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1. Introduction 
It is well known that, the Bidirectional Associative Memory (BAM) is a type of recurrent 
neural networks which was introduced by Kosko [1] in 1988, who generalized the single 
auto- associative Hebbian correlator to a two-layer pattern-matched heteroassociative 
circuit. Recently, BAM neural networks have received remarkable consideration because 
of their potential applications in different fields such as automatic control engineering, 
image processing, parallel computation, signal processing, optimization and associative 
memories, and pattern recognition. Since these applications rely on the dynamical 
behaviors of the equilibrium point of the BAM neural networks, it is very important to 
investigate the stability of BAM neural networks and a large number of results have been 
reported, see [2, 3, 5].Due to the finite switching speed of neuron amplifiers and the finite 
speed of signal propagation, time delays are unavoidable in very large-scale integration 
implementation of neural systems. The existence of time delay may lead to some more 
complicated dynamic behaviors such as oscillation, divergence, chaos, instability or other 
poor performance of the neural networks. Therefore, the equilibrium and stability 
analysis of neural networks with time delays have received much interest in recent years; 
see [2-7, 10]. In many practical problems, the leakage delay exists in the negative 
feedback term of the system, such term is called leakage term. In fact, the leakage term 
has also a great impact on the dynamical behavior of neural networks. The authors in [6] 
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pointed out the time delay in stabilizing negative feedback term has a tendency to 
destabilize the system. In recent years, the stability  analysis  with  time  delay  in  the  
leakage  term  has  been  studied in [2, 3, 4, 7]. Based on the above discussions, the 
stability problem for BAM neural networks with time-varying delays and leakage delays 
have been investigated in this paper. By constructing a Lyapunov-Krasovskii functional 
and employing a delay decomposition approach, a sufficient stability criterion is derived 
for the addressed system in terms of linear matrix inequalities (LMIs), which can be 
easily calculated by MATLAB LMI solver. Finally, a numerical example is provided to 
show the effectiveness of the proposed method.  
Notations: Throughout this paper, ℝ� and ℝ�×� denotes the �-dimensional Euclidean 
space and the set of all � × � real matrices respectively. The superscript � denotes the 
transpose of the matrix �. The notation � ≥ 	 (respectively, � > 	), where � and 	 are 
symmetric matrices, means that � − 	 is positive semi-definite (respectively, positive 
definite). The notation ∗ always denotes the symmetric block in one symmetric matrix. � 
is the � × � identity matrix. ‖. ‖ is the Euclidean norm in ℝ�. 
 
2. Problem description and preliminaries 
Consider the following delayed BAM NNs with time–varying delays and leakage delays 
described as �� ��� = −���� − �� + ���������� + � �� !��� − "����# + ,  ����� = −%��� − &� +  '�()������ + ' () !��� − *����# + +,           (1) 

where ���� = ,� ���, … , �����./ ∈ ℝ� and ���� = ,� ���, … , �1���./ ∈ ℝ1 are neuron 
state vectors, � = *23(43 , 35 … , 3�6 > 0, % = *23(48 , 85 … , 816 > 0 are diagonal 
matrices with positive entries 39 > 0 and 89 > 0, �� and '� are the connection weight 
matrices, �  and '  are the delayed connection weight matrices, �������� =:�� �� ����, … , ��1��1����;/, ()������ = :() �� ����, … , ()��������;/

 denote neuron 
activation functions,  = , , 5, … , �./ and + = ,+ , +5, … , +1./ are external inputs, the 
leakage delays � ≥ 0, & ≥ 0 are constants, the time-varying delays "��� and *��� satisfy 0 ≤ "��� ≤ " and 0 ≤ *��� ≤ *, where " and * are positive constants. The initial 
conditions of the system (1) are assumed to be ��=� = >�=�, = ∈ ,−", 0., ��=� = ?�=�, = ∈ ,−*, 0..  
 
Assumptions: 

The neuron activation functions ��@�. � and ()9�. � satisfy A@B ≤ C�D�E�BC�D�F�EBF ≤ A@G, H9B ≤I)J�E�BI)J�F�EBF ≤ H9G, for any �, � ∈ ℝ, � ≠ �, where A@B, A@G, H9B and H9G are positive real 

constants.  
Assume that the neural network (1) has only one equilibrium point �∗ =,� ∗ , �5∗ , … , ��∗ ., �∗ = ,� ∗, �5∗, … , �1∗ .. Then, we will shift the equilibrium points �∗ and �∗ 

to the origin. By using the transformation L��� = ���� − �∗ and M��� = ���� − �∗, the 
system (1) into the following form: L���� = −�L�� − �� +  ����M���� + � � !M�� − "����#,  M���� = −%M�� − &� + '�(�L���� + ' ( !L�� − *����#,           (2) 
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Where��M���� = :� �M ����, … , �1�M1����;/, (�L���� = :( �L ����, … , (��L�����;/ , �@ !M@���# = ��@�M@��� + �∗� − ��@��∗�, (9�L9���� = ()9�L9��� + �∗� − ()9��∗�. According 

to the Assumption 2.1, one can obtain that A@B ≤ CD�E�E ≤ A@G, H9B ≤ IJ�E�E ≤ H9G,         (3)                                                       �@�0� = (9�0� = 0, 2 = 1,2, … , �, P = 1,2, … , Q. In order to obtain the main result, we 
need the following lemmas. 
 
Lemma 2.1. [8] For any constant matrix R ∈ ℝ�×�, R = R/ > 0, scalar S > 0, vector 
function T: ,0, S. ⟶ ℝ� such that the integrations are well defined, the following 

inequality holds: �W T�=�*=X� �/R�W T�=�*=X� � ≤ S W T/�=�RT�=�*=X� . 
 
Lemma 2.2. [9] Let R, Y, Z be the given matrices such that Z > 0, then [ Y R/R −Z\ < 0 ⟺ Y + R/ZB R < 0. 
 
Lemma 2.4. [10] Let' and _ be real constant matrices of appropriate dimensions, matrix `��� satisfies ̀ /���`��� ≤ . 
Then (i) for any scalar a > 0, '`���_ + _/`/���'/ ≤ aB ''/ + a__/, (ii) For any Y > 0,23/b ≤ 3/YB 3 + b/Yb. 
 
3. Main results 
Using a simple transformation, the model (2) has an equivalent form as follows  ccd eL��� − � W L�=�*=ddBf g = −�L��� + ����M���� + � � !M�� − "����#,  ccd eM��� − % W M�=�*=ddBh g = −%M��� + '�(�L���� + ' ( !L�� − *����#.         (4) 

For representation convenience, we use the following notations: i = *23(4A BA G, … , A�BA�G6, i5 = *23( jklmGkln5 , … , komGkon5 p, q = *23(4H BH G, … , H�BH�G6, q5 = *23( jrlmGrln5 , … , romGron5 p. 
Now, a delay-dependent stability analysis of delayed BAM NNs (4) is given in the 
following theorem. 
 
Theorem 3.1. For given scalars " > 0, * > 0, � > 0, & > 0,0 < s < 1 and 0 < t < 1, 
the delayed BAM neural networks (4) are globally asymptotically stable, if there exist 
symmetric positive definite matrices Y > 0, Y5 > 0, Zu > 0 �3 = 1,2, … ,8�, wx >0 �b = 1,2, … ,6�, Rr > 0, _r > 0, zr > 0, �H = 1,2�, positive diagonal matrices {k�A = 1,2,3,4� and real matrices ~ , ~5 of appropriate dimensions such that the 
following LMIs hold: 

Θ = �Θ9,@ Γ Γ5 Γ�∗ −R 0 0∗∗ ∗∗ −_5∗ 0−z 
� < 0, Θ5 = �Θ9,@ Γ Γ5 Γ�∗ −R 0 0∗∗ ∗∗ −_5∗ 0−z 

� < 0, 
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Ψ = �Ψ9,@ Σ Σ5 Σ�∗ −R5 0 0∗∗ ∗∗ −_ ∗ 0−z5
� < 0, Ψ5 = �Ψ9,@ Σ Σ5 Σ�∗ −R5 0 0∗∗ ∗∗ −_ ∗ 0−z5

� < 0, 
where Θ�×� with entries : Θ , = −2Y � + Z + Z� + Z� + �w� − 2i { , Θ ,� = 2i5{ ,  Θ ,� = �/Y �, Θ5,5 = −2i {5, Θ5,� = 2i5{5, Θ�,� = −Z − Z�, Θ�,� = −Z�,  Θ�,� = −�/~ / , Θ�,� = −Z� + Z�, Θ�,� = s*w + �* − s*�w5 − 2~ ,  Θ�,� = _ − 2{ + z5, Θ�,� = _ − 2{5 + z5, Θ�,� = �/R5� −  f w�,  Γ = ,Y ��� + � � 0 0 0 0 0 0 0 0.,  Γ5 = ,0 0 0 0 0 0 '�/Y5 ' /Y5 0.,  Γ� = ,0 0 0 0 0 ~ ��� + � � 0 0 0..  
 
LMI 1 entries:  Θ , = B �c w , Θ ,5 =  �c w , Θ5,5 = − 5�c w , Θ5,� =  �c w , Θ�,� = −  cB�c w5,  Θ�,� =  cB�c w5, Θ�,� = −  �c w −  cB�c w5.  
 
LMI 2 entries:  Θ , = B �c w , Θ ,� =  �c w , Θ5,5 = − 5cB�c w5, Θ5,� =  cB�c w5,  Θ5,� =  cB�c w5, Θ�,� = −  cB�c w5, Θ�,� = −  �c w −  cB�c w5.  Ψ�×� with entries : Ψ , = −2Y5% + Z5 + Z� + Z� + &w� − 2q {�, Ψ ,� = 2q {�,  Ψ ,� = %/Y5%, Ψ5,5 = −2q {�, Ψ5,� = 2q5{�, Ψ�,� = −Z5 − Z�, Ψ�,� = −Z�,  Ψ�,� = −%/~5/ , Ψ�,� = −Z� + Z�, Ψ�,� = t"w� + �" − t"�w� − 2~5,  Ψ�,� = R − 2{� + z , Ψ�,� = R − 2{� + z , Ψ�,� = %/_5% −  h w�,  Σ = ,0 0 0 0 0 0 ��/Y � /Y 0.,  Σ5 = ,Y5�'� + ' � 0 0 0 0 0 0 0 0.,  Σ� = ,0 0 0 0 0 ~5�'� + ' � 0 0 0..  
LMI 3 entries:  Ψ , = B �� w�, Ψ ,5 =  �� w�, Ψ5,5 = − 5�� w�, Ψ5,� =  �� w�, Ψ�,� = −  �B�� w�,  Ψ�,� =  �B�� w�, Ψ�,� = −  �� w� −  �B�� w�.  
LMI 4 entries:  Ψ , = B �� w�, Ψ ,� =  �� w�, Ψ5,5 = − 5�B�� w�, Ψ5,� =  �B�� w�, Ψ5,� =  �B�� w�,   Ψ�,� = −  �B�� w�, Ψ�,� = −  �� w� −  �B�� w�.  The remaining entries are zero. 

Proof. Choose the Lyapunov-Krasovskii functional as follows ���� = � ��� + �5��� + ����� + �����,                          (5) 

where � ��� = eL��� − � W L�=�*=ddBf g/ Y eL��� − � W L�=�*=ddBf g 
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  + eM��� − % W M�=�*=ddBh g/ Y5 eM��� − % W M�=�*=ddBh g,   �5��� = W L/�=�Z L�=�*=ddBc + W M/�=�Z5M�=�*=ddB� + W L/�=�Z�L�=�*=ddBf   

  + W M/�=�Z�M�=�*=ddBh ,        ����� = W L/�=�Z�L�=�*=ddB�c + W L/�=�Z�L�=�*=dB�cdBc + W M/�=�Z�M�=�*=ddB��   

 + W M/�=�Z�M�=�*=dB��dB� ,        ����� = W W L� /�=�w L��=�*=ddG��B�c *� + W W L� /�=�w5L��=�*=ddG�B�cBc *�  

 + W W M�/�=�w�M��=�*=ddG��B�� *� + W W M�/�=�w�M��=�*=ddG�B��B� *�,   
 W W L/�=�w�L�=�*=ddG��Bf *� + W W M/�=�w�M�=�*=ddG��Bh *�.  
Let ℒ be the infinitesimal operator of ���� and using Lemma 2.1, we have ℒ���� = ℒ� ��� + ℒ�5��� + ℒ����� + ℒ�����,                         (6)  
where ℒ� ��� = 2 eL��� − � W L�=�*=ddBf g/ Y e−�L��� + ����M���� + � � !M�� − "����#g  eM��� − % W M�=�*=ddBh g/ Y5 e−%M��� + '�(�L���� + ' ( !L�� − *����#g,          (7) ℒ�5��� = L/���,Z + Z�.L��� − L/�� − *�Z L/�� − *� − L/�� − ��Z�L/�� − ��  +M/���,Z5 + Z�.M��� − M/�� − "�Z5M/�� − "� − M/�� − &�Z�M/�� − &�,         (8) ℒ����� = L/���Z�L��� − L/�� − s*�Z�L�� − s*� + L/�� − s*�Z�L�� − s*�  −L/�� − *�Z�L�� − *� + M/���Z�M��� − M/�� − t"�Z�M�� − t"� 
 +M/�� − t"�Z�M�� − t"� − M/�� − "�Z�M�� − "�,          (9)  ℒ����� = s*L� /���w L���� − W L� /�=�w L��=�*=ddB�c + �* − s*�L� /���w5L� ���  
 − W L� /�=�w5L��=�*=dB�cdBc + t"M�/���w�M���� − W M�/�=�w�M��=�*=ddB��   

 + �" − t"�M�/���w�M���� − W M�/�=�w�M��=�*=dB��dB� + �L/���w�L���  

 −  f !W L�=�*=ddBf #/ w� !W L�=�*=ddBf # + &M/���w�M���  
 −  h !W M�=�*=ddBh # w� !W M�=�*=ddBh #.           (10) 

In addition, for any � × � diagonal matrices {k > 0 �A = 1,2,3,4�, the following 
inequalities hold: � L���(�L����� [ i { −i5{ −i5{ { \ � L���(�L����� ≤ 0,           (11)   

� L�� − *����( !L�� − *����#� [ i {5 −i5{5−i5{5 {5 \ � L�� − *����( !L�� − *����#� ≤ 0,         (12)  

� M�����M����� [ q {� −q5{�−q5{� {� \ � M�����M����� ≤ 0,           (13)  

� M�� − "����� !M�� − "����#� [ q {� −q5{�−q5{� {� \ � M�� − "����� !M�� − "����#� ≤ 0,         (14)  

Furthermore, the following equality holds for any real matrices ~  and ~5 with 
compatible dimensions 
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0 = 2L� /���~ j−�L�� − �� + ����M���� + � � !M�� − "����# − L����p,        (15)  0 = 2M�/���~5 j−%M�� − &� + '�(�L���� + ' ( !L�� − *����# − M����p.       (16)  

Case 1: If 0 ≤ *��� ≤ s*, we have − W L� /�=�w L��=�*=ddB�c − W L� /�=�w5L��=�*=dB�cdBc   

=  − W L� /�=�w L��=�*=ddBc�d� − W L� /�=�w L��=�*=dBc�d�dB�c − W L� /�=�w5L��=�*=dB�cdBc . 
Note that w > 0 and from Lemma 2.1, it follows − W L� /�=�w L��=�*=ddBc�d� ≤ B �c :L��� − L�� − *����;w :L��� − L�� − *����;,       (17)  − W L� /�=�w L��=�*=dBc�d�dB�c ≤ B �c :L�� − *���� − L�� − s*�;w :L�� − *���� −L�� − s*�;,               (18)  − W L� /�=�w5L��=�*=dB�cdBc ≤ B cB�c ,L�� − s*� − L�� − *�.w5,L�� − s*� − L�� − *�.. (19)  

Substituting (7) – (10), (15) – (19) into (6) and subtracting (11) – (14) from (6), we obtain ℒ���� ≤ � /���4Θ9,@ + Y ��� + � �R B ��� + � �/Y + �'�/ + ' /�Y5_5B Y5�'� + ' � 
   +~ ��� + � �z B ��� + � �/~ 6� ���. 
Then, by Lemma 2.4, we have   ℒ���� ≤ � /���Θ � ���,              (20) 
where� /��� = ,L/��� L/�� − *���� L/�� − *� L/�� − �� L/�� − s*� L� /��� 

   (/�L���� (/ !L�� − *����# !W L�=�*=ddBf #/., 
and Θ = Θ9,@ + Y ��� + � �R B ��� + � �/Y + �'�/ + ' /�Y5_5B Y5�'� + ' � 
  +~ ��� + � �z B ��� + � �/~ 6. 
Case 2: If s* ≤ *��� ≤ *, we have − W L� /�=�w L��=�*=ddB�c − W L� /�=�w5L��=�*=dB�cdBc   

=  − W L� /�=�w L��=�*=ddB�c − W L� /�=�w5L��=�*=dBc�d�dBc − W L� /�=�w5L� �=�*=dB�cdBc�d� . 
Note that w5 > 0 and from Lemma 2.1, it is similar as Case 1, we have ℒ���� ≤ � /���Θ5� ���.              (21) 
Case 3: If 0 ≤ "��� ≤ t", we have − W M�/�=�w�M��=�*=ddB�� − W M�/�=�w�M��=�*=dB��dB�   

=  − W M�/�=�w�M��=�*=ddB��d� − W M�/�=�w�M��=�*=dB��d�dB�� − W M�/�=�w�M��=�*=dB��dB� . 
Note that w� > 0 and from Lemma 2.1, it follows − W M�/�=�w�M��=�*=ddB��d� ≤ B �� :M��� − M�� − "����;w�:M��� − M�� − "����;,       (22)  − W M�/�=�w�M��=�*=dB��d�dB�� ≤ B �� :M�� − "���� − M�� − t"�;w�  

    :M�� − "���� − M�� − t"�;,         (23)  − W M�/�=�w�M��=�*=dB��dB� ≤ B �B�� ,M�� − t"� − M�� − "�.w�,M�� − t"� − M�� − "�..       (24)  

Substituting (7) – (10), (15), (16), (22) – (24) into (6) and subtracting (11) – (14) from 
(6), we obtain ℒ���� ≤ �5/���4Ψ9,@ + ��� + � �/Y R5B Y ��� + � � + Y5�'� + ' �_ B �'�/ + ' /�Y5 
   +~5�'� + ' �z5B �'� + ' �/~56�5���. 
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Then, by Lemma 2.4, we have  ℒ���� ≤ �5/���Ψ �5���,              (25) 
 
where �5/��� = ,M/��� M/�� − "���� M/�� − "� M/�� − &� M/�� − t"� M�/��� 

   �/�M���� �/ !M�� − "����# !W M�=�*=ddBh #/., 
and Ψ = Ψ9,@ + ��� + � �/Y R5B Y ��� + � � + Y5�'� + ' �_ B �'�/ + ' /�Y5 
  +~5�'� + ' �z5B �'� + ' �/~5. 
Case 4: If  t" ≤ "��� ≤ ", we have  − W M�/�=�w�M��=�*=ddB�� − W M�/�=�w�M��=�*=dB��dB�   

=  − W M�/�=�w�M��=�*=ddB�� − W M�/�=�w�M��=�*=dB��dB��d� − W M�/�=�w�M��=�*=dB��d�dB� . 
Note that w� > 0 and from Lemma 2.1, it is similar as Case 3, we have ℒ���� ≤ �5/���Ψ5�5���.              (26)  
Hence, from (20) and (21), we have ℒ���� ≤ −� /���4Θ9∗6� ���, ∀ 2 = 1,2,           (27) 
where Θ9∗ = −Θ9 > 0. 
Hence, from (25) and (26), we have ℒ���� ≤ −�5/���4Ψ9∗6�5���, ∀ 2 = 1,2,           (28) 
where Ψ9∗ = −Ψ9 > 0. 
Taking expectation on both sides of (27) and (28) and integrating from 0 to �, we get �,����. + � �,� /�=�Θ9∗� �=� + �5/�=�Ψ9∗�5�=�.*=d

� ≤ �,��0�. < ∞, � ≥ 0, ∀ 2 = 1,2. 
Applying Lemma 2.1, we have 

� ��� � L�=�*=d
dBf �5� = � ��� � L�=�*=d

dBf �/ �� � L�=�*=d
dBf ��

≤ �1u ��5�� ��� L�=�*=d
dBf �/ �� L�=�*=d

dBf ��  
≤  �1u ��5��19��Z�� � ��� L�=�*=d

dBf �/ �� L�=�*=d
dBf ��

≤ � �1u ��5��19��Z�� � ¡�� L/�=�Z�L�=�*=d
dBf �¢ ≤ � �1u ��5��19��Z�� �,����.

≤ � �1u ��5��19��Z�� �,��0�., � ≥ 0. 
Similarly,  � £¤% W M�=�*=ddBh ¤5¥ ≤ & ¦§¨©�ª«�¦§Jo�¬� �,��0�., � ≥ 0. Further 

� £¤L�=� − � W L�=�*=ddBf ¤5¥ = � £eL�=� − � W L�=�*=ddBf g/ eL�=� − � W L�=�*=ddBf g¥  ≤ �,®l�d�.¦§Jo� l̄� ≤ �,®�d�.¦§Jo� l̄� ≤ �,®���.¦§Jo� l̄�. Hence, it can be obtained that 

�4‖L���‖56 = � £¤L��� − � W L�=�*=ddBf + � W L�=�*=ddBf ¤5¥ ≤ 2� £¤� W L�=�*=ddBf ¤5¥  
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+2� £¤L��� − � W L�=�*=ddBf ¤5¥ ≤ � ¦§¨©�°«�¦§Jo�¬±� �,��0�. + 2 �,®���.¦§Jo� l̄� < ∞, � ≥ 0.  
Similarly, �4‖M���‖56 ≤ & ¦§¨©�ª«�¦§Jo�¬� �,��0�. + 2 �,®���.¦§Jo� «̄� < ∞, � ≥ 0. �4‖L���‖5 + ‖M���‖56 ≤  !� ¦§¨©�°«�¦§Jo�¬±� + & ¦§¨©�ª«�¦§Jo�¬� + 5²³´4¦§Jo� l̄�,¦§Jo� «̄�6# × :µ �‖>‖�∗5 + µ5�‖?‖c∗5 ; < ∞,  
where µ = �1u �Y ��1 + �5Q3¶9∈·39� + *�1u �Z � + ��1u �Z�� + s*�1u �Z�� 
  �* − s*��1u �Z�� + �s*�5�1u �w � + �* − s*�5�1u �w5�, µ5 = �1u �Y5��1 + &5Q3¶9∈·89� + "�1u �Z5� + &�1u �Z�� + t"�1u �Z�� 
  �" − t"��1u �Z�� + �t"�5�1u �w�� + �" − t"�5�1u �w��. 
This implies that the trivial solution of (4) is locally stable. Thus, considering the 
continuity of activation function ��. �, (�. �, the solutions L��� = L��, 0, >� and M��� =M��, 0, ?� of system (4) is bounded on ,0, ∞�. Considering (4), we know that �‖L���‖5 
and �‖M���‖5 are bounded on ,0, ∞�, which leads to the uniform continuity of the 
solution L��� and M��� on ,0, ∞�. By Barbalat’s lemma [6], it holds that �‖L���‖5 ⟶ 0 
and �‖M���‖5 ⟶ 0 as � ⟶ ∞. Hence the system (4) is globally asymptotically stable in 
the mean square. 
 
4. Numerical example 
In this section, a numerical example is provided to illustrate the effectiveness of the 
proposed method. 
Consider the delayed BAM neural networks (4) with the following parameters � = e3 00 4g , �� = e 0.4 0.3−0.4 0.5g , � = e−0.4 −0.3−0.4 −0.2g , % = e4 00 3g , '� = e−0.5 0.4−0.6 −0.5g,   ' = e−0.6 −0.50.4 −0.6g , i = 0, i5 = 0.5,   q = 0, q5 = 0.5. 
The activation functions are described by (�L���� =  5 ,|L��� + 1| − |L��� − 1|. and  ��M���� =  5 ,|M��� + 1| − |M��� − 1|.. The time-varying delays are taken as *��� = 0.25 + 0.25sin ��� and "��� = 0.25 + 0.25sin ���. The leakage delay and the 
time-varying delays satisfy � = 0.1, & = 0.1, * = 0.5, " = 0.5, t = 0.1 and s = 0.1. 
By using the Matlab LMI solver, in order to see that the LMIs given in Theorem 3.1 is 
feasible. Therefore, it follows from Theorem 3.1 that the delayed BAM neural network 
(4) is globally asymptotically stable in the mean square. 
 
5. Conclusion 
In this paper, the stability problem of BAM neural networks with time-varying delays and 
leakage delays has been studied. By constructing a suitable Lyapunov-Krasovskii 
functional and employing a delay decomposition approach, a sufficient stability criterion 
has been obtained for the given addressed system. These conditions are expressed in 
terms of LMIs, which can be easily calculated by MATLAB LMI solver. Finally, a 
numerical example has been provided to show the effectiveness of the proposed method.  
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