Intern. J. Fuzzy Mathematical Archive Vol. 7, No. 2, 2015, 203-211 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

A Study on Fuzzy K-Domination Using Strong Arc

A.Nagoorgani¹ and S.Vasantha Gowri²

¹PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous) Tiruchirappalli – 620 020, Tamilnadu, India. e- mail: ganijmc@yahoo.co.in Corresponding Author

²Department of Mathematics, Vetri Vinayaha College of Engineering and Technology Tholurpatti, Thottiam, Tiruchirappalli- 621 215, Tamilnadu, India e-mail:indiasrihariram09@yahoo.com

Received 5 November 2014; accepted 15 December 2014

Abstract. Given two fuzzy graphs $G_1 = (\sigma_1, \mu_1)$ and $G_2 = (\sigma_2, \mu_2)$ we consider some parameters of domination such as k-dominating sets, connected-k dominating sets, total – k-dominating sets and composition of G_1 and G_2 .

Keywords: k-dominating set, Cartesian product, composition

AMS Mathematics Subject Classification (2010): 03E72, 05C72

1. Introduction

The first definition of fuzzy graphs was proposed by Kafmann [3] from the fuzzy relations introduced by Zadeh [14]. Rosenfeld [11] introduced another elaborated definition including fuzzy vertex and fuzzy edges. The concept of domination in fuzzy graphs was introduced by Somasundaram and Somasundaram [12] and Somasundaram [6] developed the concepts of independent domination, total domination, connected domination and domination in Cartesian product and composition of fuzzy graphs. Nagoorgani and Chandrasekaran [8] discussed domination in fuzzy graph using strong arcs. Also Nagoorgani and Vadivel [9] discussed fuzzy independent dominating sets. In this paper we extend domination in Cartesian and composition of fuzzy graphs to another domination parameter such as *k*-domination.

2. Preliminaries

Definition 2.1. [8] Let $G = (\sigma, \mu)$ be a fuzzy graph on V. Let $u, v \in V$. We say that u dominates v in G if (u, v) is a strong arc. A subset D of V is called a dominating set of G if every $v \in V - D$ there exists $u \in D$ such that u dominates v.

Definition 2.2. [8] The minimum fuzzy cardinality of a dominating set in *G* is called the domination number of *G* and denoted by $\gamma(G)$.

A Study on Fuzzy K-Domination Using Strong Arc

Definition 2.3. [9] Let $_{G=(\sigma,\mu)}$ be a fuzzy graph. Two nodes in a fuzzy graph G are said to be fuzzy independent if there is no strong arc between them. The minimum fuzzy cardinality of an Independent dominating set of G is called the independent domination number of G denoted by $\gamma_i(G)$

Definition 2.4. [9] A fuzzy independent set S of G is said to be maximal fuzzy independent set if there is no fuzzy independent set whose cardinality is greater than the cardinality of S.

Definition 2.5. [9] The maximum cardinality among all maximal fuzzy independent set is called fuzzy independence number of G and is denoted by $\beta(G)$.

Definition 2.6. [9] Let *G* be a fuzzy graph without isolated vertices. A subset *S* of *V* is called a total dominating set of *G* is every vertex in *V* is dominated by a vertex in *S* (or) equivalently *S* is a dominating set of *G* and the induced subgraph G[S] has no isolated vertices. The minimum fuzzy cardinality of a total dominating set of *G* is called the total domination number of *G* and denoted by $\gamma_{C}(G)$.

Definition 2.7. [9] Let G be a connected fuzzy graph of V. A subset S of V is called a connected dominating set of G if S is a dominating set and G[S] is connected subgraph of G. The minimum fuzzy cardinality of a connected dominating set is called the connected domination number of G and is denoted by $\gamma_{C}(G)$

Definition 2.8. [6] Let $G_1 = (\sigma_1, \mu_1)$ and $G_2 = (\sigma_2, \mu_2)$ be two fuzzy graphs on V₁ and V₂ respectively. Then the composition of G_1 and G_2 denoted by $G_1 \circ G_2$ is the fuzzy graph on $V_1 \times V_2$ defined as follows: $G_1 \circ G_2 = (\sigma_1 \circ \sigma_2, \mu_1 \circ \mu_2)$

Where
$$\sigma_1 \circ \sigma_2(u_1, u_2) = \sigma_1(u_1) \wedge \sigma_2(u_2)$$
 and
 $\mu_1 \circ \mu_2[(u_1, u_2), (v_1, v_2)] = \begin{pmatrix} \sigma_1(u_1) \wedge \mu_2(u_2 v_2) & \text{if } u_1 = v_1, u_2 \neq v_2 \\ \sigma_2(u_2) \wedge \sigma_2(v_2) \wedge \mu_1(u_1 v_1) & \text{otherwise} \end{pmatrix}$

Definition 2.9. [6] Let $G_1 = (\sigma_1, \mu_1)$ and $G_2 = (\sigma_2, \mu_2)$ be two fuzzy graphs on V_1 and V_2 respectively. Then the Cartesian product of G_1 and G_2 denoted by G_1 G_2 is the fuzzy graph on $V_1 \times V_2$ defined as follows: G_1 $G_2 = (\sigma_1 \sigma_2, \mu_1 \mu_2)$

Where $\sigma_1 \sigma_2(u_1, u_2) = \sigma_1(u_1) \wedge \sigma_2(u_2)$ and

$$\mu_{1} \ \mu_{2}[(u_{1}, u_{2}), (v_{1}, v_{2})] = \begin{pmatrix} \sigma_{1}(u_{1}) \land \mu_{2}(u_{2}v_{2}) & \text{if } u_{1} = v_{1} \\ \sigma_{2}(u_{2}) \land \mu_{1}(u_{1}v_{1}) & \text{if } u_{2} = v_{2} \\ 0 & \text{otherwise} \end{pmatrix}$$

Definition 2.10. [6] Let $K \ge 1$ be an integer. Let G = (V, E) be a graph. A set *D* of vertices of *G* is defined to be a total -k dominating set of *G* if every vertex in *V* is within distance-*k* from some vertex of D other than itself.

A. Nagoorgani and S. Vasantha Gowri

3. Main results

Theorem 3.1. Let G_1, G_2 be connected and D_{K_1}, D_{K_2} be k-dominating sets of G_1 and G_2 respectively. Then G_1, G_2 is connected and we have

- i) If D_k is connected then $D_k \times V_2$ is a connected k-dominating set of G_1 G_2 .
- ii) If D_{k_1} is connected then $V_1 \times D_2$ is a connected k-dominating set of G_1 , G_2 .

Proof: First we prove that G_1 G_2 is connected. We consider two arbitrary distinct vertices of $V_1 \times V_2$ such as (x_i, y_i) and (x_l, y_k)

To show: There exists a path between these two vertices in the following 3 cases. Case (i) $x_i = x_i$

There exists a path $p: y_j, y_{i_1}, y_{i_2}, ..., y_k$ Connectivity of $G_2, \mu_2(uv) > 0$ for each two vertices u, v of path p.

 $\mu [(x_i, u), (x_i, v)] = \sigma_1(x_i) \land \mu_2(uv) > 0$ Therefore $p': (x_i, y_j)(x_i, y_{i1})(x_i, y_{i2})...(x_i, y_{ik})$ is the path between (x_i, y_j) and (x_i, y_k) in G_1 G_2

Case (ii) $y_j = y_k$

Now consider a path $q: x_i, x_{ji}, x_{j2} \dots x_l$

$$\mu \left[(y_j, u), (y_j, v) \right] = \sigma_1(y_j) \land \mu(uv) > 0$$

$$q': (x, y_j) (x_{j_1}, y_j) (x_{j_2}, y_j) ... (x_l, y_j)$$
 is the path between (x_i, y_j) and (y_k, y_j)
Case (iii) $x_i \neq x_l, y_j \neq y_k$

: There exists a path $(x_i, y_j)(x_i, y_k)$ by (1) and (x_i, y_k) to (x_l, y_k) by case (4)

The union of this two disjoint path is a path between (x_i, y_i) and (x_1, y_k)

Also if D_1 and D_2 are minimum dominating sets of

$$G_1 = (\sigma_1, \mu_1) \text{ and } G_2 = (\sigma_2, \mu_2) \text{ then } \gamma(G_1, G_2) \le \min \{ |D_1 \times V_2|, |V_1 \times D_2| \}$$

 $\therefore D_1 \times V_2$ and $V_1 \times D_2$ are k-dominating sets and the connectivity of them is similarly proved.

Definition 3.1. [5] A set S of vertices of a graph G is defined to be k-independent in G if every vertex of S is at distance atleast k+1 from every other vertex of S in G denoted by $i_k(G)$.

Theorem 3.2. Let D_{k_1} and D_{k_2} be k-dominating sets of the fuzzy graphs $G_1 = (\sigma_1, \mu_1)$ and $G_2 = (\sigma_2, \mu_2)$ respectively. Then $D_{k_1} \times D_{k_2}$ is a k-dominating set of $G_1 \circ G_2$.

 $D_{K_1} \times D_{K_2}$:

Theorem 3.3. Suppose that G_1 has no isolated vertex and D_{k_1} is a total k-dominating set of G_1 . Then G_1 G_2 has no isolated vertex and $D_{k_1} \times V_2$ is a total -k dominating set of G_1 G_2 .

Proof: For proving $D_{k_1} \times V_2$ is a total -k dominating set of G_1 G_2 .

First let us prove that any vertex from $V_1 \times V_2$ is not an isolated vertex.

A. Nagoorgani and S. Vasantha Gowri

Let (u, v) be an arbitrary vertex in $V_1 \times V_2$. Then there exists a vertex x in D_{k_1} such that $u \in N(x)$ Now $\mu[(u,v)(x,v)] = \mu_1(ux) \wedge \sigma_2(v)$ $= \sigma_1(u) \wedge \sigma_1(x) \wedge \sigma_2(v)$ $= \sigma(u,v) \wedge \sigma(x,v)$ $\Rightarrow (u,v) \in N[(x,v)]$ $\therefore (u,v)$ is not an isolated vertex and since $(x,v) \in D_{K_1} \times V_2$, $D_{K_1} \times V_2$ is a total -k

dominating set of G_1 , G_2 . Hence the proof.

Remark 3.1. Under the similar conditions $V_1 \times D_{K_2}$ is a total -k dominating set of G_1 G_2 .

$$D_{k_1} = \{v_2\} \qquad V_2 = \{v_4, v_5, v_6\} \text{ total } -k \text{ domination set of } G_1 \quad G_2.$$

$$\therefore D_{k_1} \times v_2 = \{v_2 v_4, v_2 v_5, v_2 v_6\} \text{ is a}$$

Theorem 3.4. Let D_{k_1} and D_{k_2} be k-dominating sets of G_1 and G_2 respectively.

a. $D_{k_1} \times V_2$ is an independent k-dominating set of G_1 , G_2 if and only if D_{K_1} is k-independent and

$$\mu_1(uv) < \sigma_2(w) \quad u, v \in D_{K_1} \ w \in V_2 \tag{1}$$

i)
$$\mu_2(wz) < \sigma_1(u)u \in D_{K_1}, \quad w, z \in V_2$$

ii) $\mu_2(wz) < \sigma_2(w) \land \sigma_2(z) \quad w, z \in V_2$

$$(2)$$

A Study on Fuzzy K-Domination Using Strong Arc

b. $V_1 \times D_{K_2}$ is an independent k-dominating set of G_1 , G_2 if and only if D_{K_2} is k-independent and

i)
$$\mu_1(uv) < \sigma_2(w)$$
 $u, v \in V_1, w \in D_{K_2}$ (3)

ii)
$$\mu_1(uv) < \sigma_1(u) \land \sigma_1(v), \quad u, v \in V_1,$$
(4)

$$\mu_2(wz) < \sigma_1(u) \qquad \qquad u \in V_1, w, z \in D_{K_2}$$

Proof: Sufficiency

We show that every two distinct vertices of $D_{K_1} \times V_2$ such as $(x_1, y_1)(x_2, y_2)$ are not adjacent. If $x_1 = x_2$ then by 2(i) and 2(ii)

$$\mu[(x_{1}, y_{1})(x_{2}, y_{2})] = \sigma_{1}(x_{1}) \wedge \mu_{2}(y_{1}, y_{2})$$
$$= \mu_{2}(y_{1}, y_{2})$$
$$< \sigma_{2}(y_{1}) \wedge \sigma_{2}(y_{2}) \wedge \sigma_{1}(x_{1})$$
$$= \sigma(x_{1}, y_{1}) \wedge \sigma(x_{1}, y_{2})$$

If $y_1 = y_2$ the result will be obtained by independence (x_1, y_1) of D_1 and inequality (1). If $x_1 \neq x_2$, $y_1 \neq y_2$ then by definition we have $\mu(x_1, y_1)(x_2, y_2) = 0$ Hence $(x_1, y_1)(x_2, y_2)$ cannot be adjacent.

Similarly the necessary part

Suppose (2) (ii) is false, i.e., there exists $w, z \in V_2$ such that $\mu_2(wz) = \sigma_2(w) \wedge \sigma_2(z)$ If *u* is any vertex of D_1 ,

$$\mu[(u,w)(u,z)] = \sigma_1(u) \wedge \mu_2(wz)$$
$$= \sigma(u) \wedge \sigma_2(w) \wedge \sigma_2(z)$$
$$= \sigma(u,w) \wedge \sigma(u,z)$$

 $\succ D_{K_1} \times V_2$ is not independent.

: Our assumption is wrong hence 2 (ii) is true

i.e., $\mu_2(wz) < \sigma_2(w) \land \sigma_2(z), w, z \in V_2$. Similarly we can prove (b).

Theorem 3.5. Let G_1 be a connected fuzzy graph, D_1 be a connected k-dominating set of G_1 and D_2 be a k-dominating set of G_2 . Then $G_1 \circ G_2$ is connected and $D_1 \times D_2$ is a connected k-dominating set of it.

Proof: Suppose that $(u, v), (w, z) \in V_1 \times V_2$

Since G_1 is connected, there exists a path $p: u, x_1, x_2, ..., x_{n-1}, w$ in G,

$$P':(u,v),(x_1,v),(x_2,v)...(x_{n-1},v)(w,z) \text{ is a } (u,v)-(w,z) \text{ path in } G_1 \circ G_2.$$

Since $G_1 \circ G_2$ is connected $D_1 \times D_2$ is also connected.

 $G_1 G_2$

Algorithm 3.1. Algorithm to find a k-dominating set

- 1. Find $\mu^{\infty}(u,v)$ for all edges (u,v)
- 2. Delete all the weak edges (G')
- 3. Select the vertex u with maximum δ -edges in G'
- 4. Group the vertices k-dominated by u as V_1
- 5. Find $G' V = D_k$
- 6. Repeat the steps from 3 to 5 until we get isolated vertices.
- 7. Now the vertices which are selected from step 3 and isolated will form a k-dominating set.

A Study on Fuzzy K-Domination Using Strong Arc

 $G'-V_1 = \{v_2, v_4, v_5, v_6\} = D_K, V - D_K = (v_1, v_3)$ is within distance - k of At least one vertex in D_K .

Example 3.4.

Result 3.1. For each $v \in D$, there is no vertex in *D* dominates *v*.

Proposition 3.1. For each $v \in D_k$ there is a vertex in D_k such that k-dominates v.

Proof: Suppose there exists no vertex in D_K , k-dominates v.

This implies there is only one edge between the two vertices and that must be a strong arc.

A. Nagoorgani and S. Vasantha Gowri

Therefore, each $v \in D_K$ there is a vertex in D_K dominates v, which is a contradiction to the result.

Hence for each $v \in D_k$ there is a vertex in D_k , k dominates v.

Proposition 3.2. Let D be a k-dominating set of a fuzzy graph G then no bridge exist between any two vertices of $V - D_{k}$.

Proof: Suppose there exists a bridge between any two vertices of $V - D_{\kappa}$.

i.e., $u, v \in V - D_{k}$ this implies, (u, v) must be a strong arc

Either *u* dominates v (or) v dominates *u*.

But by result (1) there is no vertex in D dominates v.

Hence bridge cannot exist between any two vertices of $V - D_{k}$.

REFERENCES

- 1. D.A.Xavior, F.Isido and V.M.Chitra., On domination in fuzzy graphs, *International Journal of Computing Algorithm*, 2(2013) 248-250.
- 2. K.R.Bhutani, Strong arcs in fuzzy graphs, Information Sciences, 152 (1989) 319-322.
- 3. A.Kaufmann, Introduction 'a la theoriedes sous-ensembles flous, 10 Elements theoriques base Paris: Masson etcie, 1976.
- 4. F.Harary, Graph Theory, Addison-Wesley Reading, MA; 1969.
- 5. T.W.Hayney, S.T.Hedetniemi and P.J.Slater, Fundamental of domination in graphs, Mancerl Dekker, Inc, 1997.
- 6. D.A.Mojdeh and B.Ashrafi, On domination in fuzzy graphs, *Advances in Fuzzy Mathematics*, 3(1) (2008) 1-10.
- 7. J.N.Moreson, Fuzzy line graphs, Pattern Recognition Letters, 14 (1993) 381-384.
- 8. A.Nagoor Gani and V.T.Chandrasekaran, Domination in fuzzy graph, *Advances in Fuzzy Sets and System*, I(1) (2006) 17-26.
- 9. A.Nagoor Gani and P.Vadivel, Fuzzy independent dominating set, *Adv. in Fuzzy Sets and System*, 2(1) (2007) 99-108.
- 10. A.Nagoor Gani and D.Rajalaxmi (a) subahashini, A note on fuzzy labeling, *Intern. J. Fuzzy Mathematical Archive*, 4(2) (2014) 88-95.
- 11. A.Rosenfeld, Fuzzy graphs In: L.A.Zadeh, K.S.Fu, Shinuraul(Eds), Fuzzy sets and their Applications, Academic Press, New York.
- 12. A.Somasundaram and S.Somasundaram, Domination in Fuzzy Graph I, Pattern Recognition Letters, 19 (2004) 787-791.
- 13. A.Somasundaram, Domination in product of fuzzy graphs, International Journal of Uncertainty, Fuzziness and knowledge-Based Systems, 13(2) (2005) 95-204.
- 14. L.A.Zadeh, Similarity relations and fuzzy ordering, *Information Sciences*, 3(2) (1971) 177-200.