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Abstract. The aim of this paper is to study the global stability and associated delay 
differential equation of the nonlinear transports equations 
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Applying suitable local stability we present new criteria for asymptotically stable 
behaviors of nonlinear transport solutions of above equation. The results obtained 
basically improve and complement previous ones. 
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1. Introduction 

For the recent contribution, we refer the reader to [1—13] and the references cited 
therein. It is observed that very few papers on global stability behavior of solutions of 
nonlinear transport equations are available to meet our growing interest of research.  
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Equation (1) can be written in the form 
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where    ( ) ( )( ) 0>−=− τττ ,,, txhvtxvt .      
We assume that the functions  ( ) ( ) ( )101010 ,,:,,: →→ hRg  and ( ) RRRf →××∞,: 0  are 
continuously differentiable and satisfy the following conditions: 
(i) ( ) ( ) ,, 0000 >>= xforxgg  

(ii) ( ) ( ) ( ),,, 1000 ∈<= xforxxhh  
Equation (1) is considered with the initial condition 
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                                 ( ) ( )txtxv ,, Ω=   for  ( ) ( ) ( ).,,, 010 τ−×∈tx                                   (3) 

A function ( ) ( ) Rv →∞−× ,,: τ10   is called a classical solution of the problem (2), (3) if v 

is a continuous function in its domain, v satisfies the initial condition (i, ii), the
 t

v

∂
∂

 and 

x

v

∂
∂

 exist for ( ) ( ) ( ).,,, ∞×∈ 010tx  and v satisfies equation (2) for( ) ( ) ( ).,,, ∞×∈ 010tx  First 

we show that if Ω  is a continuously differentiable function then there exists exactly one 

classical solution of (2), (3). Let xsπ  be the solution of the equation ( )dsxgx ss ∫
∞

=
0

ππ with 

the initial condition xx=0π  for ( )10,∈x . The solution is well defined for 1≤xsπ . We can 
omit the problem of the global existence of the solutions of differential equation by 
extending the function g on the interval ( )∞,0 provided that g is bounded and 

continuously differentiable on ( )∞,0 . Then the function  ( ) xsx sπ→, is well defined on 

( )∞× ,0R and continuously differentiable with respect to ( )., xs If v is a solution of the 

problem (2) and (3), then the function ( ) ( )scvsc s ,, πψ =  is well defined for 0>s  and c 

such that .10 ≤≤ csπ  
The function ψ  satisfies the equation 

                                        
( )( )( ),,,, τπψψ −=

∂
∂

schvsf
s s                                             (4) 

for ( ) 100 ≤≤∈ cs sπτ ,, . We can rewrite equation (4) in the form 

                                               
( )ψψ

,,csf
s

−
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                                                         (5)
 

where ( ) ( )( )( )τπψ −=
−

schvzsfcsf s ,,,,, .  

The function
−
f  is continuously differentiable in its domain and grows at most linearly 

with respect to z. From this it follows that for any ( )10,∈c there exists a unique solution 

of (5) and this solution is defined for s such that ( )10,∈csπ . Moreover the function     

( )sc,ψ   is continuously differentiable with respect to( )sc, .  On the other hand if t is a 

solution of (5) such that( ) ( ) ( ),,,, 000 ccvc Ω==ψ   then the function ( ) ( )txtxv t ,, −= πψ  is 

well defined for( ) ( ) ( )τ,,, 010 ×∈tx , 
t

v

∂
∂

  and 
x

v

∂
∂

 exist and are continuous functions for 

( ) ( ) ( ),,,, τ010 ×∈tx  and v satisfies equation (2) in this set. In this way we obtain the 

solution of (5) for ( )τ,0∈t . Using this method we can solve (2) successively for

( ) ( ),........,,, ττττ 322 ∈∈ tt   We will check that it does for τ=t . 
 
 Let ψ  be a solution of the equation 

( ) ( )( )( )τπψψ
τ −=

∂
∂

− schvscsf
s s ,,,,  
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with the initial condition ( ) ( )ττψ ,, cvc = . Then 

( ) ( ) ( )( )( ).,,,,, 0chvcfc
S
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+

 

Let ( ) ( )txtxv t ,, −= τπψ . Then      ( ) ( ) ( ) ( )τττψ
,,, c
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This implies that 
t

v

t

v

∂
∂=

∂
∂ −+

   for τ=t  and v satisfies (2) for .τ=t  

 
2.  Main results 
Now we consider the following delay differential equation associated with (2): 

                                            ( ) ( ).,,'
τzztftz =                                                            (6) 

 
Theorem 2.1. Let ( )txv , be a solution of the problem (2) and (3). Let ( )tz be the solution 

of (6) satisfying the initial condition ( ) ( ) [ ].,, 00 τ−∈= tfortvtz Then for every 00 ≥t  

and 0>ε  there exist 01 >t   and another solution ( )txv ,
−

 of (2) such that 

( ) ( ) ( )
( ) ( ) ε

τ
<−

−

−×∈
tztxv

ttx
,min

,,, 010
, 

( ) ( )txvtxv ,, =
−

 for ( ) ( ) ( )∞×∈ ,,, 110 ttx  

If  ( )tz0  is a globally asymptotically stable solution of (6) and ( ) ( )tztxv 00 =,  is a locally 

asymptotically stable solution of (2) then ( )txv ,0 is globally asymptotically stable 
solution of (2). The determining the global stability of a solution of (2) can be reduced to 
the problem of tentative the global stability of the differential delay equation (6) and the 
local stability of (2). Therefore, in the general case it is necessary to focus on the global 
stability of the associated differential delay equation (6). 
Proof: We first show that for every ( )10,∈δ   there exists 01 >t such that if

( ) ( ) R→−×∈ΩΩ 01021
,,, τ  are continuous functions and ( ) ( )txtx ,, 21 Ω=Ω  for

( ) ( ) ( )00 ,,, τδ −×∈tx , then the solutions
1v  and 

2v  of (2) corresponding to 21 ΩΩ ,  

satisfy ( ) ( ) ( ) ( ) ( ).,,,,, ∞×∈= 121 10 ttxfortxvtxv  Let ( ) ( )1010 ,,: ×f   be a function given by 
the formula 

( ) ( )








=
≤

−
xy

yhxxf max,min τπ . 

Then f is a continuous function. Since ( )10,∈<− xforxxτπ  and ( ) xyyh ≤<  for

10 ≤≤< xy , we have ( ) ( ).,10∈< xforxxf First, we check that if  ( )10,∈α and 
21 vv , are 

two solutions of (5) such that( ) ( ) ( ) ( )( ) ( )021 0 tftxfortxvtxv ,,,,, τα −×∈=  
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then ( ) ( ) ( ) ( ) ( )∞+×∈= ,,,,, τα 021 0 ttxfortxvtxv . Indeed, if( ) ( ) ( ),,,, τα +×∈ 000 tttx  then 

( ) ( )αfxh ≤  , ( )0tt ,ττ −∈− . This implies that ( ) ( )tyvtyv ,, ττ 21 = for ( ) ( )α,0, ∈tx

( )τ+× 00,tt . From this it follows that v1 and v2 are the solutions of the same partial 

differential equation for( ) ( ) ( )τα +×∈ 000 tttx ,,, . Moreover, if ( )απ ftt ≤−0
, then

( ) ( )0201 00
txvtxv tttt ,, −− = ππ . This implies that the solutions 1v  and 2v  are the same along 

the characteristic( ) ( )txt tt ,−=
0

πγ . In particular, since ( ) ( ),,ααπ 0
0

∈≤− xforfxtt  we have

( ) ( ).,, ττ +=+ 0201 txvtxv   

For ( ) ( )ττα 20 00 ++×∈ ttx ,,  the functions 1v  and 2v are the solutions of the 
same partial differential equation with the same initial condition. This implies that 

( ) ( )txvtxv ,, 21 =  for ( ) ( ) ( ).,,, ∞+×∈ τα 00 ttx Consider the sequence is ( ){ }1nf . Since f is a 

continuous function and( ) ( ),,10∈< xforxxf  we have ( ) .01 =
∞→

n

n
fLim  Let k be an 

integer such that ( ) δ≤1kf . If ( ) ( )txtx ,, 21 Ω=Ω   for  ( ) ( ) ( )00 ,,, τδ −×∈tx , then  

( ) ( )txvtxv ,, 21 =  for  ( ) ( ) ( )( )∞−×∈ ,,, τ1210 ktx . 

Now let 0>ε and 00 >t be given constants. Let ( )txv ,  be a solution of (2) and 

( )tz  be the solution of (6) with the initial condition ( ) ( ) ( ).,, 00 τ−∈= tfortvtz The 

function ( ) ( )tztxv =,
 
is also a solution of (2). From the continuous dependence of the 

solutions of (2) on the initial condition it follows that there exists 01 >ε  such that if 

                                       
( ) ( ) ( ) ( ) ( )0101 ,,,, τε −×∈<−Ω

−
txfortztx                             (7)

 
Then 

                                     
( ) ( ) ( ) ( ) ( ),,,,, 010 ttxfortztxv τε −×∈<−

−
                               (8)

 

where 
−
v  is the solution of (2) which satisfies the initial condition ( ) ( )txtxv ,,

−−
Ω=

 for ( ) ( ) ( )010 ,,, τ−×∈tx . Since ( )txv ,  is a continuous function and ( ) ( )tvtz ,0= for 

( ).,10∈t  there exists 0>δ   such that ( ) ( ) 1ε<− tztxv ,   for( ) ( ) ( )00 ,,, τδ −×∈tx . 

 Now, let
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .

,,,:,

,,,,:,
,
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
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−×∈
−×∈
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−
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τδδ
τδ

txtv

txtxv
tx  

Then 
−
Ω  satisfies (7). If 

−
v  is a solution of (3.22) with the initial condition

−
Ω , then 

−
v  

satisfies (8). Since( ) ( ) ( ) ( ) ( )00 ,,,,, τδ −×∈=
−

txfortxvtxv , from the first step it follows 

that ( ) ( ) ( ) ( ) ( )∞×∈=
−

,,,,, 110 ttxfortxvtxv . 
We use to considerations of the local stability of the full partial differential equation (2). 
We assume that the function f does not depend on t. Then equation (2) takes the form 

                                         ( ) ( )., τvvf
x

v
xg

t

v =
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∂
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                                                     (9) 
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Let ( )txv ,
−

 be a given solution of (9). We say that the solution 
−

v  of (9) is exponentially 
stable on the set A if there exists 0>µ  such that for every A∈Ω  the solution of the 
problem (9), (3) satisfies the condition 

                                  ( ) ( ) ( ) ,,:,,min tCextxvtxv µ−
−

≤






 ∈= 10                                   (10) 

where c is a constant which depends only onΩ . 

We say that 
−
v is locally exponentially stable if there exist an ,0>ε µ  and c such that 

condition (10) holds for every solution of the problem (9), (3) with εA∈Ω . 
 

Theorem 2.2. Let u be a constant such that( ) 0=uuf ,  and ( ) ( ).,, uu
v

f
uu

v

f

τ∂
∂−<

∂
∂

Then 

the solution ( ) utxv ≡
−

,  of (9) is locally exponentially stable. 
Proof: Without loss of generality we can assume that 0=u    Let 

( ) ( )0000 ,,
τv

f
band

v

f
a

∂
∂=

∂
∂=  

then .ba −<  In the space ( ) ( )( )010 ,,, τ−c , we introduce an auxiliary norm 

( ) ( ) ( ) ( ){ },,,,:,min 010 τλ
λ −×∈Ω=Ω txetx t  

where .R∈λ . If 0=λ  then 
0

Ω=Ω  is the standard norm in ( ) ( )0,1 ,0 .c τ× −    
For any R∈21 λλ ,  the norms 

21 λλ •• and  are equivalent and 

( ) .212

12

12
λλλ

τλλ
λλ ≤Ω≤•≤Ω − fore  

Let v be a solution of (9), (3) and be a transformation given by( ) ( )τ+=Ω txvT , . We 

check that there exists 0>ελ ,   and ( )10,∈γ  such that .εγ λλλ ≤ΩΩ≤Ω forT  

From the Lagrange mean value theorem it follows that for every( ) 2Rvv ∈τ,   there exists 
( )10,∈θ  such that 

( ) ( ) ( ) ττ
τ

ττ θθθθ vvv
v

f
vvv

v

f
vvf ,,,

∂
∂+

∂
∂=  

Let  0>δ be a given constant and 01 >δ  be a constant such that 

( ) ( ) .,,,, 11 δδδδ ττ
τ

τ <<<−
∂
∂<−

∂
∂

vvforbvv
v

f
avv

v

f
 

From the continuous dependence of the solution of (9) on the initial condition, it follows 
that there exists ( )12 0 δδ ,∈  such that .21 δδ <Ω<Ω forT This implies that if 

,2δ<Ω then the solution of the problem (9), (3) satisfies 

                                     ( ) ( ) ( ) Ω+++≤
∂
∂+

∂
∂ δδ bva

x

v
xg

t

v
                               (11) 
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Let  ( ) ( ) ( )τ,,, 010 ×∈yx and   ( ) ( ) ( )tsforsxvs ts ,, 0∈= −πψ . 
Then from (11) it follows that 

                                    ( ) ( ) ( ) ( ) Ω+++≤ δψδψ bsas'                                          (12) 

Inequality (12) implies that 

                                  

( ) ( ) ( ) ( ) .sae
a

b
s δ

δ
δ

ψψ +














+
Ω+

+≤ 0                                         (13)

 
Since  ( ) Ω≤0ψ , from (13) we obtain 

                                            ( ) Ω≤ τψ ks  ,                                                       (14) 

From (14) and from the formula( ) ( )ttxv ψ=,   it follows that 

( ) ( ) ( ) ( ).,,,, ττ 010 ×∈Ω≤ txforktxv  

Let ( ) ( )[ ]010 ,, τ−×∈Ω c  be a function such that 2δ<Ω   and let λ  be a positive 

constant. Then 

( ) ( ) ( ) ( )010 ,,,, τψ λ
λ −×∈Ω≤ − txforetx t  

Let  ( )txv , be a solution of (9), (3). From (11) it follows that ( )txv , satisfies the inequality 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ).,,,,, ττδδ 010 ×∈−++≤−
∂
∂+

∂
∂

txfortxhvbtxvav
x

v
xg

t

v
 

( ) ( )( ) ( )
λ

ττλ
λ

λτ
τ τ Ω≤−Ω≤ −etxhvandektxV ,,  

( ) ( ) ( )( ) λ
τλλτ

τ δδ Ω++≤−
∂
∂+

∂
∂ −tebekav

x

v
xg

t

v
 

Let ( ) ( ) ( ) ( ) ( ) [ ].,,,,, tsforsxvesandtx ts
as 0010 ∈=×∈ −

− πψτ  

( ) ( ) ( ) λ
λλτλτ

τ δδψ Ω++≤ −−− assas ebeks' . 

Since ( ) ( ) ( )000 ,, xxv tsts −− Ω== ππψ , we have ( ) λψ Ω≤0  . 

              
( ) ( ) ( )( )

,λ
λλτλττ

λ
δδψ Ω








−

+
+

+−+≤ +−− taat ee
a

b
ee

a

k
t 111                         (15) 

Since ( ) ( )tetxv atψ=,  and ( ) ( )τ+=Ω txvtxT ,,  we have 

                           ( ) ( )τψτλλ +=Ω ++ tetxTe atatt ,                                                        (16) 
From (15), (16) and inequalities 00 ≤< ta ,  it follows that 

( ) ( )( )( ) λ
τλλτλτττλλ

λ
δδ Ω












−

+
+

++≤Ω ++++ 1taatatt ee
a

b
e

a

k
etxTe , . 

( ) ,, λλ λδγ Ω≤ΩT  

where ( ) ( )( ) .,min,












−
+
+

+++= +− 1τλλτττλττλτ

λ
δδδλδγ aa e

a

b
e

a

k
ee

a

k
e  

For any 0>λ  we can choose 0>δ  sufficiently small so that the first term in the above 
minimum is less than one. The second term in the minimum equals for 0=λδ , . Since 
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0<τa  and ,ba >  this term is less than one. In this way we obtain inequality for

2δ≤Ω . If we take 2δε λτ−=e , then for any Ω  such that ελ ≤Ω  we have 2δλ ≤Ω  

and  consequently holds for
λ

εΩ ≤ . Now, let v be a solution of the problem (9), (3) 

such that ελ ≤Ω .  

Since  ( ) ( ) ( )[ ] λλ
γτττ Ω≤Ω−∈−Ω= nnn TandnntforntxTtxV ,,, 1   

we have 

( ) ( ) ( ) ( )( ).,,,, ττγ λ
λτ nntxforetxV n 110 −×∈Ω≤  

If we take γτµ log1−−= , then 

( ) ( ) ( ) ( ),,,,, ∞−×∈Ω≤Ω≤ −− τµλτµ
λ

λτ 10txforeeetxv t  

This completes the proof. 
 
3.  Conclusion 
Let 0z  be a solution of (6). Assume that there exists a solution 0v  of (2) such that  

( ) ( )tztxv 00 =, for ( )0,τ−∈t  and assume that it converges to zero. Then 0z  is a stable 

solution of (2). Indeed, for each 0>ε  we can find another solution 
−
v  of (2) such that    

( ) ( ) ( ) ( )01030 ,,,/, τε −∈∈<−
−

txfortztxv    and  ( ) ( )txvtxv ,,
−

=0  for ( )10,∈x  and 

sufficiently large t. After a small modification of theorem 2.1 and theorem 2.2 can check 
that any solution v of (2) such that ( ) ( )tztv 00 0 =,

 
for ( )0,τ−∈t is also stable. 
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