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Abstract. The aim of this paper is to study the global sigbiind associated delay
differential equation of the nonlinear transpodsa&tions

ov ov

— +glx)— = f{t,vix,t),vih(x)t -7

% g1 = (tv{xh (<)t -7)
Applying suitable local stability we present newitemia for asymptotically stable
behaviors of nonlinear transport solutions of ab@&guation. The results obtained

basically improve and complement previous ones.
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1. Introduction

For the recent contribution, we refer the readeflte-13] and the references cited
therein. It is observed that very few papers orbalstability behavior of solutions of
nonlinear transport equations are available to meegrowing interest of research.

& 492 = (L) v{nlx)t-7) (1)
Equation (1) can be written in the form

ov ov _

E+g(x)&- ftvvi,) (2

where v,_, (xt) =v(h(x),t-7),7>0.

We assume that the functiong:(0,1) » R,h:(0,1) - (0,1) and f:(0,)xRxR - R are
continuously differentiable and satisfy the follagiconditions:

(i) 9(0)=0,g(x)>0 for x>0,

(i) h(0)=0,h(x)< x for x0(0,2),

Equation (1) is considered with the initial conaiti
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Global Stability of Nonlinear Transports Equations

v(x,t)=Q(x,t) for (x,t)0(0,1)x(-7,0). (3)
A functionv:(0,1)x(~7,0) ~ R is called a classical solution of the problem (3) if v

is a continuous function in its domain, v satisfilee initial condition (i, ii), the‘;—t and

? exist for (x,t)0(0,1)x(0,»). and v satisfies equation (2) foct)J(0,1)x(0,c). First
X
we show that ifQ is a continuously differentiable function thenrthexists exactly one

classical solution of (2), (3). Let,x be the solution of the equatingb(=jg(nsx)dswith
0

the initial condition7z,x=x for xJ(0,1). The solution is well defined far,x<1. We can
omit the problem of the global existence of theusohs of differential equation by
extending the function g on the interv&D,w) provided that g is bounded and
continuously differentiable 0(0,00). Then the function(x,s) - 7z,xis well defined on
Rx(0,0)and continuously differentiable with respect (®x).If v is a solution of the
problem (2) and (3), then the functig(c,s)=v(rz.c,s) is well defined fos>0 and c
such that0O<s7zc<1.

The functiony/ satisfies the equation

0
= t(syMnlme)s—1) @
for sD(O,r),Os < 1. We can rewrite equation (4) in the form

= t(scy) ©)

wheref (s,c,¢)= f (s, zv(h(zc), s~ 7)) .

The functionf is continuously differentiable in its domain ana\gs at most linearly
with respect to z. From this it follows that foryanD(O,l)there exists a unique solution
of (5) and this solution is defined for s such that1(0,1). Moreover the function
lp(c, s) is continuously differentiable with respect(a:os). On the other hand if tis a
solution of (5) such that(c,0)=v(c,0)= Q(c,0), then the function(x,t)=g(m xt) is

well defined for(x,t)0(0,1)x(0,7), % and? exist and are continuous functions for
X

(x,t)0(0,1)%(0,7), and v satisfies equation (2) in this set. In thisy we obtain the
solution of (5) fom(o,r). Using this method we can solve (2) successively for
t0(r,27),t0(27,37)......... We will check that it does far 7 .

Let ¢ be a solution of the equation

0

L= f(sylcs)vln(m 0)s-7)
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with the initial condition(c,7)=v(c,7). Then

W (c.7)=f(r,¢(c,7) v(h(c),0))

0S
_ oy” _ov' ov
Let v(x,t)=¢(7_xt). Then m (c.7)= m (c.7)+g(c) o (c,7)
ov* ov _ _
7+g(x)&— f(t,v,v,_,) fort=r.
This implies that%:% for t=r and v satisfies (2) fot=71.

2. Main results
Now we consider the following delay differentialuegjion associated with (2):

Z([t)=f(t,zz). (6)

Theorem 2.1. Let v(x,t) be a solution of the problem (2) and (3). l#) be the solution
of (6) satisfying the initial conditiorz(t)=v(0,t) fort O[-7,0] Then for everyt, >0

and £>0 there existt, >0 and another solution(x,t) of (2) such that
B 61200

v(x,t)=v(xt) for (x,t)0(0,1)x(t,,)
If z(t) is a globally asymptotically stable solution of éhdv,(x,t) =z(t) is a locally
asymptotically stable solution of (2) them)(x,t)is globally asymptotically stable

solution of (2). The determining the global stdkibf a solution of (2) can be reduced to
the problem of tentative the global stability o ttifferential delay equation (6) and the
local stability of (2). Therefore, in the generake it is necessary to focus on the global
stability of the associated differential delay etipra(6).

Proof: We first show that for eved)(0,1) there existst, >Osuch that if

Ql,QZD(O,l)X(— 70)- R are continuous functions and,(xt)=Q,(xt) for
(x,t)0(0,8)x(-7,0), then the solutiong andy, of (2) corresponding t@,,Q,
satisfy v, (x,t)=v,(x,t) for (x,t)0(0,1)x(t,, ). Let f:(0,1)x(0,1) be a function given by
the formula

<g,

f(x):min{ﬂ_rx,maxh(y)}.

y<x
Then f is a continuous function. Since x<x forx0(0,1) and h(y)<ysx for
0<ys<x<1, we havef (x)<x forx0(0,1). First, we check that ifa 0(0,1)and v, v, are
two solutions of (5) such thaf(x,t)=v, (x,t) for (x,t)0(0, f (@))x(-7,t,)
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theny, (x,t)=v,(x,t) for (x,t)0(0,a)x (t, + 7,0) . Indeed, i{x,t)0(0,a)x(ty.t, +7), then
h(x)sf(a) , t-rO(-r.t,). This implies that v, (y,t)=v,, (y,t)for (x,t)0(0,a)
><(t0,tO +T). From this it follows that ¥and v are the solutions of the same partial
differential equation fofx,t)0(0,a)x(t,,t, +7). Moreover, itz <f(a), then
Vl(”to—tXato)sz(”to—tX,to)- This implies that the solutiong andv, are the same along
the characteristijz(t)z(ﬂto_tx,t). In particular, since; _x< f(a) for xD(O,a), we have
v (x,t, +7)=v,(xt, +7).

For xD(O,a)X(to+r,tO+2r) the functionsv, andv, are the solutions of the
same partial differential equation with the saméiah condition. This implies that
v, (x,t)=v,(x,t) for(x,t)0(0,a)x(t, + r,).Consider the sequencéfé‘(l)}. Since fis a
continuous function anti(x)<x for xJ(0,1), we have_jm f"(1)=0. Let k be an

n-o
integer such that*(1)<d. 1FQ,(xt)=Q,(xt) for (xt)0(0,8)x(-7,0), then
v, (x,t)=v,(x,t) for (x,t)0(0,1)x ((2k - 1)r,e).

Now let £>0and t, >0be given constants. Lez(x,t) be a solution of (2) and
Z(t) be the solution of (6) with the initial conditiom(t)=v(0,t) fortO(-7,0).The
function v(x,t)=z(t) is also a solution of (2). From the continuous dejemce of the
solutions of (2) on the initial condition it follaithat there exists, >0 such that if

‘f_z(x,t)— z(t)1<gl for (x,)0(0.1)x (~7.0) @)
Then

V) - z(t)(< £ for (x)0(0)x (= 7.1, ), @)

wherev is the solution of (2) which satisfies the initiindition v(x,t)=Q(x,t)
for (x,t)0(0,1)x(-7,0). Since v(x,t) is a continuous function and(t)=v(0,t)for
t0(0,2). there exists3>0 such thau(x,t)-z(t)<e, for(xt)0(0,8)x(-7,0).

Now, let
- B v(x,t):(x,t) D(O,J)X(— r,O),
Qlxt)= {v(é,t):(x,t) (1)x(-7.0) }

Then Q satisfies (7). Ifv is a solution of (3.22) with the initial conditien, then v
satisfies (8). Since(x,t)=v(xt) for (x,t)1(0,8)x(~7,0), from the first step it follows

that v(x,t)=v(xt) for (x,t)3(0,1)x (t,, ).
We use to considerations of the local stabilitytaf full partial differential equation (2).
We assume that the function f does not depend Timen equation (2) takes the form

ov ov _
o tIZ =) 9)
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Let \_/(x,t) be a given solution of (9We say that the solutiom of (9) is exponentially
stable on the set A if there exists>0 such that for evenfQJA the solution of the
problem (9), (3) satisfies the condition

min{|v(x,t)|:\_/(x,t):xD(O,l)} <cet, (10)
where c is a constant which depends onlQon

We say thatv is locally exponentially stable if there exist @™ 0, ¢ and c such that
condition (10) holds for every solution of the pieh (9), (3) withQUA, .

Theorem 2.2. Let u be a constant such tHdt,u)=0 and g—f(u u)<-
v

ov

T

of (u,u)(.Then

the solutionv(x,t)=u of (9) is locally exponentially stable.
Proof: Without loss of generality we can assume tha0D Let

of of

a_a—(o 0) and b= N (0,0)

T

thena<—|bj. In the space((0,1),(-7,0)), we introduce an auxiliary norm

|, =minf(xt)e": (xt)D(0.2)<(~7.0)}

-7.0]

e/, are equivalent and
2

lal, < [+, <¢ -l for A=A,
Let v be a solution of (9), (3) and be a transfafamagiven by(TQ)=v(x,t +7). We
check that there exists >0 and y0(0,1) such thaiTQ|, < y|Q], for [Q], < &

From the Lagrange mean value theorem it follows fivaevery(v,v, ) JR? there exists
60(0,1) such that

af(

f(v,v,)= v &, N+ V(a/a/)v

T

Let 6>0be a given constant and] >0 be a constant such that
of of

—(v,v, )—a<9, v,V, )—b
o o )-dl<a. 12 (uv)

From the continuous dependence of the solutio®)bi the initial condition, it follows

that there exist®, 0(0,J;) such thafTQ|<d, for ||Q]<d, . This implies that if

|Q <3, then the solution of the problem (9), (3) satisfies

id < (d+ap+ (o+ ) 1)

<J for V<4, |v,|<9;.

E+g()
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Let (x,y)J(0,1)x(0,7)and ¢(s)= V(. x,s) for sO(0,t).
Then from (11) it follows that

' (s)< (d+ a)Ju(s) +(d+ o)l (12)
Inequality (12) implies that
b+3)Q) (u
|z//(s)|s[|¢/(0)| “ || a“)c'; ”Je ok 3)
Since ¢(0) < Q. from (13) we obtain
wls) < k. [q] . (14)

From (14) and from the formuldx,t) =¢(t) it follows that

Mixt)<k Q| for (xt)D (0,1)x(0,7).
Let QOc[(0,1)x(-7,0)] be a function such th®|<J, and letA be a positive
constant. Then

w(xt)]<e™|Q], for(xt)0(0,1)x(-7,0)
Let v(xt)be a solution of (9), (3). From (11) it follows thvfx,t)satisfies the inequality

ﬂ+g( )— \{ Iv(x,t)+ Qb|+5)v(h(x),t—r)| for(x,t)0 (0,1)x(0,7).

ot

V(xt)<ke7|q], and [v(h(x)t-7) < &,
g2 -anf < (ace + 6+ ok
Let (x,t)3 (0,1)%(0,7) and g(s)=e*v(r._ x,s) for sO[0,t]
p(s) < aoe)+ [+l ol

Sincey(0) = v(r7,_x,0) = Q(7,_x,0), we havely(0) <[] , -
d<z— AT[q1 _ 4-at |b| /lr /]+a
w(t) < {1+?e o) e (1ot )} o], (15)

Sincev(x,t)= ey(t) andTQ(x,t)=v(xt+7) we have
e"TQ(x,t)=e™ T y(t +7) (16)
From (15), (16) and inequalities< 0,t < 0 it follows that

e/h|TQ(X,tX < |:eat+/lt+ar |a|r e+ |b| 5eA (e(/]+a)(t+r ):| ”Q”/‘

[ral, < Ao, /‘)||Q||A
wherey(J,A)zmin{e + Ko gt gary Ko g +|| (“a’—l)}.

[ [

For anyA>0 we can choos® >0 sufficiently small so that the first term in theoae
minimum is less than one. The second term in th&imim equaldor,4=0. Since
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ar <0 and |a >[b, this term is less than one. In this way we obiaiequality for
|| < 3. If we takes =75, , then for anyQ such thaflQ|, <& we have|Q|, <4,
and consequently holds ﬂQHA < &£. Now, let v be a solution of the problem (9), (3)
such thafQ|, < .
Since V(x,t)=T"Q(x,t—nr) for tD[(n—l)r,nr] and

we have

T"Q

|, < vlel,

V(xt) < &), for (xt)0 (0,2)x((n-1)z,nz)
If we takey =—77*logy, then
vix.t)< Qe <e’ Q| for(xt)O (0,1)x(-7,0),
This completes the proof.

3. Conclusion
Let z, be a solution of (6). Assume that there existolati®n v, of (2) such that

Vo (x,t) = z,(t)for t O (~7,0) and assume that it converges to zero. Thefis a stable

solution of (2). Indeed, for each>0 we can find another solution of (2) such that

\_/(x,t)—zo(t)(< £/3 for x0(0,1),t0(-7,0) and v, (xt)=v(xt) for x0(0,1) and

sufficiently large t. After a small modification tfieorem 2.1 and theorem 2.2 can check
that any solution v of (2) such thag(0,t)= z,(t) for t0(-7,0)is also stable.
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