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Abstract. In this paper, the authors investigate generalized Ulam-Hyers stability of a n−
dimensional cubic functional equation 
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1. Introduction 
The research of stability problems for functional equations is linked to the renowned 
Ulam problem [34] (in 1940), concerning the stability of group homomorphisms, which 
was first elucidated by Hyers [10], in 1941. This stability problem was more widespread 
by quite a lot of creators [2,9,25,27,28]. Other pertinent research works related to various 
functional equations using direct and fixed point methods were discussed in (see[1, 3, 5, 
6, 11, 14, 15, 21, 22, 27]).  
Recently, Murthy et al., [23] introduced and investigate the general solution and 
generalized Ulam-Hyers stability of a new form of n−dimensional cubic functional 
equation 
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with 3n≥ , in Felbins type spaces using direct and fixed point methods.  
 In this paper, the authors investigate the generalized Ulam-Hyers stability of the above 
n−dimensional cubic functional equation (1.1) in Intuitionistic fuzzy normed spaces 
using direct and fixed point methods.  

 In Section 2, we present the solution of the functional equation (1.1). The 
generalized Ulam-Hyers stability using Banach space in given is Section 3. In Section 4, 
the basic notations and preliminaries about Intuitionistic Fuzzy Normed Spaces is 
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present.  Also the stability of (1.1) in Intuitionistic Fuzzy Normed Spaces using direct and 
fixed point methods are discussed in Section 5 and 6 respectively. 
 
2. General solution of the functional equation (1.1) 
In this section, the authors discuss the general solution of the functional equation (1.1) by 
considering X  and Y  are real vector spaces.  
 
Theorem 2.1. [23] If :f X Y→  satisfies the functional equation (1.1) for all 

1 2 3, , , , nx x x x X∈K  and 3n≥  then there exists a function 3:B X Y→  such that 

( ) = ( , , )f x B x x x  for all x X∈  where B  is symmetric for each fixed one variable and 
additive for each fixed two variables. 
Hereafter, throughout this paper, we define a mapping :H X Y→  by   
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for all 1 2 3, , , , nx x x x X∈K . 

 
3. Stability results in Banach space 
In this section, the generalized Ulam - Hyers stability of a n-dimensional cubic functional 
equation (1.1) is provided. Throughout this section, assume X and Y  to be a normed 
space and a Banach space, respectively. 

The proof of the following theorem and corollary is similar lines to that of 
Theorem 4.1 and Corollary 4.2 of [23]. Hence the details of the proofs are omitted. 
 
Theorem 3.1. Let 1= ±j . Let :h X Y→  be a mapping for which there exist a function 

: [0, )nXξ → ∞  with the conditions 
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 for all 1 2 3, , , , nx x x x X∈L . Then there exists a unique cubic mapping :C X Y→  

satisfying the functional equation (1.1) and  
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for all Xx∈ . The mapping ( )C x  is defined by 
3

(2 )
( ) = lim

2

kj

kj
k

f x
C x

→∞
 (3.4) for all Xx∈ .  

Corollary 3.1. Let :h X Y→  be a function and there exits real numbers λ  and s such 
that  
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for all 1 2 3, , , , nx x x x X∈L . Then there exists a unique cubic function :C X Y→  such that
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3.1. Stability result: intuitionistic fuzzy normed space 
In this section, we give some basic definition and notations about intuitionistic fuzzy 
metric spaces introduced by J.H. Park [24] and R. Saadati and J.H. Park [30,31]. 
 
Definition 3.1.1. Let µ and ν  be membership and nonmembership degree of an 

intuitionistic fuzzy set from ( )0,X × +∞  to [0,1] such that ( ) ( ) 1x xt tµ ν+ ≤  for all x X∈

and all 0t > . The triple ( ),, ,X P Mµ ν
is said to be an intuitionistic fuzzy normed space 

(briefly IFN-space) if X  is a vector space, M is a continuous t −representable and 
,µP ν is 

a mapping  ( )0, *X L× +∞ → satisfying the following conditions: for all ,x y X∈ and  

, 0t s > , 

( )
, * , *

, , , * , ,

( 1) ( ,0)  0 ; ( 2) ( , )  1  if and only if 0;

( 3) ( , )  ,  for all 0;( 4) ( , )  M ( , ), ( , ) .
| |
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In this case, 
,µP ν

is called an intuitionistic fuzzy norm. Here ( ). ( , ) ( ), ( ) .x xP x t t tµ ν µ ν=  

 
Example 3.1.1. Let( ), .X  be a normed space. Let 

2 2( , ) ( , min ( ,1))T a b a b a b= + for all 

1 2 1 2( , ), ( , ) *a a a b b b L= = ∈ and ,µ ν be membership and non-membership degree of an 

intuitionistic fuzzy set defined by 

( ).

|| ||
( , ) ( ), ( ) , , .

|| || || ||x x

t x
P x t t t t R

t x t xµ ν µ ν + = = ∀ ∈ + + 
Then 

,( , , )X P Tµ ν  is an IFN-space. 

 
Definition 3.1.2. A sequence { }nx in an IFN-space 

,( , , )X P Tµ ν
is called a Cauchy sequence 

if, for any 0ε > and 0t > , there exists 
0n N∈ such that ( ). *( , ) ( ), ,n m L sP x x t Nµ ν ε ε− >

0, ,n m n∀ ≥  where  
sN is the standard negator. 

 



Intuitionistic Fuzzy Stability of n-Dimensional Cubic Functional Equation ... 

4 
 

Definition 3.1.3. The sequence { }nx is said to be convergent to a point x X∈  
.

. *(denoted by  ) if  ( , ) 1  as for every  0.P

n n Lx x P x x t n tµ ν
µ ν→ − → → ∞ >  

 
Definition 3.1.4. An IFN-space 

,( , , )X P Tµ ν is said to be complete if every Cauchy 

sequence in X  is convergent to a point x X∈ .For further details about IFN space one 
can see ([4, 7, 8, 12, 13, 16–20, 24, 29–33, 35–37]). Throughout this section, let us 
consider 

,,( , , )X Z P Mµ ν  and 
,( , , )Y P Mµ ν′  are linear space, Intuitionistic fuzzy normed space 

and Complete Intuitionistic fuzzy normed space. 
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exists for all Xx∈  and the mapping :C X Y→  is a unique cubic mapping satisfying 
(1.1) and  
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Proof: First assume = 1κ . Replacing ( )1 2 3, , , , nx x x xL  by ( ),0,0, ,0x L  in (4.3), we arrive  
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for all Xx∈  and all 0>r .  Using ( 3)IFN  in the above equation, we get   
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for all Xx∈  and all 0>r . Using (3.1.1), ( 3)IFN  in (3.1.7), we arrive  
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for all Xx∈  and all 0>r . It is easy to verify from (3.1.8), that  
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 for all Xx∈  and all 0>r . Letting k → ∞  in (3.1.16), we arrive  
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For = 1κ − , we can prove the result by a similar method. This completes the proof of the 
theorem.  
From Theorem 3.1.1, we obtain the following corollary concerning the stability for the 
functional equation (1.1). 

 
Corollary 3.1.1. Suppose that a function :h X Y→  satisfies the inequality  
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3.2. Stability results: fixed point method 
In this section, the authors present the generalized Ulam - Hyers stability of the 
functional equation (1.1) in  IFN - space using fixed point method.  
Now we will recall the fundamental result in fixed point theory.  
 
Theorem 3.2.1. [21] (The alternative of fixed point) Suppose that for a complete 
generalized metric space ),( dX  and a strictly contractive mapping XXT →:  with 
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2 = 0,
= 1

= 1
2

i

if i
a

if i






and Α  is the set such that { }= | : , (0) = 0 .g g X Y gΑ →  
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Theorem 3.2.2. Let :h X Y→  be a mapping for which there exist a function : nX Zξ →   

with the condition ( )( ) *

3
, 1 1, , , = 1 , , , , > 0lim

k k k
i i n i nLk

P a x a x a r x x X rµ ν ξ
→∞

′ ∀ ∈L L
           

(3.2.1) 

and satisfying the functional inequality  

( )( ) ( )( )*, 1 , 1 1, , , , , , , , , , > 0n n nL
P H x x r P x x r x x X rµ ν µ ν ξ′≥ ∀ ∈L L L

                     
(3.2.2) 

If there exists )(= iLL  such that the function ( ) = ,0, ,0 ,
2

x
x xψ ξ  →  

 
L has the property  

( ), ,3

( )
, = ( ), , , > 0.i

i

a x
P L r P x r x X r

aµ ν µ ν
ψ ψ

 ′ ′ ∀ ∈ 
 

                                                      (3.2.3) 

Then there exists unique cubic function :C X Y→  satisfying the functional equation (1.1) 

and ( ) *

1

, ,( ) ( ), ( ), , , > 0.
1

i

L

L
P h x C x r P x r x X r

Lµ ν µ ν ψ
−  ′− ≥ ∀ ∈  −  

l

                               

(3.2.4) 

Proof: Let d  be a general metric on ,Α  such that  

( ) ( ){ }*, ,( , ) = (0, ) | ( ) ( ), ( ), , , 0 .
L

d g h inf K P g x h x r P x K r x X rµ ν µ ν ψ′∈ ∞ − ≥ ∈ >  

It is easy to see that ( , )dΑ  is complete. Define :ϒ Α → Α  by 
3

1
( ) = ( ),i

i

g x g a x
a

ϒ  for all 

.Xx∈  By [21], we see that ϒ  is strictly contractive mapping on Α  with Lipschitz 
constant .L  It follows from (3.1.6) that  

( )( )*, ,3

(2 )
( ), ,0, ,0 , ,    , > 0.

2 L

h x r
P h x P x r x X rµ ν µ ν ξ  ′− ≥ ∀ ∈ 

 
L

l                           
(3.2.5) 

 Replacing  r  by rl  in (3.2.5), we arrive  

( )( )*, ,3

(2 )
( ), ,0, ,0 , ,    , > 0.

2 L

h x
P h x r P x r x X rµ ν µ ν ξ  ′− ≥ ∀ ∈ 

 
L l

                        
(3.2.6) 

 With the help of (3.2.3), when =1i , it follows from (3.2.6), that  

( )( )*, ,3

(2 )
( ), , ,    , > 0.

2 L

h x
P h x r P x r x X rµ ν µ ν ψ  ′− ≥ ∀ ∈ 

 
l

( ) 0 1, 1 = = .id h h L L−⇒ ϒ ≤                                                                       (3.2.7) 

 Replacing x  by 
2

x  in (3.2.5), we obtain 

*

3
, , 3

( ) 2 , ,0, ,0 , ,    , > 0.
2 2 2L

x x r
P h x h r P x X rµ ν µ ν ξ      ′− ≥ ∀ ∈      

      

l
L

                  

(3.2.8) 

 With the help of (3.2.3), when  = 0i , it follows from (3.2.8), that  

( )*

3
, ,( ) 2 , ( ), ,        , > 0,

2 L

x
P h x h r P x L r x X rµ ν µ ν ψ   ′− ≥ ∀ ∈  

  
l

1 1( , ) = .id h h L L L−⇒ ϒ ≤ =                                                                    (3.2.9) 

 Then from (3.2.7) and (3.2.9), we can conclude( ) 1, < .id h h L−ϒ ≤ ∞  

 Now from the fixed point alternative in both cases, it follows that there exists a fixed 
point C  of ϒ  in Α  such that  
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( )
,

3
( ) , , .

k
iP

k
i

h a x
C x k x X

a
µ ν→ → ∞ ∀ ∈

                                                               

(3.2.10) 

Replacing ( )1, , nx xL  by ( )1, ,k k
i i na x a xL  in (3.2.2), we arrive  

( ) ( )( )*
3

, 1 , 1 13

1
, , , , , , ,        , , , > 0.k k k k k

i i n i i n i nk L
i

P H a x a x r P a x a x a r x x X r
aµ ν µ ν ξ
  ′≥ ∀ ∈ 
 

L L L  

By proceeding the same procedure in the Theorem 3.1.1, we can prove the function, 
:C X Y→  is cubic and it satisfies the functional equation (1.1). Since C  is unique fixed 

point of ϒ  in the set { }= | ( , ) < ,h d h CΒ ∈Α ∞ such that  

( ) ( )*, ,( ) ( ), ( ), ,      , > 0.
L

P h x C x r P x Kr x X rµ ν µ ν ψ′− ≥ ∀ ∈
                                            

(3.2.11) 

 Again using the fixed point alternative, we obtain  

( ) ( ) ( )
11

, , , .
1 1

iL
d h C d h h d h C

L L

−

≤ ϒ ⇒ ≤
− −  

Hence, we have ( ) *

1

, ,( ) ( ), ( ), , , > 0.
1

i

L

L
P h x C x r P x r x X r

Lµ ν µ ν ψ
−  ′− ≥ ∀ ∈  −  

l

         

(3.2.12) 

This completes the proof of the theorem. From Theorem 3.2.2, we obtain the following 
corollary concerning the stability for the functional equation (1.1).  
 
Corollary 3.2.1. Suppose that a function :h X Y→  satisfies the inequality

( )( )

( )

*

,

,
1, 1

,
11

, ,

3;
, ,

, ,

3
, , ;

n
s
i

in L

n n
s ns
i i

ii

P r

s
P x r

P H x x r

P x x r s
n

µ ν

µ ν
µ ν

µ ν

ε

ε

ε

=

==

′
 ≠  ′  ≥   


   ′ + ≠     

∑

∑∏

L

                                  

(3.2.13) 

for all 1, nx x X∈L  and all > 0r , where s,ε  are constants with 0>ε . Then there exists a 
unique cubic mapping :C X Y→  such that  

( ) *

,

, ,

,

8
, ,

| 7 |

2
( ) ( ), ,

| 8 2 |

2
,

| 8 2 |

s
s

sL

ns
ns
i ns

P r

P h x C x r P x r

P x r

µ ν

µ ν µ ν

µ ν

ε

ε

ε

   ′   
   


   ′− ≥    −  

    ′    −  

l

l

l

                                                        

(3.2.14) 

for all Xx∈  and all 0>r .  
Proof: The proof follows by replacing  

3 3

3 3

3 3

2     0    2    1,

2   3,   0    2   3,   1,

3 3
2  ,   0    2   ,   1,

s s

ns ns

L for i and L for i

L for s i and L for s i

L for s i and L for s i
n n

−

− −

− −

= = = =
= > = = < =

= > = = < =
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in  Theorem 3.2.2, we desired our results. 
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