric for software components by considering interface
methods and their associated properties, arguments types and return types [3]. In this
section, various metrics have been discussed corresponding to their complexity, quality
characteristics and reusability of software component.

3.1. An interface complexity measure of a component
Software complexity cannot be computed by a single parameter of a component /
program / software because it is multidimensional attribute of software. The major factors
which contribute to complexity of a component-based software system are size and
interface of each component. By taking only interface complexity into account, Usha
Kumari [23] suggested that, In CBSD, a component is linked with other components and
hence has interfaces with them. Two or more components are said to be interfaced if
there is a link between them, where a link means that a component submits an event and
other components receive it. The direction of the link indicates that which component
requests the services or dependent on the other. Interface between two components can be
through incoming and outgoing interactions. These both types of interactions add
complexity to a component-based software system.

Average Incoming Interactions Complexity (AIIC) =
∑ �������

� (1)

Average Outgoing Interactions Complexity (AOIC) =
∑ �������

� (2)

Average Interface Complexity of a Component Based System

 (AIC (CBS)) =
∑ �������

� +
∑ �������

� (3)

where m = Number of components in the Component Based System (CBS)
 II = Incoming Interactions OI = Outing Interactions
 ∑= Summation symbol, i = Index variable
In Kumari [23] an interface complexity measure has been proposed which takes into
account – interaction complexity, an important aspect of complexity of a component-
based system. The results show that the effect of this parameter on complexity of a
component-based system is quite significant. The results agree with the intuition that
higher interaction between components increases the complexity because of more
coupling among components. The same has also been theoretically evaluated against
Weyuker’s properties.

A.Aloysius and K.Maheswaran

187

3.2. Software quality metrics using component reusability
Trivedi et al. [14] estimate the software reusability in terms of software components we
estimate the following metrics.

3.2.1. System coupling metrics (SCOUP)
The system coupling metrics (SCOUP) for Component Based Software System (CBSS)

will be SCOUP = 	
��
�

�

��
 (4)

Here MV
 is the Coupling metrics for component j and m is the number of the
components in CBSS [8].

3.2.2. System cohesion metrics (SCOM)

The systems Cohesion Metrics (COM) for CBSS will be SCOM = 	 ��
�
�

�

��
 (5)

Here COM
 is the Cohesion metrics for component j and m is the number of components
in CBSS [8].

3.2.3. System actual interface metrics (SAIM)
SAIM is the integration of the interface metrics of the total number of components

SAIM = 	 ��

�

�

��
 (6)

Here m is the number of components.

3.2.4. Sole system complexity metrics (SSCM)
Sole System Complexity Metrics (SSCM) is the combination of above three system
metrics with different weights for each metrics [8].
SSCM = α’ * SCOUP +β’ * SCOH + γ’ * SAIM (7)
Here’ α’, β’ and γ’ and are the weights for system coupling metrics, cohesion metrics,
interface metrics with the condition as α’ +β’+ γ’ =1.

However, when such data are used to compare the complexity levels among
several software systems, the developers will know which CBSS needs more people and
more time during the coding and testing stages, or they may expect the vulnerabilities
will happen in which component according to the complexity metrics. The above metrics
help to estimate the software reusability in a software program. Software components are
one of the major factors that provide the software reusability. The system will check that
the use of the component based approach in the system is favorable to the system or not.

3.3. Dependency analysis for component based systems
 In Component-based development (CBD) paradigm, Component-based
software system (CBSS) are established using a set of mutually dependent
components which work together. Some of these components may be developed in-
house, while others may be third-party components, without source code. The
main objective of this approach is to minimize the development effort, time and cost by
means of software reuse. CBSD advances quality, productivity, reliability and
maintainability of the software system [24]. Dependency between components can be
defined as the reliance of a component on other components to support a specific

A Review on Component Based Software Metrics

188

functionality; therefore, we consider dependency as a binary relationship between two
components: dependent and antecedent. Dependent component is one that related to
its antecedents where changes in them might lead dependent to malfunction or fail.
Antecedent is the component that has an effect on the dependent one if it is removed or
modified. Sometimes it may occur that a component has to take help of other
components to perform its functionality. A component A is dependent on
component B means that A must be checked if B changes. Maximization of such
components builds a CBS complex [16]. Interaction in component-based systems
(CBS) takes place when a component delivers an interface and other components
use it, and also when a component submits an event and other component receives
it. Dependencies are promoted by interactions. Higher dependency leads to a complex
system, which results in poor understanding and a higher maintenance cost. [19]
Rani et al. proposed a minimum spanning tree approach to analyze dependency in
Component Based Systems (CBS) [9].

3.3.1. Component dependency graph (CDG)
Component Dependency Graph of a CBS is defined as G=(S,D,s,t), is a directed
graph, where S is a non empty set of vertices each represents a component in the system,
D is a set of dependency edges between two vertices each represents a direct
dependency between components, s is a starting node, t is a terminating node. Fig 1
describes the direct dependency, where
D={(A,B),(B,D),(C,D),(C,B),(C,A),(E,B),(E,D)}

Figure 1: Component dependency graph

A new approach to analyze dependency in Component Based System (CBS). This
approach contains the following steps:
1. Construct a Component Dependency Graph (CDG) of a Component Based System
(CBS).
2. Assign weights to every edge of Component Dependency Graph.
3. Calculate the minimum spanning tree for CDG by any one of the existing algorithms
(Prim’s algorithm or Kruskal’s Algorithm).
4. The dependency of the individual component is the minimum weight of that
component.

First we calculate the dependency of each component using Minimum Spanning Tree
(MST) in component based system and then calculate the dependency of each component
using Analytical Hierarchal Process. Finally we calculate the Correlation Coefficient
of the two techniques which shows that the technique is valid.

A.Aloysius and K.Maheswaran

189

3.4. A complexity metric for black box components CCM (BB)
Measuring component complexity plays an important role in determining CBS system
complexity. Because component complexity affects the complexity of whole CBS
system, the component complexity is an important factor affecting the integration
complexity, understandability, testability, maintainability etc of CBS system. But now a
day’s black box components are being provided by component vendors for reuse and
most of the time source code is not provided with components which create difficulty in
measuring component complexity. Kaur et al. [13] proposed a complexity metric for
black box component CCM (BB). This metric is based on the component interface
specification and use the concept of assigned weights. In black box components most of
the times source code is not available so it is very difficult to guess or find the variables
and it is also not possible to find the cyclometric complexity of methods in absence of
source code. Thus the metric includes the concepts of interface methods complexity and
coupling complexity between the components, which can be determined on the basis of
component specification. Thus the black box component complexity may be defined as
the sum of interface methods complexity and coupling complexity. The CCM (BB)
metric has been defined to determine the overall complexity of a black box component.

3.4.1. Interface method complexity metric for black box component IMCM (BB)
IMCM(BB) = Wr+ PCM(M) (8)
 where Wr represents the weight assigned to the category of return value’s data
type and PCM(M) is Parameters Complexity Metric for Method which calculates the
complexity caused by parameters.

3.4.2. Parameters complexity metric for method PCM (M)
PCM(M) = a*Wvs + b*Ws + c*Wm + d*Wc + e*Wvc (9)
 where a,b,c,d,e represent counts and Wvs,Ws,Wm,Wc,Wvc represent the assigned
weights for very simple, simple, medium, complex and very complex data type categories
for parameters of a method . High value of IMCM (BB) shows decrease in
understandability and increase in testing effort.

3.4.3. A component coupling complexity metric for black box component
CCCM(BB)
CCCM (BB) = FICM(BB) + FOCM(BB) (10)
 where FICM(BB) is Fan-in Complexity Metric which measures the coupling
complexity due to incoming data from the other components and FOCM(BB) is Fan-out
Complexity Metric which measures the coupling complexity due to outgoing data to
other components.

Advantages of CCM (BB)
Easy to understand and use. No need of source code, it is based on component
specification only. Interface Method Complexity Metric provides the estimation of
testing effort and understandability. High value of IMCM(BB) for all the interface
methods shows more testing effort and less understandability. Many coupling metrics
consider only the number of interactions to show the extent of coupling. But CCCM (BB)
not only considers the number of incoming and outgoing interactions but it also considers

A Review on Component Based Software Metrics

190

the other factors affecting coupling complexity like number of components having impact
on the considered component (fin), number of components which may be affected by
considered component (fout), number of data items being passed between components and
how many of them are creating data type incompatibility problem. Thus it provides more
precise value of component coupling complexity. This metric provides the good
indication of component integration and testing effort. High coupling complexity means
more integration and testing effort. CCM (BB) includes interface methods complexity
and coupling complexity. Thus it gives the overall complexity of component.

3.5. A metrics suite for measuring software components
Venkatesan et al. [24] proposed set of metrics for software components based on
functional and non-functional aspects of the software. The author defines seventeen
metrics for seven component characters. It includes three functional characters namely
the suitability, accuracy and complexity and four non-functional characters namely the
usability, maintainability, reusability and performance. The metrics are arrived at, based
on a metric model and metric tree was shown in Fig. 2.

Figure 2: Metric tree

Complexity

Suitability

Accuracy

CBSE
Metrics

Non
Functional

Metrics

Functional

Producers ProducersConsumers Consumers

Performance

Reusability

Maintainability

Usability

A.Aloysius and K.Maheswaran

191

3.5.1. Suitability metric
Required Functionality (RF)

�� � Number of required functionalities provided by the component
Total number of functionalities required by the Component 0 based

Extra Functionality (EF)

12 �
No. of extra functionalities provided by the component

Total no. of functionalities required by the Component 0 based system

3.5.2. Component complexity metric

Component Coupling (COC)

565 �
Number of other components sharing attribute or method

Total number of possible sharing pairs in the component 0 based application

Constraints Complexity (CTC)

898 �
Number of constraints

Number of properties and operations in an interface

Configuration Complexity (CFC)

828 �
Number of Con:iguration

Number of context of use of the component

3.5.3. Reusability metric
The various classifications of reusability metrics is shown in Figure 3

Portability:
External Dependency (ED)

1; �
Number of methods with parameters passed and returns values

Total number of Methods =Excluding Read/Write MethodsB

Confidence

Maturity [Mat]
Mat = DF + CR

DF = No. of Faults Detected.
CR = No. of Change Requests.

Certification [Cer]
 1 (If Certification Exists)
Cer = 0 (otherwise)

A Review on Component Based Software Metrics

192

In above eight different metric are shown with respect to suitability, complexity and
reusability of a software component. Venkatesan et al. [24] proposed another nine metrics
with respect to usability, Maintainability, Performance Accuracy. All the Seventeen
metrics are validated with case study.

4. Future directions
CBSD is increasingly adopted technique in software development, but selecting the more
appropriate less complex components for CBS to keep its complexity low, is still a
difficult task. Thus appropriate evaluation of component complexity is a critical activity
in the component selection process. Many researchers proposed various types of
complexity metrics for measuring component complexity. But many of the existing
metrics are based on the source code or internal details of component which may not be
available in case of black box components. Another important issue of measuring the
metrics is cognitive aspect of programming. None of the researchers were concentrate
Cognitive complexity of component based programming. Existing metrics are not
appropriate for determining component complexity. Thus from Table-1 the following
aspects in metrics to be developed for component based software in future.

1) To choose less complexity based on the dependency between the components.
2) To measure the component complexity with / without going into internal

details (Black box) of components.
3) To identify Cognitive complexity of software components.

Component

Metric

Interface
complexity

Metric

Quality
metric using
reusability

Dependency
analysis

Complexity
metric for
Black Box

A Metrics
Suite for

Measuring
Software

Components

AIIC � - - -

AOIC � - - -

AIC � - - -

SCOUP
[Coupling]

- � - - �

SAIM- - � - -
SSCM-

[Complexity]
- � - - �

MST using CDG - - � -

IMCM(BB) - - - �

PCM(M) - - - �

CCCM(BB) - - - �

Reusability �

Suitability �

Cognitive
Complexity

X X X X X

� - available X – not available
Table 1: Case study of various metric

A.Aloysius and K.Maheswaran

193

5. Conclusion
This survey presents various metrics of component based software using their interface
complexity, quality aspect using reusability, dependency and complexity of black box.
Even though the component based software development is increasingly being adopted
for software development. But measuring the black box component complexity during
component selection is still a difficult task. By using metrics we can guess the component
understandability, testability, integration effort, complexity of an interface, black box,
analyze the dependency using minimum spanning tree approach with component
dependency graph and quality aspect of component using reusability. Thus there is a need
of complexity metric that can measure the component complexity with all the aspects of
the software.

REFERENCES

1. L.Arockiam, A.Aloysius and J.Charles Selvaraj, Extended weighted class
complexity: a new of software complexity for objected oriented systems,
Proceedings of International Conference on Semantic E-business and Enterprise
computing (SEEC), pp. 77-80, 2009.

2. L.Arockiam and A.Aloysius, On validating class level cognitive complexity metrics,
CiiT International Journal of Software Engineering and Technology, 2(3) (2010)
152-157.

3. A.Sharma, R.Kumar and P.S.Grover, Evaluation of complexity for software
components, International Journal of Software Engineering and Knowledge
Engineering, 19(5) (2008) 919-931.

4. M.F.Bertoa, J.M.Troya and A.Vallecillo, Measuring the usability of software
components, Journal of Systems and Software, 79(3) (2006) 427-439.

5. L.F.Capretz, A new component-based software life cycle model, Journal of
Computer Science, 1(1) (2005) 76-82.

6. S.R.Chidamber and C.F.Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering, 20(6) (1994) 476-49.

7. Halstead, Elements of Software Science, New York: Elsevier North Holland, 1977.
8. J.Chen et.al, Complexity metrics for component-based software systems,

International Journal of Digital Content Technology and its Applications, 5 (3),
(2011)235-244.

9. Jyoti Rani and Kirti Seth, Dependency analysis for component based systems using
minimum spanning tree, International Journal of Computer Applications, 1 (2012),
11-16.

10. D.Kafura and S. Henry, Software quality metrics based on interconnectivity,
Journal of Systems and Software, 2(2) (1981) 121-131.

11. McCabe, A Complexity Measure, IEEE Trans. on Software Engg., SE-2 (4) (1976)
308-320.

12. N.Salman, Complexity metrics as predictors of maintainability and integrability of
software components, Journal of Arts and Sciences, 2 (2006) 39-50.

13. N.Kaur and A.Singh, A complexity metric for black box components, International
Journal of Soft Computing and Engineering, 3(2) (2013) 179-184.

A Review on Component Based Software Metrics

194

14. P.Trivedi and R.Kumar, Software metrics to estimate software quality using
software component reusability, International Journal of Computer Science, 9(2)
(2012)144-149.

15. R.S.Chillar et al, Measuring complexity of component based system using weighted
assignment technique, 2nd International Conference on Information Communication
and Management, 55, (2012),

16. Ratneshwer and A.Tripathi, Dependence analysis of component based software
through assumptions, International Journal of Computer Science Issues, 8(4) (2011)
149-159.

17. S.Khimta, P.S.Sandhu and A.S.Brar, A complexity measure for java bean based
software components, World Academy of Science Engineering and Technology, 32
(2008) 479-482.

18. S.Misra and K.I.Akman, Weighted class complexity: a measure of complexity for
object oriented system, Journal of Information Science and Engineering, 24 (2008)
1689-1708.

19. A.Sharma, P.S.Grover and R.Kumar, Dependency analysis for component-based
software systems, 34(4) (2012) 1-6.

20. S.Misra, I.Akman and M.Koyuncu, An inheritance complexity metric for object-
oriented code: A cognitive approach, Indian Academy of Sciences, 36(3) (2011)
317–337.

21. S.Mishra, An object oriented complexity metric based on cognitive weights, Proc.
6th IEEE International Conference on Cognitive Informatics (ICCI’07), 2007.

22. T.Vernazza and G.Granatella, Defining metrics for software components, D
Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics, XI (2000) 16-23.

23. U.Kumari and S.Upadhyaya, An interface complexity measure for component-based
software systems, International Journal of Computer Applications, 36(1) (2012) 46-
52.

24. V.P.Venkatesan and M.Krishnamoorthy, A metrics for measuring software
components, JCIT, 4(2) (2009) 138-153.

25. Y.Wang and J.Shao, A new measure of software complexity based on cognitive
weights, Can. J. Elect. Comput. Eng., 28(2) (2003) 69-74.

