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1. Introduction  
The topic of fuzzy differential equation has been rapidly growing in recent years.  The 
concept of fuzzy derivatives was first introduced by Chang and Zadeh [7]; it was 
followed up by Dubois and Prade [8] who used the extension principle in their approach. 
Puri and Ralesec [16] and Goetschel and Voxman [10] contributed towards the 
differential of fuzzy functions. The fuzzy differential equation and initial value problems 
were extensively studied by Kaleva [11, 12] and by Seikkala [17].  Numerical solution of 
fuzzy differential equations has been introduced by Ma, Friedman, Kandel [14] through 
Euler method and by Abbasbandy and Allahviranloo [2] by Taylor method.  Runge-Kutta 
methods have also been studied by authors [3, 15]. This paper is organized as follows:  In 
Section 2, we give some basic definitions and results on fuzzy numbers and fuzzy 
derivatives.  Section 3 contains the definition of fuzzy Cauchy problem with initial 
conditions.  In Section 4 we propose the sixth order Runge-Kutta method to solve the 
fuzzy differential equation with initial condition.  The proposed method is illustrated and 
solved the numerical example in section 5. Also the result of the approximation solution 
by Runge-Kutta sixth order method is compared with Euler’s method and Runge-Kutta 
fourth order method. 
 
2. Preliminaries 
Consider the initial value problem( ) ( ))(, tytfty =′ , t0≤t≤b, y(t0)=y0                                          (2.1) 
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We assume that  
1. f(t, y(t)) is defined and continuous in the strip t0≤ t ≤ b, -∞<y<∞ with t0 and b are 

finite. 
2. There exists a constant L such that for any t in [t0, b] and any two numbers y and y* 
( ) ( ) **,, yyLytfytf −≤−  

These conditions are sufficient to prove that ∃on [t0, b] a unique continuous differentiable 
function y(t) satisfying (2.1) 
The basis of all Runge-Kutta methods is to express the difference between the value of y 
at tn+1 and tn as  

∑
=

+ =−
m

i
iinn kwyy

0
1

; where wi are constants and ki = hf(tn+aih, yn + ∑
−

=

1

1

i
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jij kc ) 

Most efforts to increase the order of accuracy of the Runge-Kutta methods have been 
accomplished by increasing the number of Taylor’s series terms used and thus the 
number of functional evaluations required [6].  The method proposed by Goeken and 
Johnson. O [9] introduces new terms involving higher order derivatives of ‘f’ in the 
Runge-Kutta ki terms (i > 1) to obtain a higher order of accuracy without a corresponding 
increase in evaluations of f, but with the addition of evaluations of f1. 
Consider y(tn+1) = y(tn) + w1k1 + w2k2 + w3k3 + w4k4 + w5k5 + w6k6 + w7k7 
where 
k1 = hf(tn, y(tn)) 
k2 = hf(tn+c2h, y(tn)+a21k1) 
k3 = hf(tn+c3h, y(tn)+a31k1+a32k2) 
k4 = hf(tn+c4h, y(tn)+a41k1+a42k2+a43k3) 
k5 =hf(tn+c5h,y(tn)+a51k1+a52k2+a53k3+a54k4) 
k6  =hf(tn+c6h,y(tn)+a61k1+a62k2+a63k3+a64k4+a65k5+a66k6)     
k7  = h f(tn+c7h,y(tn)+a71k1+a72k2+a73k3+a74k4+ a75k5+a76k6 + a77k7)                   (2.2) 
Utilizing the Taylor’s series expansion techniques, Runge-Kutta method of order sixth is 

given by   yn+1 = yn + 
180

94949649 76531 kkkkk ++++  

where 
k1 = hf(tn, y(tn)) 
k2 = hf(tn+ vh, y(tn)+ vk1) 
k3 = hf(tn+

2

h , y(tn)+ ((4v – 1)k1 + k2)/(8v)) 

k4 = hf(tn+
3

2h , y(tn)+((10v – 2)k1 + 2k2 + 8vk3)/(27v)) 

k5 = hf(tn+(7+4.582576)
14

h ,y(tn)+(-((77v–56)+(17v–8)4.582576)k1–8(7+4.582576)k2 

+ 48(7+4.582576)vk3 – 3(21+4.582576)vk4)/(392v) 
k6 =hf(tn+(7 - 4.582576)

14

h ,y(tn)+(-5((287v–56) - (59v–8)4.582576)k1–40(7-4.582576)k2 

+ 320(4.582576)vk3+ 3(21-121(4.582576))vk4 + 392(6-4.582576)vk5) /(1960v) 
k7 = hf(tn+ h,y(tn)+(15((30v – 8) - 7v(4.582576))k1+120k2– 40(5 + 7(4.582576))vk3 
+ 63(2 + 3(4.582576))vk4 – 14(49 - 9(4.582576))vk5 + 70(7 + 4.582576)vk6)/(180v) (2.3) 
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Definition 2.1. A fuzzy number u is a fuzzy subset of ℜ i.e., u: ℜ→[0, 1] satisfying the 
following conditions. 

i). u is normal, i.e. ∃x0∈ℜ∋u(x0) = 1 
ii). u is a convex fuzzy set 

i.e.) u(tx + (1-t)y) ≥ min{u(x), u(y)}, ∀ t ∈ [0, 1] and x, y ∈ℜ 
iii).  u is upper semi continuous on ℜ 
iv). ( ){ }0, >∈ xuRx  is compact 

The set E is the family of fuzzy numbers and arbitrary fuzzy number is represented by an 
ordered pair of functions( ) ( )( )ruru , , 0 ≤ r ≤ 1 that satisfies the following requirements. 

1. ( )ru is a bounded left continuous non-decreasing function over [0, 1] with respect 
to any ‘r’. 

2. ( )ru is a bounded right continuous non-increasing function over [0, 1] with 
respect to any ‘r’. 

3. ( )ru ≤ ( )ru , 0≤r ≤ 1, r-level cut is [u]r = {x/u(x) ≥ r}, 0 ≤ r ≤ 1 is closed 

&bounded interval denoted by [u]r= ( ) ( )[ ]ruru ,  and clearly [u]0 = 0} > {x/u(x)  is 
compact. 

 
Definition 2.2. A triangular fuzzy number u is a fuzzy set in E that is characterized by an 
ordered triple (ul,uc,ur)∈R3 with ul<uc<ur such that [u]0 = [ul : ur] and [u]1 = [uc]. The 
membership function of the triangular fuzzy number u is given by 

( )
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and we will have     

i). u > 0 if ul> 0 
ii). u ≥ 0 if ul≥ 0 
iii).  u < 0 if uc< 0 
iv). u ≤ 0 if uc≤ 0 

Let I be a real interval.  A mapping y: I → E is called a fuzzy process and its α - level set 
is denoted by ( )[ ] ( ) ( )[ ]ytyytyty ,,,=α , t ∈ I, 0 <α≤ I.   

The Seikkala derivative y(t) of a fuzzy process is defined by ( )[ ] ( ) ( )[ ]ytyytyty ,,,
111 =α , t ∈ I, 0 

<α≤ I provided the equation defines fuzzy number as in [12].For u, v ∈ E and         λ∈ℜ, 
the u + v and the product λu can be defined by [u + v]α = [u]α + [v]α and [λu]α = λ[u]α, 
where α∈ [0, 1] and [u]α + [v]α means the addition of two intervals of ℜ and λ[u]α means 
the product between a scalar λ and a subset of ℜ. 
Arithmetic operations of arbitrary fuzzy numbers u = ( ) ( )( )ruru ,  and v = ( ) ( )( )rvrv , ,  λ∈ℜ 
can be defined as  

i). u = v if ( ) ( )rvru =  and ( ) ( )rvru =  

ii). u + v = ( ) ( ) ( ) ( )( )rvrurvru ++ ,  



Numerical Solution of Fuzzy Differential Equation by Sixth Order Runge-Kutta Method 

38 
 

iii).  u - v = ( ) ( ) ( ) ( )( )rvrurvru −− ,  

iv). λu = ( ) ( )( )ruru λλ ,  if λ≥ 0 

  = ( ) ( )( )ruru λλ ,  if λ< 0 

 
3. Fuzzy Cauchy problem 
Consider the fuzzy initial value problem 

( ) ( ))(, tytfty =′ , 0≤ t ≤T,  y(0) = y0                                                                       (3.1) 

where f is a continuous mapping from ℜ+ x ℜ→ℜ and y0∈ E with r-level sets [y0]r = 

( ) ( )[ ]ryry :0,:0 ,  r ∈ [0, 1].  The extension principle of Zadeh leads to the following 

definition of f(t, y),where y = y(t) is a fuzzy number. 
f(t, y)(s)=sup{y(τ)\s=f(t, τ)}, s ∈ℜ 
⇒ ( )[ ] ( ) ( )[ ]rytfrytfytf r :,,:,, = , r∈[0, 1] 

It follows that 

( ) ( ) ( ) ( )[ ]{ }ryryuutfrytf ,\,min:, ∈=
 
and ( ) ( ) ( ) ( )[ ]{ }ryryuutfrytf ,\,max:, ∈= . . . (3.2)  

 
Theorem 3.1. Let f satisfy ( ) ( ) ( )vvtgvtfvtf −≤− ,,, , t ≥ 0 and v,v ∈ℜ,                   (3.3) 

where g : ℜ+ x ℜ+→ℜ+ is a continuous mapping such that r → g(t, r) is non-decreasing 
and the initial value problem u1(t) = g(t, u(t)), u(0) = u0                                                                   (3.4) 
has a solution on ℜ+for u0> 0 and that u(t)≡ 0 is the only solution of (3.4) for u0 = 0. Then 
the fuzzy initial value problem (3.1) has a unique solution. 
Proof: See [17]. 
 
3.1. Sixth order Runge–Kutta method 
Let the exact solution of the given equation [y(t)]r = ( ) ( )[ ]rtyrty :,:  is approximated by 

some [y(t)]r = ( ) ( )[ ]rtyrty :,:
 
and we define 

( ) ( ) ∑
=

+ =−
7

1
1 ::

i
iinn kwrtyrty and ( ) ( ) ∑

=
+ =−

7

1
1 ::

i
iinn kwrtyrty  

where wi’s are constants, 
( )( )[ ] ( )( ) ( )( )[ ]rtytkrtytkrtytk iiri ,,,,,,, =

 
where i = 1, 2, 3, 4, 5, 6, 7  
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( )( ) ( ) ( )( ) 






 ++−++= vkvkkvrty
h

thfrtytk nn 27/82210:,
3

2
:, 3214

 

( )( ) ( ) ( )( ) 






 ++−++= vkvkkvrty
h

thfrtytk nn 27/82 210:,
3

2
:, 3214

 

( )( ) ( ) ( )
( ) ( )( )
( ) ( )
( ) 




































+−

+++−

−+−−

+++= v

kv

kvk

kvv

rty
h

thfrtytk nn 392/

582576.4213

582576.4748582576.478

582576.48175677

:,
14

582576.47:,

4

32

1

5

 

( )( ) ( ) ( )
( ) ( )( )
( ) ( )
( ) 




































+−

+++−

−+−−

+++= v

kv

kvk

kvv

rty
h

thfrtytk nn 392/

582576.4213

582576.4748582576.478

582576.48175677

:,
14

582576.47:,

4

32

1

5

 

( )( ) ( ) ( )
( ) ( )( )
( ) ( )

( )( ) ( )( ) 



































−+−+

+−−

−−−−

+−+= v

kvkv

kvk

kvv

rty
h

thfrtytk nn 1960/

582576.46392582576.4121213

582576.4320582576.4740

582576.4859562875

:,
14

582576.47:,

54

32

1

6

( )( ) ( ) ( )
( ) ( )( )
( ) ( )

( )( ) ( )( ) 



































−+−+

+−−

−−−−

+−+= v

kvkv

kvk

kvv

rty
h

thfrtytk nn 1960/

582576.46392582576.4121213

582576.4320582576.4740

582576.4859562875

:,
14

582576.47:,

54

32

1

6

( )( ) ( )
( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) 




































++

−−++

+−+−

++= v

kv

kvkv

kvkkvv

rtyhthfrtytk nn 180/

582576.4770

582576.494914582576.43263

582576.47540120582576.4783015

:,:,

6

54

321

7

 

( )( ) ( )
( ) ( )( ) ( )( )

( )( ) ( )( )
( )( ) 




































++

−−++

+−+−−

++= v

kv

kvkv

kvkkvv

rtyhthfrtytk nn 180/

582576.4770

582576.494914582576.43263

582576.47540120582576.4783015

:,:,

6

54

321

7

 

                           (4.1) 
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )rtytkrtytkrtytkrtytkrtytkrtytF :,79:,649:,549:,364:,19:, ++++=  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )rtytkrtytkrtytkrtytkrtytkrtytG :,
7

9:,
6

49:,
5

49:,
3

64:,
1

9:, ++++=   

The exact and approximate solution at tn, 0 ≤ n ≤N are denoted by  

[Y(t n)]r = ( ) ( )[ ]rtYrtY nn :,:  and [y(tn)]r = ( ) ( )[ ]rtyrty nn :,:  respectively. 

The solution calculated by grid points at a = t0≤ t1≤ t2≤ . . . ≤tN = b and  

h = 
N

ab−  = tn+1 – tn.  Therefore we have 

( ) ( ) ( )[ ]rtYtFrtYrtY nnnn :,
180

1
::1 +=+

 

( ) ( ) ( )[ ]rtYtGrtYrtY nnnn :,
180

1
::1 +=+

 

( ) ( ) ( )[ ]rtytFrtyrty nnnn :,
180

1
::1 +=+
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( ) ( ) ( )[ ]rtytGrtyrty nnnn :,
180

1
::1 +=+

                                  (4.2) 

Here, we show the convergence of these approximations as 
 ( ) ( )rtYrty

h
::lim

0
=

→
and ( ) ( )rtYrty

h
::lim

0
=

→
 

Lemma 3.1.1. Let a sequence of numbers { }N
nW 0=

 satisfy 
1+nW ≤ A

nW  + B, 0 ≤ n ≤N – 1 

for some given positive constants A and B thennW ≤An
0W +B

1

1

−
−

A

An

, 0 ≤ n ≤ N–1 

Proof: See [14] 

Lemma 3.1.2. Let a sequence of numbers { }N
nW 0=

 and { }N
nV 0= satisfies the conditions 

1+nW ≤
nW  + A max{ } BVW nn +, , 

1+nV ≤
nV  + A max{ } BVW nn +,  for some given positive 

constants A &B and denote Un = |Wn| + |Vn|, 0 ≤ n ≤N, then  

Un≤ (1 + 2A)nU0 + 2B( )
( ) 121

121

−+
−+

A

A n

, 0 ≤ n ≤N 

Proof: See [14]. 
Theorem 3.1.1. Let F(t, u, v) and G(t, u, v) belong to C4(K) and let the partial derivatives 
of F and G be bounded over K.  Then, for arbitrary fixed r, 0 ≤ r ≤ 1, the approximately 

solutions (4.2) converge to the exact solutions of ( )rtY n :  and ( )rtY n :  uniformly in it. 
Proof: See [14]. 

3.2. Numerical example 
Consider the fuzzy initial value problem, 

y1(t) = y(t), t ∈ [0, 1] with y(0)= (0.75 + 0.25r, 1.2-0.2r) where 0 ≤ r ≤ 1 

Solution: The exact solution is given by ( ) ( ) tertyrty :: =  and ( ) ( ) tertyrty :: =  then  

at t = 1,y(1 : r) = [(0.75+0.25r)e,(1.2-0.2r)e], 0 ≤ r ≤ 1. The exact and the approximate 
solutions are obtained by Euler’s method, fourth order Runge-Kutta method and sixth 
order Runge-Kutta method with h = 0.1 is given in the table 3.2.1 

 

r  Exact Solution 6th order Runge-
Kutta Method  

4th order Runge-
Kutta Method  Euler’s Method 

0.0 
2.0387113

713 
3.26193819

42 
2.03871130

94 
3.26193833

35 
2.02258777

62 
3.23614120

48 
2.139837

2650 
3.423740

6254 

0.1 
2.1066684

171 
3.20757255

76 
2.10666847

23 
3.20757198

33 
2.09000754

36 
3.18220496

18 
2.211165

4282 
3.366677

5227 

0.2 
2.1746254

628 
3.15320692

10 
2.17462539

67 
3.15320730

21 
2.15742707

25 
3.12826919

56 
2.282493

5913 
3.309615

3736 

0.3 
2.2425825

085 
3.09884128

44 
2.24258255

96 
3.09884142

88 
2.22484660

15 
3.07433366

78 
2.353821

0392 
3.252552

7477 

0.4 
2.3105395

542 
3.04447564

79 
2.31053948

40 
3.04447555

54 
2.29226660

73 
3.02039790

15 
2.425149

2023 
3.195490

8371 

0.5 
2.3784965

999 
2.99011001

13 
2.37849640

85 
2.99011015

89 
2.35968637

47 
2.96646213

53 
2.496477

6039 
3.138428

6880 

0.6 
2.4464536

456 
2.93574437

47 
2.44645404

82 
2.93574452

40 
2.42710518

84 
2.91252684

59 
2.567804

8134 
3.081366

0622 

0.7 
2.5144106

913 
2.88137873

82 
2.51441073

42 
2.88137888

91 
2.49452495

57 
2.85859084

13 
2.639132

9765 
3.024303

4363 
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0.8 
2.5823677

370 
2.82701310

16 
2.58236789

70 
2.82701277

73 
2.56194472

31 
2.80465555

19 
2.710461

3781 
2.967241

2872 

0.9 
2.6503247

827 
2.77264746

50 
2.65032505

99 
2.77264761

92 
2.62936425

21 
2.75071930

89 
2.781788

8260 
2.910179

1382 

1.0 
2.7182818

285 
2.71828182

85 
2.71828174

59 
2.71828174

59 
2.69678401

95 
2.69678401

95 
2.853116

9891 
2.853116

9891 

Table 3.2.1: Comparison of 6th order Runge-Kutta method with other methods 
 

r  6th order Runge-Kutta 
method  

4th order Runge-Kutta 
method Euler’s method 

0.0 0.0000000619 0.0000001393 0.0161235951 0.0257969894 0.1011258937 0.1618024312 

0.1 0.0000000552 0.0000005743 0.0166608735 0.0253675958 0.1044970111 0.1591049651 

0.2 0.0000000661 0.0000003811 0.0171983903 0.0249377254 0.1078681285 0.1564084526 

0.3 0.0000000511 0.0000001444 0.0177359070 0.0245076166 0.1112385307 0.1537114633 

0.4 0.0000000702 0.0000000925 0.0182729469 0.0240777464 0.1146096481 0.1510151892 

0.5 0.0000001914 0.0000001476 0.0188102252 0.0236478760 0.1179810040 0.1483186767 

0.6 0.0000004026 0.0000001493 0.0193484572 0.0232175288 0.1213511678 0.1456216875 

0.7 0.0000000429 0.0000001509 0.0198857356 0.0227878969 0.1247222852 0.1429246981 

0.8 0.0000001600 0.0000003243 0.0204230139 0.0223575497 0.1280936411 0.1402281856 

0.9 0.0000002772 0.0000001542 0.0209605306 0.0219281561 0.1314640433 0.1375316732 

1.0 0.0000000826 0.0000000826 0.0214978090 0.0214978090 0.1348351606 0.1348351606 

Table 3.1.2: Error analysis 
 

 
                              
   - Runge-Kutta 6th order method 
 *   - Runge-Kutta 4th order method 
 +  - Euler’s method 
   - Exact Solution 

Figure 3.1.1: Numerical solutions of fuzzy differential equation 
 

4. Conclusion 
In this paper, we have suggested that the sixth order Runge-Kutta method gives a better 
numerical solution for fuzzy differential equation.  With higher order of convergence, the 
order of convergence of Euler’s method is O(h), the order of convergence of fourth order 
Runge-Kutta method is O(h2) [15] whereas order of convergence of sixth order Runge-
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Kutta method proposed by us is O(h3). We have proved that the sixth order Runge-Kutta 
method proposed by us gives a better solution than Euler’s method and fourth order 
Runge-Kutta method. 
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