Intern. J. Fuzzy Mathematical Archive Vol. 7, No. 2, 2015, 157-167 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Annihilator Graph on Union of Two Commutative

KS – Semigroups

*R.Muthuraj*¹ and *K.Nachammal*²

¹PG and Research Department of Mathematics, H.H.The Rajah's College Pudukkottai – 622001, Tamilnadu, India. e-mail: rmr1973@yahoo.co.in Corresponding Author

²PG and Research Department of Mathematics, H.H.The Rajah's College Pudukkottai – 622001, Tamilnadu, India. e-mail: nachammal1976@gmail.com

Received 2 November 2014; accepted 15 December 2014

Abstract. In this paper, we introduce the concept of Annihilator graph on commutative KS-semigroup and extend the result to union of twocommutative KS-semigroups. We also establish the result that the union of two Annihilator graph of any two commutative KS-semigroups X and Y is equal to the Annihilator graph of the commutative KS- semigroup $X \cup Y$ and also discuss some of its related properties.

Keywords: Annihilator, commutative KS- semigroup, annihilator graph

AMS Mathematics Subject Classification (2010): 06F35, 03G25

1. Introduction

In abstract algebra, mathematical system with one binary operation called group and two binary operations called rings were investigated. In 1966, Imai and Iseki [3] defined a class of algebra called BCK-algebra. A BCK– algebra is named after the combinators B, C and K by Carew Arthur Merideth, an Irish logician. At the same time, Iseki [4] introduced another class of algebra called BCI- algebra, which is a generalization of the class of BCK- algebras, the ideal theory and graph plays an important role. In 2006, Kyung Ho Kim [7] introduced a new class of algebras related to BCK-algebra, called KS-semigroup, which also deals with a new class algebras related to BCK-algebra, called a commutative KS-semigroup. In this paper, we introduce the concept of a annihilator graph on AG(X) a commutative KS-semigroup and discussed its properties.

2. Preliminaries

Definition 2.1. [11] A BCK-algebra is a triple (X,*,0) where X is a non empty set, "*" is a binary operation on X and $0 \in X$ is an element such that the following axioms are satisfied.

- i. x*0 = x for all $x \in X$.
- ii. (x*y)*z = (x*z)*y for all x, y, $z \in X$.
- iii. $x \le y \Rightarrow x * z \le y * z$ and $z * y \le z * x$ for all x, y, $z \in X$.

iv. $(x *z) *(y*z) \le x *y$ for all $x, y, z \in X$.

If X is a BCK-algebra, then the relation $x \le y$ iff x * y = 0 is a partial order on X, which is called the natural ordering on X.

Example 2.2. [6] Let $X = \{0,a,b,c\}$ be a set with *-operation given by Table,

	a	b	с
0	0	0	0
a	0	a	a
b	b	0	b
c	c	С	0
	0 a b	0 a 0 0 a 0 b b c c	

Then (X,*,0) is a BCK-algebra.

3. Commutative KS-semigroup

Definition: 3.1. [9] A semigroup is an ordered pair (S,*), where S is a nonempty set and "*" is an associative binary operation on S.

Definition 3.2. [9] A commutative KS-semigroup is a non –empty set X with two binary operations "*" and "•" and constant 0 satisfying the axioms;

- i. (X,*,0) is BCK-algebra.
- ii. (X, \bullet) is semigroup.
- iii. $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot (\mathbf{x} \cdot \mathbf{z})$ and $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = (\mathbf{x} \cdot \mathbf{z}) \cdot (\mathbf{y} \cdot \mathbf{z}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}.$
- iv. $x*(x*y) = y*(y*x) \forall x, y \in X.$

Example 3.1. [9] Let $X = \{0,a,b,c\}$ be a set with the '*' and '•' operations given by Table,

*	0	a	b	С	•	0	a	b	с
		0			0	0	0	0	0
a	a	0	a	0	a	0 0	a	0	a
b	b	0 b	0	0	b	0	0	b	b
с	с	b	a	0	c	0	a	b	c

Clearly, $(X, *, \bullet, 0)$ is a commutative KS-semigroup.

Definition 3.3. Let $(X, *_1, \bullet_1, 0)$ and $(Y, *_2, \bullet_2, 0)$ be any two Commutative KS-semigroups such that $X \cap Y = \{0\}$. Define the binary operations "*" and "•" on $X \cup Y$ by

$$x*y = \begin{cases} x*_1y & \text{if } x, y \in X \\ x*_2y & \text{if } x, y \in Y \\ x & \text{otherwise} \end{cases}$$
$$x\bullet y = \begin{cases} x\bullet_1y & \text{if } x, y \in X \\ x\bullet_2y & \text{if } x, y \in Y \\ 0 & \text{otherwise} \end{cases}$$

Theorem 3.1. Let $(X, *_1, \bullet_1, 0)$ and $(Y, *_2, \bullet_2, 0)$ be a Commutative KS-semigroups such that $X \cap Y = \{0\}$ and "*" and "•" be the binary operation on $X \cup Y$ defined as follows, for any $x, y \in X \cup Y$,

 $x*y = \begin{cases} x*_1y & \text{if } x, y \in X \\ x*_2y & \text{if } x, y \in Y \\ x & \text{otherwise} \end{cases}$ $x\bullet y = \begin{cases} x\bullet_1y & \text{if } x, y \in X \\ x\bullet_2y & \text{if } x, y \in Y \\ 0 & \text{otherwise} \end{cases}$ Then, $(X \cup Y, *, \bullet)$ is a Commutative KS-semigroup **Proof:** i. $(X, *_1, \bullet_1, 0)$ is a BCK-algebra and $(Y, *_2, \bullet_2, 0)$ is a BCK-algebra. ii. (X, \bullet_1) and (Y, \bullet_2) are a semigroup. iii. The operation • is left and right distributive over the operation * (i.e) (a) $x \bullet (y * z) = (x \bullet y) * (x \bullet z)$ and $(x * y) \bullet z = (x \bullet z) * (y \bullet z) \forall x, y, z \in X$. (b) $x \bullet (y * z) = (x \bullet y) * (x \bullet z)$ and $(x * y) \bullet z = (x \bullet z) * (y \bullet z) \forall x, y, z \in Y$. iv. $x*(x * y) = y*(y * x) \forall x, y \in X$. For any $x, y \in X \cup Y$, Define the * and • operations on $X \cup Y$ as follows, $x*y = \begin{cases} x*_1y & \text{if } x, y \in X \\ x*_2y & \text{if } x, y \in Y \\ x & \text{otherwise} \end{cases}$ $x\bullet_y = \begin{cases} x\bullet_1y & \text{if } x, y \in X \\ x\bullet_2y & \text{if } x, y \in Y \\ 0 & \text{otherwise} \end{cases}$ To prove that, i. $(X \cup Y, *, 0)$ is a BCK-algebra. (a) For any $x \in X$, x*0 = x. For any $y \in Y$, y*0 = y. (b) $x*y = 0 \Rightarrow$ either $x, y \in X$ or $x, y \in Y$. so, $x*y = 0 \Rightarrow (z*y)*(z*x) = 0$ (c) For any $x \in X, y \in Y$, Case: (i) Let $z \in X$ (x*y)*z = (x*z)*y(x*y)*z = x*z(x*z)*y = x*zCase: (ii) Let $z \in Y$ (x*y)*z = (x*z)*y(x*y)*z = x*z = x(x*z)*y = x*y = x(d) For any $x \in X, y \in Y$, Case: (i) Let $z \in X$ ((x*y)*(y*z))*(x*y) = 0((x*z) * (y*z)) * (x*y) = ((x*z) *y) *x = (x*z) *x = 0

Hence, $(X \cup Y, *, 0)$ is a BCK-algebra.

Case: (ii) Let $z \in Y$

((x*z) * (y*z)) * (x*y) = (x* (y*z)) *x = x*x = 0

ii. $(X \cup Y, \bullet)$ is a semigroup. If $\forall x, y \in X$ or $x, y \in Y$, then $(X \cup Y, \bullet)$ is a semigroup. Let $x \in X$ and $y \in Y$, then $x \cdot y = 0 \in X \cup Y$. Also, $x \bullet (y \bullet z) = (x \bullet y) \bullet z = 0 \forall z \in X \text{ or } Z \in Y$. \therefore (X \cup Y, •) is a semigroup. iii. The operation • is left and right distributive over the operation "*". For all $x, y, z \in X$ or $x, y, z \in Y$, $x \bullet (y * z) = (x \bullet y) * (x \bullet z)$ and $(x * y) \bullet z = (x \bullet z) * (y \bullet z) \forall x \in X$ and $y, z \in Y$. Case: (i) For any $x \in X$, $y \in Y$, (a) Let $z \in X$ $\mathbf{x} \cdot (\mathbf{y} * \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} = 0$ $(x \bullet y) * (x \bullet z) = 0 * (x \bullet z) = 0$ $\therefore \mathbf{x} \bullet (\mathbf{y} \ast \mathbf{z}) = (\mathbf{x} \bullet \mathbf{y}) \ast (\mathbf{x} \bullet \mathbf{z})$ (b) $(x*y) \bullet z = x \bullet z$ $(\mathbf{x} \bullet \mathbf{z}) * (\mathbf{y} \bullet \mathbf{z}) = (\mathbf{x} \bullet \mathbf{z}) * \mathbf{0} = \mathbf{x} \bullet \mathbf{z}$ $\therefore (\mathbf{x} * \mathbf{y}) \bullet \mathbf{z} = (\mathbf{x} \bullet \mathbf{z}) * (\mathbf{y} \bullet \mathbf{z})$ Case: (ii) For any $x \in X$, $y \in Y$, (a) Let $z \in Y$ $\mathbf{x} \cdot (\mathbf{y} * \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} = \mathbf{0}$ $(\mathbf{x} \bullet \mathbf{y}) * (\mathbf{x} \bullet \mathbf{z}) = 0$ $\therefore \mathbf{x} \bullet (\mathbf{y} \ast \mathbf{z}) = (\mathbf{x} \bullet \mathbf{y}) \ast (\mathbf{x} \bullet \mathbf{z})$ (b) $(x*y) \bullet z = x \bullet z = 0$ $(x \bullet z) * (y \bullet z) = 0 * (y \bullet z) = 0$ $\therefore (x*y) \bullet z = (x \bullet z) * (y \bullet z)$ iv. $x^*(x^*y) = y^*(y^*x) \quad \forall x, y \in X$, $x*(x * y) = y *(y * x) \forall x, y \in Y$, For any $x \in X$ and $y \in Y$, x*(x * y) = x *x=0; y *(y * x) = y *y=0.

Hence, $(X \cup Y, *, \bullet, 0)$ is a Commutative KS-semigroup.

Example 3.2. Let $X = \{0,a,b,c\}$ and $Y = \{0,1,2,3\}$. Define two operations $*_1$ and \bullet_1 on Xand $*_2$ and \bullet_2 on Y as follows.

* 1	0	a	b	c				b	
		0			0	0	0	0	0
a	a	0	a	a	a	0	a	0	0
b	b	b	0	b				b	
c	c	c	c	0	c	0	c	0	0

Clearly, $(X, *_1, \bullet_1, 0)$ is a Commutative KS-semigroup.

		1			•2	0	1	2	3
0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	1	0	1	0	1
2	2	2	0	0	2	0	0	2	2
3	3	2	1	0	3	0	1	2	3

Clearly, $(Y, *_2, \bullet_2, 0)$ is a Commutative KS-semigroup. Let $X \cup Y = \{0, a, b, c, 1, 2, 3\}$. Define the two operations * and \bullet on $X \cup Y$ as follows,

0 0 0 0 0 0 b 0 0	0 a (a			0	0	0	Δ	Δ
b 0 0								v	
	0 0 1	_		a	a		a		
	1 V V L	b							b 0 l
0 0 0	0 c (с							c c 0
0 0 1									1 1 1 0 1 0
0 0 0									
0 0 0 1	υυι		2		1 0	2 1 0	2 2 1 0		

Hence, $(X \cup Y, *, \bullet, 0)$ is a Commutative KS-semigroup.

Definition 3.4. For any $x, y \in X$, X is a Commutative KS-semigroup, denote $x \land y=y*(y*x)$. Obviously, $x \land y$ is a lower bound of x and y and $x \land x=x$, $x \land 0=0 \land x=0$.

Definition 3.5. Let $(X, *, \bullet, 0)$ be a Commutative KS-semigroup. For any $a \in X$, Define $ann(a) = \{x \in X/x \land a=0, a \in X\}$ is called the annihilator of a.

Example 3.3. Let $X = \{0, a, b, c\}$ be a set with the * and • operations given by Table,

*					•	0	a	b	c
0	0	0	0	0	0	0	0	0	0
a b	a	0	a	0	a	0	a	0 b	a
b	b	b	0	0	b	0	0	b	b
c	c	b	a	0	с	0	a	b	с

 $ann(a) = \{ x \in X/x \land a=0, a \in X \}$ ann(0) = {0,a,b,c}; ann(a) = {0,b}; ann(b) = {0,a}; ann(c) = {0}.

Definition 3.6. Let $(X, *, \bullet, 0)$ be a commutative KS-semigroup, Define, $Z(X) = \{a \in X | a.b = 0 \text{ for some } 0 \neq b \in X\}$ as the set of all zero divisors in X.

Remark 3.1. Note that $ann(x) \subseteq X$ and $Z(X) = \bigcup_{\substack{\substack{v \neq x \\ v \neq x}}} ann(x)$.

Definition 3.7. Let $(X, *, \bullet, 0)$ be a commutative KS-semigroup, then the annihilator graph denoted as AG(X) is defined as, the graph with vertex set $Z^*(X) = Z(X) - \{0\}$ and an edge set $\{xy/x \neq y, x, y \in Z^*(X), ann(x) \cup ann(y) \neq ann(xy)\}$.

Theorem 3.2. Let $(X, *_1, \bullet_1, 0)$ and $(Y, *_2, \bullet_2, 0)$ be any two commutative KS-Semigroup and Z(X) and Z(Y) be the set of all zero divisors of X and Y respectively, If $Z^*(X) = X - \{0\}$ and $Z^*(Y) = Y - \{0\}$. Then $AG(X) \cup AG(Y) = AG(X \cup Y)$. **Proof:** We have to prove that $AG(X \cup Y) = AG(X) \cup AG(Y)$. Let, $Z^*(X) = X - \{0\}$ and $Z^*(Y) = Y - \{0\}$ then $Z^*(X \cup Y) = X \cup Y - \{0\}$ $\therefore V(AG(X \cup Y)) = V(AG(X)) \cup V(AG(Y))$.

To prove: $E(AG(X \cup Y)) = E(AG(X)) \cup E(AG(Y))$. First let us prove that there does not exist any edge $xy \in E(AG(X \cup Y) \text{ such that})$ $x \in V(AG(X))$ and $y \in V(AG(Y))$. Suppose if possible let $xy \in E(AG(X \cup Y))$ such that $x \in V(AG(X))$ and $y \in V(AG(Y))$. In $(X \cup Y)$, *,•,0), we have , $ann(x) = Y \cup ann(x)$ in X and $ann(y) = X \cup ann(y)$ in Y. $\operatorname{ann}(x) \cup \operatorname{ann}(y) = (Y \cup \operatorname{ann}(x) \text{ in } X) \cup (X \cup \operatorname{ann}(y) \text{ in } Y) = X \cup Y = \operatorname{ann}(0) \text{ in } X \cup Y.$ $ann(x) \cup ann(y) = ann(xy)$ in $X \cup Y$. but $xy \in E(AG(X \cup Y))$, which is a contradiction. Hence, that there does not exist any edge $xy \in E(AG(X \cup Y) \text{ such that } x \in V(AG(X)) \text{ and}$ $y \in V(AG(Y)).$ Now, let $xy \in E(AG(X))$ and hence, $ann(x) \cup ann(y) \neq ann(xy)$ in X. In $X \cup Y$,ann $(x) = Y \cup \{ann(x) \mid x \in X\}$ $\operatorname{ann}(y) = Y \cup \{\operatorname{ann}(y) \mid y \in X\}$ $\operatorname{ann}(xy) = Y \cup \{\operatorname{ann}(xy) \mid x.y \in X\}$ $\operatorname{ann}(x) \cup \operatorname{ann}(y) = Y \cup \{\operatorname{ann}(x) \cup \operatorname{ann}(y) \mid x.y \in X\}$ $\operatorname{ann}(x) \cup \operatorname{ann}(y) \neq Y \cup \{\operatorname{ann}(xy) \mid x.y \in X\}$ $ann(x) \cup ann(y) \neq ann(xy)$ in $X \cup Y$. Therefore, $xy \in E(AG(X \cup Y))$. Let $xy \in E(AG(Y))$ \therefore ann(x) \cup ann(y) \neq ann(xy) in Y. In $X \cup Y$,ann $(x) = X \cup \{ann(x) \mid x \in Y\}$ $\operatorname{ann}(y) = X \cup \{\operatorname{ann}(y) \mid y \in Y\}$ $\operatorname{ann}(xy) = X \cup \{\operatorname{ann}(xy) \mid x.y \in Y\}$ $ann(x) \cup ann(y) = X \cup \{ann(x) \cup ann(y) / x. y \in Y\}$ $\operatorname{ann}(x) \cup \operatorname{ann}(y) \neq X \cup \{\operatorname{ann}(xy) \mid x.y \in Y\}$ $ann(x) \cup ann(y) \neq ann(xy)$ in $X \cup Y$. Therefore, $xy \in E(AG(X \cup Y))$. Let $xy \in E(AG(X \cup Y))$, then $ann(x) \cup ann(y) \neq ann(xy)$ in $X \cup Y$. In $X \cup Y$,ann $(x) - (Y - \{0\}) = ann(x)$ in X. $\operatorname{ann}(x) = \operatorname{ann}(x) \cup (Y - \{0\})$ in X. $ann(x) = ann(x) \cup Y$ in X. $[\operatorname{ann}(x) \cup Y] \cup [\operatorname{ann}(y) \cup Y] \neq [\operatorname{ann}(xy) \cup Y] \text{ if } x, y \in X \text{ (or)}$ $[\operatorname{ann}(x) \cup X] \cup [\operatorname{ann}(y) \cup X] \neq [\operatorname{ann}(xy) \cup X]$ if $x, y \in Y$ $[\operatorname{ann}(x) \cup \operatorname{ann}(y)] \cup Y \neq [\operatorname{ann}(xy) \cup Y] \text{ in } X \text{ (or) } [\operatorname{ann}(x) \cup \operatorname{ann}(y)] \cup X \neq [\operatorname{ann}(xy) \cup X] \text{ in } Y$ $ann(x) \cup ann(y) \neq ann(xy)$ in X or $ann(x) \cup ann(y) \neq ann(xy)$ in Y Hence, either $xy \in E(AG(X))$ or $xy \in E(AG(Y))$. That is, $xy \in E(AG(X)) \cup E(AG(Y))$. Hence, $AG(X \cup Y) = AG(X) \cup AG(Y)$.

Example 3.4. Let $X = \{0,a,b,c\}$ and $Y = \{0,1,2,3\}$. Define two operations*₁ and •₁ on Xand*₂, and •₂ on Y respectively. If $Z^*(X) = Z(X) - \{0\}$ and $Z^*(Y) = Z(Y) - \{0\}$, then $AG(X \cup Y) = AG(X) \cup AG(Y)$. Let $X = \{0,a,b,c\}$ be a set with the * and • operations given by Table,

$*_1$	0	a	b	с		0			
0	0	0	0	0		0			
		0				0			
b	b	b	0	b	b	0	0	b	0
		c			c	0	c	0	0

Clearly, $(X, *_1, \bullet_1, 0)$ is a Commutative KS-Semigroup. The ann(a) = { $x \in X / x \land a = 0, a \in X$ }. ann(0) = {0,a,b,c} ; ann(a) = {0,b,c} ; ann(b) = {0,a,c} ; ann(c) = {0,a,b}. The set of all zero divisors of X is $Z(X) = {0,a,b,c}$. The vertex set $Z^*(X) = Z(X) - {0} = {a, b, c}$. The edge set = { $xy/x \neq y, x, y \in Z^*(X), ann(x) \cup ann(y) \neq ann(xy)$ }. ann(a) $\cup ann(b) = {0,a,b,c} = ann(ab) = ann(0)$. ann(a) $\cup ann(c) = {0,a,b,c} = ann(ac) = ann(0)$. ann(b) $\cup ann(c) = {0,a,b,c} = ann(bc) = ann(0)$. The annihilator graph AG(X) of X is given by Figure 3.1

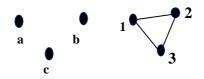
Let $Y = \{0,a,b,c\}$ be a set with the * and • operations given by Table,

* 2	0	1	2	3			1		
 0	0	0	0	0	0	0	0	0	0
1	1	0	0	1			0		
2	2	2	0	2	2	0	0	0	2
3	3	0 0 2 3	3	0	3	0	0	0	3

Clearly, $(Y, *_2, \bullet_2, 0)$ is a Commutative KS-Semigroup.

The ann(a) = { $x \in X / x \land a = 0, a \in X$ }. ann(0) = {0,1,2,3} ; ann(1) = {0,3}; ann(2) = {0,1,3}; ann(3) = {0,1,2}. The set of all zero divisors of Y is Z(Y) = {0,1,2,3}. The vertex set Z^{*}(Y) = Z(Y) - {0} = {1, 2, 3}. The edge set = { $xy/x \neq y, x, y \in Z^*(Y), ann(x) \cup ann(y) \neq ann(xy)$ }. ann(1) $\cup ann(2) = {0,1,3} \neq ann(12) = ann(0) = {0,1,2,3}$ ann(1) $\cup ann(3) = {0,1,2,3} \neq ann(13) = ann(1) = {0,3}$ ann(2) $\cup ann(3) = {0,1,2,3} \neq ann(23) = ann(2) = {0,1,3}$ The annihilator graph AG(Y) of Y is given by Figure 3.2

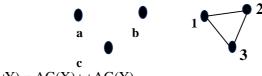
The annihilator graph of $AG(X) \cup AG(Y)$ is given as Figure 3.3



Let $(X \cup Y, *, \bullet, 0)$ be a set with the * and \bullet operations given by **Table**,

	0	a	b	c	1	2	3
I	0	0	0	0	0	0	0
					a		
					b		
					c		
					0		
					2		
					3		

Clearly, $(X \cup Y, *, \bullet, 0)$ is a Commutative KS-Semigroup. \therefore ann(0) = {0,a,b,c,1,2,3}; ann(a) = {0,b,c,1,2,3}; ann (b) = {0,a,c,1,2,3} $ann(c) = \{0,a,b,1,2,3\}; ann(1) = \{0,3,a,b,c\}; ann(2) = \{0,1,3,a,b,c\}; ann(3) = \{0,1,2,a,b,c\}$ The vertex set $Z^*(X \cup Y) = Z(X \cup Y) - \{0\} = \{a, b, c, 1, 2, 3\}.$ The edge set = { $xy/x \neq y, x, y \in \mathbb{Z}^*(X \cup Y), ann(x) \cup ann(y) \neq ann(xy)$ }. $ann(a) \cup ann(b) = \{0,a,b,c,1,2,3\} = ann(ab) = ann(0) = \{0,a,b,c,1,2,3\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(c) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(ac) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(c) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(bc) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(1) \cup \operatorname{ann}(2) = \{0, 1, 3, a, b, c\} \neq \operatorname{ann}(12) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(1) \cup \operatorname{ann}(3) = \{0, 1, 2, 3, a, b, c\} \neq \operatorname{ann}(13) = \operatorname{ann}(1) = \{0, 3, a, b, c\}$ $\operatorname{ann}(2) \cup \operatorname{ann}(3) = \{0, 1, 2, 3, a, b, c\} \neq \operatorname{ann}(23) = \operatorname{ann}(2) = \{0, 1, 3, a, b, c\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(1) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(a1) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(2) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(a2) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(3) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(a3) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(1) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(b1) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(2) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(b2) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(3) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(b3) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(c) \cup \operatorname{ann}(1) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(c1) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(c) \cup \operatorname{ann}(2) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(c2) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(c) \cup \operatorname{ann}(3) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(c3) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ The annihilator graph $AG(X \cup Y)$ of $X \cup Y$ is given in Figure 3.4.



Hence, $AG(X \cup Y) = AG(X) \cup AG(Y)$.

Example 3.5. Let $X = \{0,a,b,c\}$ and $Y = \{0,1,2,3\}$. Define two operations*1 and \bullet_1 on X and*2 and \bullet_2 on Y respectively, Let $Z^*(X) = X - \{0\}$ and $Z^*(Y) \neq Y - \{0\}$, then $AG(X \cup Y) \neq AG(X) \cup AG(Y)$.

Let $X = \{0, a, b, c\}$	be a set with the	* and •	operations	given by	Table,

* 1					•1	0	a	b	С
0	0	0	0	0	0	0	0	0	0
a	a	0	a	a	a	0	a	0	0
b	b	0 b	0	b	b	0	0	b	0
c	С	c	c	0	с	0	c	0	0

Clearly, $(X, *_1, \bullet_1, 0)$ is a Commutative KS-Semigroup.

The ann(a) = { $x \in X / x \land a = 0, a \in X$ }.

 $ann(0) = \{0,a,b,c\}; ann(a) = \{0,b,c\}; ann(b) = \{0,a,c\}; ann(c) = \{0,a,b\}.$

The set of all zero divisors $Z(X) = \{0,a,b,c\}$. The vertex set $Z^*(X) = X - \{0\} = \{a, b, c\}$.

The edge set = { $xy/x \neq y, x, y \in Z^*(X), ann(x) \cup ann(y) \neq ann(xy)$ }.

 $ann(a) \cup ann(b) = \{0,a,b,c\} = ann(ab) = ann(0) = \{0,a,b,c\}.$

 $ann(a) \cup ann(c) = \{0, a, b, c\} = ann(ac) = ann(0) = \{0, a, b, c\}.$

 $ann(b) \cup ann(c) = \{0,a,b,c\} = ann(bc) = ann(0) = \{0,a,b,c\}.$

The annihilator graph of AG(X) of X is given by Figure 3.5.

a

b

Let $Y = \{0,1,2,3\}$ be a set with the * and • operations given by Table,

* ₂	0	1	2	3				2	
		0			0	0	0	0	0
		0			1	0	1	0	1
		2			2	0	0	2	2
		2			3	0	1	2	3

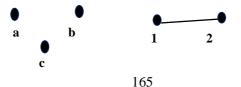
Clearly, $(Y, *_2, \bullet_2, 0)$ is a Commutative KS-Semigroup. The ann(a) = { $x \in X / x \land a = 0, a \in X$ }.

 $\operatorname{ann}(0) = \{0, 1, 2, 3\}; \operatorname{ann}(1) = \{0, 2\}; \operatorname{ann}(2) = \{0, 1\}; \operatorname{ann}(3) = \{0\}$ The set of all zero divisors $Z(Y) = \{0,1,2\}$. The vertex set $Z^*(Y) \neq Y - \{0\}$. $Z^*(Y) = \{1, 2\}.$

The edge set = { $xy/x \neq y, x, y \in \mathbb{Z}^{*}(Y), ann(x) \cup ann(y) \neq ann(xy)$ }. $\operatorname{ann}(1) \cup \operatorname{ann}(2) = \{0, 1, 2\} \neq \operatorname{ann}(12) = \operatorname{ann}(0) = \{0, 1, 2, 3\}$

The annihilator graph AG(Y) of Y is given by Figure 3.6

The annihilator graph of $AG(X) \cup AG(Y)$ is given as Figure 3.7



Let $(X \cup Y, *, \bullet, 0)$ be a set with the * and \bullet operations given by Table,

*	0	a	b	c	1	2	3	•	0	a	b	с	1	2	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	•	•	•		-	å	-	a	0	a	0	0	0	0	0
						b		b	0	0	b	0	0	0	0
c	c	с	с	0	с	c	с	c	0	c	0	0	0	0	0
1	1	1	1	1	0	1	0	1	0	0	0	0	1	0	1
2	2	2	2	2	2	0	0	2	0	0	0	0	0	2	2
3	3	3	3	3	2	1	0	3	0	0	0	0	1	2	3

Clearly, $(X \cup Y, *, \bullet, 0)$ is a Commutative KS-Semigroup. $ann(0) = \{0,a,b,c,1,2,3\}; ann(a) = \{0,b,c,1,2,3\}; ann (b) = \{0,a,c,1,2,3\}$ $\operatorname{ann}(c) = \{0,a,b,1,2,3\}; \operatorname{ann}(1) = \{0,2,a,b,c\}; \operatorname{ann}(2) = \{0,1,a,b,c\}; \operatorname{ann}(3) = \{0,a,b,c\}.$ The vertex set $Z^*(X \cup Y) = Z(X \cup Y) - \{0\} = \{a, b, c, 1, 2, 3\}.$ The edge set = { $xy/x \neq y, x, y \in Z^*(X \cup Y), ann(x) \cup ann(y) \neq ann(xy)$ }. $ann(a) \cup ann(b) = \{0, a, b, c, 1, 2, 3\} = ann(ab) = ann(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(c) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(ac) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $ann(b) \cup ann(c) = \{0,a,b,c,1,2,3\} = ann(bc) = ann(0) = \{0,a,b,c,1,2,3\}$ $\operatorname{ann}(1) \cup \operatorname{ann}(2) = \{0, 1, 2, a, b, c\} \neq \operatorname{ann}(12) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $ann(1) \cup ann(3) = \{0, 2, a, b, c\}$ $= \operatorname{ann}(13) = \operatorname{ann}(1) = \{0, 2, a, b, c\}$ $ann(2) \cup ann(3) = \{0, 1, a, b, c\}$ $= ann(23) = ann(2) = \{0, 1, a, b, c\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(1) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(a1) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(2) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(a2) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(a) \cup \operatorname{ann}(3) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(a3) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(1) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(b1) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(2) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(b2) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(b) \cup \operatorname{ann}(3) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(b3) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(c) \cup \operatorname{ann}(1) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(c1) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(c) \cup \operatorname{ann}(2) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(c2) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ $\operatorname{ann}(c) \cup \operatorname{ann}(3) = \{0, a, b, c, 1, 2, 3\} = \operatorname{ann}(c3) = \operatorname{ann}(0) = \{0, a, b, c, 1, 2, 3\}$ The annihilator graph of $AG(X \cup Y)$) Figure 3.8 2 1 b ล 3 c 🖲

Hence, $AG(X \cup Y) \neq AG(X) \cup AG(Y)$

REFERENCES

- 1. J.A.Bondy and U.S.R.Murthy, Graph theory, Springer, 2005.
- 2. R.Diestel, Graph theory, Springer Verlag, Heidelberg. 1997.
- 3. Y.Imai and K.Iseki, On axiom system of propositional calculi, XIV, *Japan Acad*. 42 (1996) 19-22
- 4. K.Iseki, An algebra related with a propositional calculus, *Japan Acad.*, 42 (1996) 26-29.
- 5. S.Jocelyn, P.Vilela and M.Cawi, On KS-Semigroup Homomorphism, *International Mathematical Forum*, 4 (23) (2009) 1129–1138.
- 6. Y.B.Jun and K.J.Lee, Graph based on BCK / BCI algebras, IJMMS, 2011.
- 7. K.H.Kim, On structure of KS-semigroup, *International Mathematical Forum*,1 (2006) 67-76.
- 8. J.Meng and Y.B.Jun, BCK-algebras, Kyung Moon Sa. Co., Seoul, Korea, 1994.
- 9. R.Muthuraj and K.Nachammal, KS-Graph on commutative KS-Semigroup, *IOSR Jounal of Math.*, 10 (2013) 69-75.
- 10. J.P.Tremblay and R.Manohar, Discrete mathematical structures with application to computer science, Tata McGraw-Hill, 2003.
- 11. O.Zahari and R.A.Borzooei, Graph of BCI-algebras, *International Journal of Mathematics and Mathematical Sciences*, Vol. 2012, Article ID 126835, 16 pages.