Intern. J. Fuzzy Mathematical Archive Vol. 7, No. 1, 2015, 81-89 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Edge Chromatic 5-Critical Graphs

K.Kayathri¹ and J.Sakila Devi²

¹Thiagarajar College, Madurai–625 009, India e-mail: kayathrikanagavel@gmail.com

²Lady Doak College, Madurai–625 002, India e-mail: jsakiladevi@yahoo.com Corresponding Author

Received 1 November 2014; accepted 4 December 2014

Abstract. In this paper, we study the structure of 5-critical graphs in terms of their size. In particular, we have obtained bounds for the number of major vertices in several classes of 5-critical graphs, that are stronger than the existing bounds.

Keywords: Class one, class two, edge colouring, edge chromatic critical graphs

AMS Mathematics Subject Classification (2010): 94C15

1. Introduction

An edge-colouring of a graph is an assignment of colours to its edges so that no two adjacent edges are assigned the same colour. The chromatic index of a graph G, denoted by $\chi'(G)$, is the minimum number of colours used among all colourings of G. If a vertex v of a graph G is of maximum degree $\Delta(G)$, then v is called a major vertex; otherwise a minor vertex. If $\chi'(G) = \Delta(G)$, G is said to be of class one; otherwise G is said to be of class two. A graph G is said to be edge chromatic critical if G is connected, of class 2 and $\chi'(G-e) < \chi'(G)$ for every edge e of G. If G is critical and $\Delta(G) = \Delta$, then G is said to be Δ - critical. In this paper, all graphs are finite, simple, undirected and have n vertices and m edges.

2. Notations

Let G = (V, E) be a graph with n vertices, m edges, maximum degree Δ (G) and minimum degree δ (G). The degree of a vertex v in G is denoted by d(v). The number of vertices of degree j is denoted by n_j . N(x) denotes the set of all vertices adjacent to x in G and N(x, y) =N(x) \bigcup N(y). If S and T are disjoint subsets of V(G), then [S, T] denotes the set of all edges with one end in S and the other in T. [S] denotes the subgraph of G induced by S and |[S]| denotes |E[S]|. $\pi(G) = 1^{n_1} 2^{n_2} \dots \Delta^{n_{\Delta}}$ denotes the degree sequence of G, where if $n_j = 0$, then the factor j^{n_j} is customarily omitted in $\pi(G)$.

3. Known results

R1 :Vizing's Adjacency Lemma[10] (VAL): In a Δ - critical graph G, if vw is an edge and d(v) = k, then w is adjacent with at least $\Delta - k + 1$ other vertices of degree Δ . In particular, G has at least $\Delta - \delta + 2$ vertices of degree Δ .

R2: Fiorini'sInequality[4]: Let $\Delta \ge 3$ be an integer. If G is a Δ -critical graph, then

$$n_{\Delta} \geq 2\sum_{j=2}^{n-1} \frac{n_j}{j-1}.$$

R3: Vizing'sConjecture[11]: If G is a Δ - critical simple graph with n vertices, m edges and $\Delta \ge 3$, then $m \ge \frac{1}{2}[(\Delta - 1)n + 3]$.

This conjecture has been verified for the graphs with $\Delta \le 6$ [5, 6, 7, 8].

R4: (Fiorini[4]) If G is a Δ - critical graph, then $m \ge \frac{1}{4} |V| (\Delta + 1)$.

The best known bounds are still far from the conjectured bound.

R5:(**Zhang [12]**) Let G be a Δ - critical graph, $xy \in E(G)$ and $d(x) + d(y) = \Delta + 2$. Then the following hold:

- (i) every vertex of $N(x, y) \setminus \{x, y\}$ is a major vertex;
- (ii) every vertex of N(N(x, y)) \ {x, y} is at least of degree Δ 1;

(iii) If d(x), $d(y) < \Delta$, then every vertex of N(N(x, y)) \ {x, y} is a major vertex.

R6: There are no critical graphs of order 4,6,8. [1, 2]

R7: A 2-connected graph of order 7 is critical if and only if its degree sequence is one among the following: 2^7 , 23^6 , 24^6 , 3^24^5 , 25^6 , 345^5 , 4^35^4 , 45^26^4 , 5^46^3 .[2, 3]

3.1. Main theorems

Throughout this section, we use the following notations:

M denotes the set of all major vertices of G and N_2 , N_3 , N_4 are the sets of all vertices of degree two, three and four respectively. M_3 denotes the set of all major vertices which are adjacent with at least one 3-vertex, but not with any 4-vertex, M_4 is the set of all major vertices which are adjacent with at least one 4-vertex, but not with any 3-vertex and M_{34} is the set of all major vertices which are adjacent with at least one 4-vertex, but not with any 3-vertex and M_3 , M_4 and M_{34} are pairwise disjoint. N'_3 denotes the set of all 3-vertices which are adjacent with 4-vertices, N'_4 is the set of all 4-vertices which are adjacent with 3-vertices and N''_4 is the set of all 4-vertices which are adjacent with at least one 4-vertex. By VAL, each 3-vertex can be adjacent with at most one 4-vertex and vice versa. Hence $|N'_3| = |N'_4|$. Also, let $|M_3| = l'$, $|M_{34}| = m'$, $|M_4| = n'$, $|N'_3| = |N'_4| = s$, $|N''_4| = t$ and $|[N_4]| = r$.

Lemma 1. If G is a 5-critical graph, then the following hold:

(i) $[N_3, N_4] = s$; (ii) $[M_{34}, N_3] = [M_{34}, N_4] = m'$; (iii) $[N'_4] = 0$ and $N'_4 \cap N''_4 = \phi$.

Proof: (i) Since $|N'_3| = s$, N_3 has s 3-vertices which are adjacent with 4-vertices. By VAL, each 3-vertex can be adjacent with at most one 4-vertex. Hence $|[N_3, N_4]| = s$.

(ii) Each vertex in M_{34} is adjacent with a 3-vertex and a 4-vertex. Hence, by VAL, each vertex in M_{34} has exactly three major neighbours. Hence each vertex in M_{34} is adjacent with exactly one 3-vertex and one 4-vertex.

Thus $|[M_{34}, N_3]| = |[M_{34}, N_4]| = |M_{34}| = m'.$

(iii) Since each vertex in N'_4 is adjacent with a 3-vertex, by VAL, each vertex in N'_4 has exactly three major neighbours. Hence $|[N'_4]| = 0$. Since each vertex in N'_4 is adjacent with exactly one 3-vertex and three major vertices, each vertex in N'_4 is not adjacent with any 4-vertex. Hence $N'_4 \cap N''_4 = \phi$.

In the following theorems, we have obtained bounds for the number of major vertices in several classes of 5-critical graphs, that are stronger than the existing bound given in R2. Also, we have obtained new bounds on size m in terms of order n and minor vertices.

Theorem 3.1.1. Let G be a 5-critical graph. Suppose that every major vertex adjacent with a 4-vertex is adjacent with a 3-vertex.

Then (i) $n_5 \ge 2n_2 + \frac{3}{2}n_3 + n_4$ and (ii) $m \ge 2n + \frac{n_3}{4} + \frac{n_4}{2}$. **Proof:** By the Lemma, $[M_{34}, N_3] \models [M_{34}, N_4] \models M_{34} \models m' \text{ and} [N_3, N_4] \models s$. Then, by VAL, $|[N_3, M]| = (n_3 - s)(3) + 2s = 3n_3 - s$. Now $|[N_3, M_3]| = |[N_3, M]| - |[N_3, M_{34}]| = 3n_3 - s - |[N_4, M_{34}]| = 3n_3 - s - m'$. Also by VAL, $|[M_3, N_3]| \le 2l'$. Thus $l' \ge \frac{3n_3 - s - m'}{2}$. By hypothesis, $M_4 = \phi$. Thus $m' = |[N_4, M_{34}]| = |[N_4, M]| = 4n_4 - |[N_4, N_3]| - 2|[N_4]| = 4n_4 - s - 2r$. Hence $l' + m' \ge \frac{3}{2}n_3 - \frac{s}{2} + 2n_4 - \frac{s}{2} - r$. Thus $n_5 \ge 2n_2 + l' + m' \ge 2n_2 + \frac{3}{2}n_3 + 2n_4 - s - r$. (1) By VAL, every 4-vertex can be adjacent with at most two 4-vertices. Hence $2r = \sum_{v \in N_4} d_{N_4}(v) \le 2t$ and so $r \le t$. Then $s + r \le s + t \le n_4$. Hence using (1), $n_5 \ge 2n_2 + \frac{3}{2}n_3 + n_4$. Now $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 \ge 4n - 2n_2 - n_3 + 2n_2 + \frac{3}{2}n_3 + n_4$.

Theorem 3.1.2. If G is a 5-critical graph in which every 3-vertex is adjacent with a 4-vertex, then (i) $n_5 \ge 2n_2 + \frac{14}{5}n_3 + \frac{2}{3}n_4$ and (ii) $m \ge 2n + \frac{9}{10}n_3 + \frac{n_4}{3}$.

Proof: Let $u \in M_3$ be adjacent with $y \in N_3$. By hypothesis, y is adjacent with a 4-vertex, say x. Then $d(x) + d(y) = 7 = \Delta + 2$ and so by R5, all the other neighbours of u are major vertices. Thus, every vertex $u \in M_3$ is incident with an unique edge in

$$[M_3, N_3]$$
 and so $[M_3, N_3] = |M_3| = l'$. (1)
Moreover, every $u \in M_3$ has four major neighbours. By hypothesis and VAL, $|N'_4| = n_3$.

By the Lemma, $|[N'_4]|=0$. Let $|[N'_4, M_4]| = t'$. Again by using R5, these edges are incident with t' vertices in M_4 , each of which has four major neighbours. Thus, by VAL, $\sum_{v \in M} d_M(v) \ge 4(2n_2) + 4l' + 3m' + 4t' + (n'-t')(2) = 8n_2 + 4l' + 3m' + 2n' + 2t'$ (2)

By the Lemma and hypothesis, $[N_3, N_4] = n_3$. Now $|[N_3, M]| = 3n_3 - |[N_3, N_4]| = 2n_3$. Then $\sum_{v \in M} d_M(v) = 5n_5 - |[N_2 \cup N_3 \cup N_4, M]| = 5n_5 - [2n_2 + 2n_3 + 4n_4 - n_3 - 2r]$ $= 5n_5 - 2n_2 - n_3 - 4n_4 + 2r$ (3)

By (2) and (3),
$$5n_5 - 2n_2 - n_3 - 4n_4 + 2r \ge 8n_2 + 4l' + 3m' + 2n' + 2t'$$
. (4)

Now, by the Lemma, $|[M_{34}, N_4]| = |[M_{34}, N_3]| = |M_{34}| = m'$ and so $|[N_3, M_3]| = |[N_3, M]| - |[N_3, M_{34}]| = 2n_3 - m'$. Thus, by (1), $l' = 2n_3 - m'$. (5)

Also
$$|[N_4, M]| = 4n_4 - |[N_4, N_3]| - 2|[N_4]| = 4n_4 - n_3 - 2r.$$

Hence $|[N_4, M_4]| = |[N_4, M]| - |[N_4, M_{34}]| = 4n_4 - n_3 - 2r - m'.$ (6)

Also, by VAL, $|[M_4, N_4]| \le 3|M_4|$ and so, using (6), $n' \ge \frac{4n_4 - n_3 - 2r - m'}{3}$. (7) Using (4), (5) and (7),

$$5n_{5} - 2n_{2} - n_{3} - 4n_{4} + 2r \ge 8n_{2} + 4(2n_{3} - m') + 3m' + 2\left(\frac{4n_{4} - n_{3} - 2r - m'}{3}\right) + 2t'.$$

Thus $5n_{5} \ge 10n_{2} + \frac{25}{3}n_{3} + \frac{20}{3}n_{4} - \frac{5}{3}m' + 2t' - \frac{10}{3}r.$ (8)

By the Lemma, $N_4'' \cap N_4' = \phi$. Now $|N_4| \ge |N_4'| + |N_4''|$ and so $n_4 \ge n_3 + t$. Also, by VAL, every 4-vertex can be adjacent with at most two 4-vertices. Hence $2r = \sum_{v \in N_4} d_{N_4}(v) \le 2t$ and so $r \le t$. Thus $r \le n_4 - n_3$. Also, by VAL, $m' \le n_3$.

Thus, using (8), we have
$$n_5 \ge 2n_2 + 2n_3 + \frac{2}{3}n_4 + \frac{2}{5}t'$$
. (9)

Suppose that vw is an edge, where $v \in M_{34}$ and $w \in N_3$. Then, by hypothesis, w is adjacent with a 4-vertex, say $z \in N'_4$. Then, $d(w) + d(z) = \Delta + 2$. By R5, any vertex of G at distance two from w is a major vertex in G. But, by hypothesis, v is adjacent with a 4-vertex. Hence z is the 4-vertex adjacent with v. Hence $|[M_{34}, N'_4]| = |M_{34}| = m' \le n_3$. Now $t' = |[N'_4, M_4]| = 4|N'_4| - |[N'_4, N_3]| - |[N'_4, M_{34}]| \ge 4n_3 - n_3 - n_3 = 2n_3$.

Hence, using (9), $n_5 \ge 2n_2 + \frac{14}{5}n_3 + \frac{2}{3}n_4$. Then,

 $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 = 4n - 2n_2 - n_3 + n_5 \ge 4n + \frac{9}{5}n_3 + \frac{2}{3}n_4.$ Thus $m \ge 2n + \frac{9}{10}n_3 + \frac{n_4}{3}.$

Corollary 3.1.3. Let G be a 5-critical graph in which each 3-vertex is adjacent with a 4-vertex and no two 4-vertices are adjacent. Then

(i)
$$n_5 \ge 2n_2 + \frac{32}{15}n_3 + \frac{4}{3}n_4$$
 and (ii) $m \ge 2n_1 + \frac{17}{30}n_3 + \frac{2}{3}n_4$

Proof: Using the same notations and proceeding as in Theorem 3.1.2, we have $r = 0, m' \le n_3$ and $t' \ge 2n_3$. Then equation(8) in Theorem 3.1.2 becomes $5n_5 \ge 10n_2 + \frac{25}{2}n_3 + \frac{20}{2}n_4 - \frac{5}{2}n_3 + 4n_3$. Hence $n_5 \ge 2n_2 + \frac{32}{15}n_3 + \frac{4}{3}n_4$.

$$5n_5 \ge 10n_2 + \frac{1}{3}n_3 + \frac{1}{3}n_4 - \frac{1}{3}n_3 + 4n_3$$
. Hence $n_5 \ge 2n_2 + \frac{1}{15}n_3 + \frac{1}{3}n_4$.
Then $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 = 4n - 2n_2 - n_3 + n_5 \ge 4n + \frac{17}{15}n_3 + \frac{4}{3}n_4$
and so $m \ge 2n + \frac{17}{30}n_3 + \frac{2}{3}n_4$.

Theorem 3.1.4. If G is a 5-critical graph in which every 3-vertex is adjacent with a 4-vertex and each major vertex is adjacent with at most two 4-vertices, then

(i)
$$n_5 \ge 2n_2 + \frac{14}{5}n_3 + \frac{4}{5}n_4$$
 and (ii) $m \ge 2n + \frac{9}{10}n_3 + \frac{2}{5}n_4$.

Proof: Using the same notations and proceeding as in Theorem 3.1.2, we have

$$5n_5 - 2n_2 - n_3 - 4n_4 + 2r \ge 8n_2 + 4l' + 3m' + 2n' + 2t'$$
(1)

$$m' \le n_3, t' \ge 2n_3, r \le n_4 - n_3, l' = 2n_3 - m'$$
 (2)

and
$$|[N_4, M_4]| = 4n_4 - n_3 - 2r - m'.$$
 (3)

Since each major vertex is adjacent with atmost two 4-vertices, $|[M_4, N_4]| \le 2|M_4|$.

Hence, by (3),
$$n' \ge \frac{4n_4 - n_3 - 2r - m'}{2}$$
. (4)

Using (1), (2) and (4), we have $n_5 \ge 2n_2 + \frac{14}{5}n_3 + \frac{4}{5}n_4$.

Then $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 \ge 4n - 2n_2 - n_3 + 2n_2 + \frac{14}{5}n_3 + \frac{4}{5}n_4$.

Thus $m \ge 2n + \frac{9}{10}n_3 + \frac{2}{5}n_4$.

Theorem 3.1.5. Let G be a 5-critical graph. Suppose that every major vertex adjacent with a 3-vertex is adjacent with a 4-vertex. Then

(i)
$$n_5 \ge 2n_2 + 2n_3 + \frac{2}{3}n_4 + \frac{s}{3}$$
 and (ii) $m \ge 2n + \frac{1}{2}n_3 + \frac{1}{3}n_4 + \frac{s}{6}$.

Proof: By the Lemma, $|[M_{34}, N_3]| = |[M_{34}, N_4]| = m' \text{ and} [N_3, N_4] = s.$ (1) By hypothesis, $M_3 = \phi$.

Then
$$m' = |[N_3, M_{34}]| = |[N_3, M]| = 3n_3 - |[N_3, N_4]| = 3n_3 - s$$
. (2)
Suppose that yu is an edge, where $y \in N'_3$ and $u \in M_{34}$. Then, y is adjacent with a 4-vertex, say x in N'_4 . Then $d(x) + d(y) = 7 = \Delta + 2$. By R5, any vertex of G at distance two from y is a major vertex in G. But, u is adjacent with a 4-vertex. Hence x is the 4-vertex adjacent with u. Thus, corresponding to each edge from N'_3 to M_{34} , there is an edge from M_34 to N'_4 and vice versa. Thus $|[M_{34}, N'_4]| = |[N'_3, M_{34}]| = 2s$. By the Lemma, $|[N'_4]| = 0$. Also, $|[N'_4, N_3]| = |[N_4, N_3]| = |[N_4, M_3]| = 8$.
Thus $|[N'_4, M_4]| = 4 |N'_4| - |[N'_4, N_3]| - |[N'_4, M_{34}]| = 4s - s - 2s = s$.
By R5, these s edges are incident with s vertices in M_4 , each of which has four major neighbours. Let M'_4 be the set of these s major vertices in M_4 . Thus $M'_4 \subseteq M_4$ and $|[N_4, M'_4]| = s$. (3)Also $|M_4 - M'_4| = n' - s$.
Now $|[N_4, M_4 - M'_4]| = 4n_4 - |N_4, N_3]| - 2|[N_4]| - |[N_4, M_{34}]| - |[N_4, M'_4]|$ and by using (1) and (3), $|[N_4, M_4 - M'_4]| = 4n_4 - s - 2r - m' - s$. By VAL, every 4-vertex can be adjacent with at most two 4-vertices. Hence $2r = \sum_{v \in N_4} d_{N_4}(v) \le 2t$ and so $r \le t$.
Hence, $s + r \le s + t \le n_4$. Hence $|[N_4, M_4 - M'_4]| \ge 2n_4 - m'$.
By VAL, $|[M_4 - M'_4, N_4]| \le 3(n' - s)$. Hence $n' - s \ge \frac{2n_4 - m'}{3}$. (4)
Then, using(2)and(4), $m' + n' \ge 2n_3 + \frac{2}{3}n_4 + \frac{5}{3}$.
Thus $n_5 \ge 2n_2 + m' + n' \ge 2n_2 + 2n_3 + \frac{2}{3}n_4 + \frac{5}{3}$.

Thus $m \ge 2n + \frac{1}{2}n_3 + \frac{1}{3}n_4 + \frac{s}{6}$.

Theorem 3.1.6. Let G be a 5-critical graph. Suppose that every major vertex adjacent with a 3-vertex is adjacent with a 4-vertex and each major vertex is adjacent with at most two 4-vertices. Then (i) $n_5 \ge 2n_2 + \frac{3}{2}n_3 + n_4 + \frac{s}{2}$ and (ii) $m \ge 2n + \frac{n_3}{4} + \frac{n_4}{2} + \frac{s}{4}$. **Proof:** Using the same notations and proceeding in theorem 3.1.5, we have $m' = 3n_3 - s$, r + s $\le n_4$, $|M_4 - M'_4| = n' - s$ and $|[N_4, M_4 - M'_4]| \ge 2n_4 - m'$. Since each major vertex is adjacent with at most two 4-vertices, $|[M_4 - M'_4, N_4]| \le 2(n'-s)$. Hence $n'-s \ge \frac{2n_4 - m'}{2}$. Thus $m'+n' \ge \frac{3}{2}n_3 + n_4 + \frac{s}{2}$.

Hence $n_5 \ge 2n_2 + m' + n' \ge 2n_2 + \frac{3}{2}n_3 + n_4 + \frac{s}{2}$.

Then, $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 = 4n - 2n_2 - n_3 + n_5 \ge 4n + \frac{n_3}{2} + n_4 + \frac{s}{2}$. Hence $m \ge 2n + \frac{n_3}{4} + \frac{n_4}{2} + \frac{s}{4}$.

Theorem 3.1.7. If G is a 5-critical graph in which every 4-vertex is adjacent with a 3-vertex, then (i) $n_5 \ge 2n_2 + \frac{3}{2}n_3 + \frac{11}{5}n_4$ and (ii) $m \ge 2n_1 + \frac{1}{4}n_3 + \frac{11}{10}n_4$.

Proof: Since each 4-vertex is adjacent with a 3-vertex, by VAL, each 4-vertex has 3 major neighbours and $[N_3, N_4] = n_4$. Hence $|[N_4]| = 0$.

By the Lemma,
$$|[M_{34}, N_3]| = |[M_{34}, N_4]| = m'.$$
 (1)
Now, $|[N_3, M_3]| = 3n_3 - |[N_3, N_4]| - |[N_3, M_{34}]| = 3n_3 - n_4 - m'.$
By VAL, $|[M_3, N_3]| \le 2l'$ and so $l' \ge \frac{|[M_3, N_3]|}{2} = \frac{3n_3 - n_4 - m'}{2}.$ (2)

Suppose that yu is an edge, where $y \in N_4$ and $u \in M_4$. By hypothesis, y is adjacent with a 3-vertex, say x. Then $d(x) + d(y) = 7 = \Delta + 2$. By R5, any vertex of G at distance two from y is a major vertex in G. Hence, all the other neighbours of u are major vertices. Thus, every vertex $u \in M_4$ is incident with an unique edge in $[N_4, M_4]$, and so $|[N_4, M_4]| = |M_4| = n'$. Moreover, each vertex of M_4 has 4 major neighbours. Hence $n' = |[N_4, M_4]| = 4n_4 - |[N_4, N_3]| - |[N_4, M_{34}]|.$ Then, by (1), $n' = 3n_4 - m'$. (3)Also, $|N'_{3}| = |N'_{4}| = n_{4}$ and $n_{3} \ge n_{4}$. Let $|[N'_{3}, M_{3}]| = s'$. Again by R5, these s' edges are incident with s' vertices of M_3 , each of which has four major neighbours. Hence $\sum_{i} d_{M}(v) \ge 4(2n_{2}) + 4s' + (l'-s')(3) + 3m' + 4n' = 8n_{2} + 3l' + 3m' + 4n' + s'$. (4) Also $\sum_{v} d_M(v) = 5n_5 - |[N_2 \bigcup N_3 \bigcup N_4, M]| = 5n_5 - [2n_2 + 3n_3 - n_4 + 4n_4 - n_4]$ $=5n_5-2n_2-3n_3-2n_4$ (5) Using (4) and (5), $5n_5 - 2n_2 - 3n_3 - 2n_4 \ge 8n_2 + 3l' + 3m' + 4n' + s'$ $= 8n_2 + \frac{9}{2}n_3 + \frac{21}{2}n_4 - \frac{5}{2}m' + s', \text{ using (2) and (3).}$ Hence $n_5 \ge 2n_2 + \frac{3}{2}n_3 + \frac{5}{2}n_4 - \frac{m'}{2} + \frac{s'}{5}$. Each vertex in M_{34} is adjacent with a 4-vertex and a 3-vertex. Hence, by VAL, each vertex in M_{34} is adjacent with exactly one 4vertex. Thus $m \leq n_4$ and so $n_5 \geq 2n_2 + \frac{3}{2}n_3 + 2n_4 + \frac{s'}{5}$. (6)Also, $[N'_3, N_4] = [N_3, N_4] = n_4$. By the hypothesis, R5 and the Lemma, $|[N'_{3}, M_{34}]| = |[N_{3}, M_{34}]| = m' \le n_{4}$. Now, $s' = |[N'_3, M_3]| = 3n_4 - |[N'_3, N_4]| - |[N'_3, M_{34}]| \ge 3n_4 - n_4 - n_4$.

(i.e.) $s' \ge n_4$. Thus, by (6), $n_5 \ge 2n_2 + \frac{3}{2}n_3 + \frac{11}{5}n_4$. Then $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 = 4n - 2n_2 - n_3 + n_5 \ge 4n + \frac{1}{2}n_3 + \frac{11}{5}n_4$. Thus $m \ge 2n + \frac{1}{4}n_3 + \frac{11}{10}n_4$.

Theorem 3.1.8. Let G be a 5-critical graph. Suppose that no 3-vertex is adjacent with a 4-vertex. Then (i) $n_5 \ge 2n_2 + \frac{3}{2}n_3 + \frac{2}{3}n_4 + \frac{m'}{6}$ and (ii) $m \ge 2n + \frac{n_3}{4} + \frac{1}{3}n_4 + \frac{m'}{12}$. **Proof:** By the Lemma, $|[M_{34}, N_3]| = |[M_{34}, N_4]| = |M_{34}| = m'$. Since no 3-vertex is adjacent with a 4-vertex, $|[N_3, N_4]|=0$. Thus, $|[N_3, M_3]|=3n_3-|[N_3, M_{34}]|=3n_3-m'$. By VAL, $|[M_3, N_3]|\le 2l'$ and so $l' \ge \frac{3}{2}n_3 - \frac{m'}{2}$. Also, by VAL, $2r=\sum_{v\in N_4} d_{N_4}(v) \le 2n_4$ and so $r \le n_4$. Then $|[N_4, M_4]| = 4n_4 - 2|[N_4]| - |[N_4, M_{34}]| \ge 2n_4 - m'$. By VAL, $|[M_4, N_4]| \le 3n'$ and so $n' \ge \frac{2}{3}n_4 - \frac{m'}{3}$. Now $n_5 \ge 2n_2 + l' + m' + n' \ge 2n_2 + \frac{3}{2}n_3 + \frac{2}{3}n_4 + \frac{m'}{6}$. Thus $m \ge 2n + \frac{n_3}{4} + \frac{1}{3}n_4 + \frac{m'}{12}$.

Theorem 3.1.9. Let G be a 5-critical graph. Suppose that no 3-vertex is adjacent with a 4-vertex and each major vertex is adjacent with at most two 4-vertices. Then

(i)
$$n_5 \ge 2n_2 + \frac{3}{2}n_3 + n_4$$
 and (ii) $m \ge 2n + \frac{n_3}{4} + \frac{n_4}{2}$

Proof: Using the same notations and proceeding as in Theorem 3.1.8, we have $l' \ge \frac{3}{2}n_3 - \frac{m'}{2}$ and $|[N_4, M_4]| \ge 2n_4 - m'$. By hypothesis, $|[M_4, N_4]| \le 2n'$ and so $n' \ge n_4 - \frac{m'}{2}$. Then $n_5 \ge 2n_2 + l' + m' + n' \ge 2n_2 + \frac{3}{2}n_3 + n_4$. Hence $2m = 2n_2 + 3n_3 + 4n_4 + 5n_5 = 4n - 2n_2 - n_3 + n_5 \ge 4n + \frac{n_3}{2} + n_4$.

Thus $m \ge 2n + \frac{n_3}{4} + \frac{n_4}{2}$.

Remarks

▶ If G is a 5-critical graph with $n_4 = 0$ and if each major vertex is adjacent with at most one 3-vertex, then $n_5 \ge 2n_2 + 3n_3$.

> If G is a 5-critical graph with $n_3 = 0$ and if each major vertex is adjacent with at most two 4-vertices, then $n_5 \ge 2n_2 + n_4$.

Theorem 3.1.10. If G is a 5-critical graph, then $2n + 2 \le m \le 3n - 5$.

Proof: By R3, if G is a 5-critical simple graph, then $m \ge 2n + 2$.

If $m \ge 3n-3$, then $4n_2+3n_3+2n_4+n_5 \le 6$ and so $n \le 6$, a contradiction to R6.

If m = 3n - 4, then $n + 3n_2 + 2n_3 + n_4 = 8$ and by R6, n = 7 and $\pi(G) = 45^6$, a contradiction to R7. Hence $2n + 2 \le m \le 3n - 5$.

REFERENCES

- 1. L.D.Anderson, Edge-colourings of simple and non-simple graphs, Aarhaus University, 1975.
- 2. L.W.Beineke and S.Fiorini, On small graphs critical with respect to edge colourings, *Discrete Math.*, 16 (1976) 109-121.
- 3. A.G.Chetwynd and H.P.Yap, Chromatic index critical graphs of order 9, *Discrete Math.*, 47 (1983) 23-33.
- 4. S. Fiorini, Some remarks on a paper by Vizing on critical graphs, *Math. Proc. Camb. Phil. Soc.*, 77 (1975) 475 483.
- 5. S.Fiorini and R.J.Wilson, Edge colorings of graphs, *Research Notes in Mathematics* 16 (1977).
- 6. I.T.Jakobsen, On critical graphs with chromatic index 4, *Discrete Math.*, 9 (1974) 265 276.
- 7. K.Kayathri, On the size of edge-chromatic critical graphs, *Graphs and Combinatorics*, 10 (1994) 139 144.
- 8. R.Raziya Begam, M.Palanivelrajan, K.Gunasekaran and A.R.Shahul Hameed, Graceful labeling of some theta related graphs, *International Journal of Fuzzy Mathematical Archive*, 2 (2013) 78-84.
- 9. R.Luo, L.Miao and Y.Zhao, The size of edge chromatic critical graphs with maximum degree 6, *Journal of Graph Theory*, 60(2) (2009) 149-171.
- 10. V.G. Vizing, Critical graphs with a given chromatic class (Russian), *Diskret. Analiz*, 5 (1965) 9-17.
- 11. V.G.Vizing, Some unsolved problems in graph theory, *Uspekhi Mat. Nauk*, 23 (1968) 117 134; *Russian Math. Surveys*, 23 (1968) 125 142.
- 12. L.M.Zhang, Every planar graph with maximum degree 7 is of class 1, *Graphs and Combinatorics*, 16 (2000) 467-495.