Intern. J. Fuzzy Mathematical Archive Vol. 6, No. 2, 2015, 197-205 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Uniform Boundedness Principle on 2-Fuzzy Normed Linear Spaces

Thangaraj Beaula¹ and R.Angeline Sarguna Gifta²

¹Department of Mathematics, TBML College, Porayar, Tamil Nadu, India - 609 307 e-mail: edwinbeaula@yahoo.co.in Corresponding Author

²Department of Mathematics, TBML College, Porayar, Tamil Nadu, India - 609 307

Received 7 November 2014; accepted 4 December 2014

Abstract. This paper defines the concept of 2-fuzzy continuity and 2-fuzzy bounded linear operator. Relation between weakly 2-fuzzy continuity and weakly 2-fuzzy boundedness is studied. The concept of second weak 2-fuzzy dual for 2-fuzzy normed linear space is developed. Uniform Boundedness and Banach Alaoglu theorems are established.

Keywords: 2-fuzzy norm, weakly 2-fuzzy continuity, weakly 2-fuzzy bounded linear mapping, 2-fuzzy dual space

AMS Mathematics Subject Classification (2010): 03E72, 28E10

1. Introduction

The concept of fuzzy set was introduced by Zadeh [8] in 1965. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler in [3]. The concept of fuzzy norm and α -norm were introduced by Bag and Samanta and the notions of convergence and Cauchy sequence were also discussed in [1]. Jialuzhang [4] has defined fuzzy linear space in a different way. Bag and Samanta [2] defined fuzzy bounded linear operator and fuzzy bounded linear functional on the fuzzy dual space. Somasundaram and Beaula [6] defined the notion of 2-fuzzy 2-normed linear space. They also established the famous closed graph theorem and Riesz theorem in 2-fuzzy 2-normed linear space. Beaula and Gifta [7] defined 2-fuzzy normed linear space and proved some standard results. They also defined 2-fuzzy dual space and proved it is complete 2-fuzzy normed linear space. In section 2, we recall some preliminary concepts and in section 3, we define 2-fuzzy continuity and boundedness and a theorem is established related to these concepts. In section 4, the Uniform Boundedness theorem is established and in section 5, we introduce second fuzzy dual for the 2-fuzzy normed linear space. Banach Alaoglu theorem is developed in this space.

2. Preliminaries

For the sake of completeness, we reproduce the following definitions due to Saadati[5], Bag and Samanta [1], Zhang [4] and Somasundaram [6].

Definition 2.1. [5] Let X be a linear space over K (field of real or complex numbers). A fuzzy subset N of $X \times R$ (R, the set of real numbers) is said to be a fuzzy norm on X if and only if for all $x, u \in X$ and $c \in K$.

 $\begin{array}{l} (N_1) \mbox{ For all } t \in R \mbox{ with } t \leq 0, \mbox{ } N(x,t) = 0. \\ (N_2) \mbox{ For all } t \in R \mbox{ with } t > 0, \mbox{ } N(x,t) = 1 \mbox{ if and only if } x = 0. \\ (N_3) \mbox{ For all } t \in R \mbox{ with } t > 0, \mbox{ } N(cx,t) = \\ N \left(x, \frac{t}{|c|} \right) \mbox{ if } c \neq 0. \\ (N_4) \mbox{ For all } s,t \in R, \mbox{ } x,u \in X, \mbox{ } N(x+u,s+t) \geq \min\{N(x,s),N(u,t)\}. \\ (N_5) \mbox{ } N(x,\cdot) \mbox{ is a non decreasing function of } R \mbox{ and } \lim N(x,t) = 1. \end{array}$

The pair (X, N) will be referred to as a fuzzy normed linear space.

Theorem 2.1. Let (X, N) be a fuzzy normed linear space. Assume further that $(N_6)N(x, t) > 0$ for all t > 0 implies x = 0. Define $||x||_{\alpha} = \inf\{t : N(x, t) \ge \alpha\}, \alpha \in (0, 1)$. Then $\{||\cdot||_{\alpha} : \alpha \in (0, 1)\}$ is an ascending family of norms on X (or) α -norms on X corresponding to the fuzzy norm on X.

Definition 2.2. [4] Let X be any non-empty set and F(X) be the set of all fuzzy sets on X. For U, $V \in F(X)$ and $k \in K$, the field of real numbers, define

 $U + V = \{(x + y, \lambda \land \mu) / (x, \lambda) \in U, (y, \mu) \in V\} \text{ and }$

 $kU = \{(kx,\lambda) / (x,\lambda) \in U\}.$

Definition 2.3. [6] A fuzzy linear space $\tilde{X} = X \times (0,1]$, over the number field K where the addition and scalar multiplication operation on \tilde{X} defined by

 $(x,\lambda) + (y,\mu) = (x + y,\lambda \wedge \mu),$

 $k(x,\lambda) = (kx,\lambda)$

is a fuzzy normed space if to every $(x, \lambda) \in \tilde{X}$ there is associated a nonnegative real numbers $||(x, \lambda)||$ called the fuzzy norm of (x, λ) in such a way that

(1) $\|(x, \lambda)\| = 0$ if and only if x = 0 the zero element of X and $\lambda \in (0, 1]$.

(2) $||k(x, \lambda)|| = |k| ||(x, \lambda)||$ for all $(x, \lambda) \in \widetilde{X}$ and $k \in K$.

- (3) $\|(x, \lambda) + (y, \mu)\| \le \|(x, \lambda \land \mu)\| + \|(y, \lambda \land \mu)\|$ for all $(x, \lambda), (y, \mu) \in \widetilde{X}$.
- (4) $\|\mathbf{x}, \bigvee_{t} \lambda_{t}\| = \bigwedge_{t} \|(\mathbf{x}, \lambda_{t})\|$ for $\lambda_{t} \in (0, t]$.

Definition 2.4. [6] Let X be a nonempty set and F(X) be the set of all fuzzy sets in X. If $f \in F(X)$ then $f = \{(x, \mu) \mid x \in X \text{ and } \mu \in [0, 1]\}$. Clearly f is a bounded function for $|f(x)| \le 1$ for every $x \in X$. Let K be the space of real numbers, then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by

 $f + g = \{(x,\mu) + (y,\eta) / x, y \in X \text{ and } \mu, \eta \in [0,1] \}$ $= \{(x + y,\mu \land \eta) / (x,\mu) \in f \text{ and } (y,\eta) \in g\}$ $kf = \{k(x,\mu) / x \in X \text{ and } \mu \in [0,1]$ $= \{(kf,\mu) / (x,\mu) \in f\} \text{ where } k \in K.$

The linear space F(X) is said to be a normed space if to every $f \in F(X)$, there is associated a nonnegative real number ||f|| called the norm of f in such a way that

(1) ||f|| = 0 if and only if f = 0

$$\begin{split} \|f\| &= 0 <=> \{ \|(x,\mu)\| / (x,\mu) \in f \} = 0 \\ &<=> x = 0, \mu \in [0,1] \\ &<=> f = 0 \\ (2) \||kf\| &= |k| \, ||f||, \, k \in K \\ & For, \\ & \|kf\| = \{ \|k(x,\mu)\| / \, (x,\mu) \in f \text{ and } k \in K \} \\ &= \{ |k| \, \|(x,\mu)\| / \, (x,\mu) \in f \} \\ &= |k| \, \|f\| \\ (3) \, \|f+g\| &\leq \|f\| + \|g\| \text{ for every } f, \, g \in F(X) \\ & For, \\ & \|f+g\| = \{ \|(x,\mu) + (y,\eta)\| / \, x,y \in X \text{ and } \mu,\eta \in [0,1] \} \\ &= \{ \|(x+y),\mu \wedge \eta\| / \, x,y \in X \text{ and } \mu,\eta \in [0,1] \} \\ &\leq \| \|x,\mu \wedge \eta\| + \|y,\mu \wedge \eta\| / \, (x,\mu) \in f \text{ and } (y,\eta) \in g \} \\ &= \|f\| + \|g\| \end{aligned}$$

And so $(F(X), \|\cdot\|)$ is a normed linear space.

Definition 2.5. [6] A 2-fuzzy set on X is a fuzzy set on F(X).

Definition 2.6. Let F(X) be a linear space over the real field K. A fuzzy subset N of $F(X) \times R$ (the set of real numbers) is called a 2-fuzzy norm on F(X) if and only if, (N_1) for all $t \in R$ with $t \le 0$, N(f, t) = 0.

 (N_2) for all $t \in R$ with t > 0, N(f, t) = 1 if and only if $f = \overline{0}$.

(N₃) for all $t \in R$ with $t \ge 0$, $N(cf,t) = N\left(f,\frac{t}{|c|}\right)$, if $c \ne 0$, $c \in K$ (field).

 $\begin{aligned} &(N_4) \text{ for all } s,t\in R, N(f_1+f_2,s+t)\geq \min\{N(f_1,s),N(f_2,t)\}.\\ &(N_5) \ N(f,\cdot) \text{ is a non decreasing function of } R \text{ with } \lim N(f,t)=1. \end{aligned}$

(1,0) (1,0

Then the pair (F(X), N) is said to be a 2-fuzzy normed linear space.

3. 2-Fuzzy continuity

Definition 3.1. Let (F(X), N₁) and (F(Y), N₂) be 2-fuzzy normed linear spaces. The mapping T from F(X) to F(Y) is said to be 2-fuzzy continuous at $f_0 \in F(X)$ if for given $\delta > 0$, $\varepsilon \in (0, 1)$, there exists $\gamma = \gamma(\varepsilon, \delta) > 0$, $r = r(\varepsilon, \delta) \in (0, 1)$ such that for every $f \in F(X)$

 $N_1(f - f_0, \gamma) > 1 - r$ implies $N_2(T(f) - T(f_0), \delta) > 1 - \epsilon$.

If T is a 2-fuzzy continuous at each element of F(X), then T is said to be 2-fuzzy continuous on F(X).

Definition 3.2. Let (F(X), N₁) and (F(Y), N₂) be 2-fuzzy normed linear spaces. The mapping T from F(X) to F(Y) is said to be weakly 2-fuzzy continuous at $f_0 \in F(X)$ if for each $\delta > 0$ and $r \in (0, 1)$ there exist $\gamma > 0$ such that for every $f \in F(X)$

 $N_1(f - f_0, \gamma) \ge 1 - r$ implies $N_2(T(f) - T(f_0), \delta) \ge 1 - r$.

Definition 3.3. Let $(F(X), N_1)$ and $(F(Y), N_2)$ be two 2-fuzzy normed linear spaces. A linear mapping T from F(X) to F(Y) is said to be 2-fuzzy bounded if there exist $M \in \mathbb{R}^+$ such that for every $f \in F(X)$ and for each t > 0, N $(T(f), t) \ge N$ (f, t/M)

 $N_2(T(f), t) \ge N_1(f, t/M).$

Definition 3.4. A linear mapping T from a 2-fuzzy normed linear spaces (F(X), N₁) to a 2-fuzzy normed linear spaces (F(X),N₂) is said to be weakly 2-fuzzy bounded if for any $r \in (0,1)$ there exist $M \in \mathbb{R}^+$ such that for all $f \in F(X)$ and t > 0,

 $N_1(f, t/M) \ge 1-r$ implies $N_2(T(f), t) \ge 1-r$.

Theorem 3.1. Let $(F(X), N_1)$ and $(F(Y), N_2)$ be 2-fuzzy normed linear spaces and T is a linear mapping from F(X) to F(Y) then

(i) T is weakly 2-fuzzy continuous on F(X) if T is weakly 2-fuzzy continuous at f₀∈ F(X)
(ii) T is weakly continuous if and only if T is weakly 2-fuzzy bounded. **Proof:**

(i) If T is weakly 2-fuzzy continuous then by definition, for given $\delta > 0$ and $r \in (0, 1)$ there exist $\gamma > 0$ such that for every $f \in F(X)$,

 $N_1(f-f_0, \gamma) \ge 1-r \text{ implies } N_2(T(f)-T(f_0), \delta) \ge 1-r$ (1) Let $g \in F(X)$ and replace f by $f + f_0 - g$ in (1)

 $N_1(f+f_0-g-f_0, \gamma) \ge 1-r$ implies $N_2(T(f+f_0-g)-T(f_0), \delta) \ge 1-r$ So, $N_1(f-g, \gamma) \ge 1-r$ implies $N_2(T(f-g)-T(f_0), \delta) \ge 1-r$

Hence T is weakly 2-fuzzy continuous on F(X).

(ii) Suppose T is weakly 2-fuzzy bounded then for any $r \in (0, 1)$ there exist $M \in R^+$ such that for every $f \in F(X)$ and t > 0, $N_1(f, t/M) \ge 1-r$ implies $N_2(T(f), t) \ge 1-r$ that is, $N_1(f - \overline{0}, t/M) \ge 1-r$ implies $N_2(T(f) - \overline{0}, t) \ge 1-r$

that is, $N_1(f - \bar{0}, t_0) \ge 1 - r$ implies $N_2(T(f) - \bar{0}, t) \ge 1 - r$ where $t_0 = t/M$ implies T is

weakly 2-fuzzy continuous at $f = \overline{0}$ and so T is weakly 2-fuzzy continuous on F(X). Conversely, assume that T is weakly 2-fuzzy continuous on F(X).

Case (i) Considering T is continuous at f = 0 and taking $\delta = 1$ we have for every $r \in (0,1)$ there exist $\gamma > 0$ such that for every $f \in F(X)$,

 $N_1(f - \bar{0}, \gamma) \ge 1 - r$ implies $N_2(T(f) - \bar{0}, 1) \ge 1 - r$

that is, $N_1(f, \gamma) \ge 1 - r$ implies $N_2(T(f), 1) \ge 1 - r$

Case (ii) Suppose that $f \neq 0$. Take f = u/t, t > 0 then

 $N_1(u/t, \gamma) \ge 1-r$ implies $N_2(T(u/t), 1) \ge 1-r$

$$N_1(u, t\gamma) \ge 1-r$$
 implies $N_2(T(u), t) \ge 1-r$

 $N_1(u, t/M) \ge 1-r$ implies $N_2(T(u), t) \ge 1-r$ where $\gamma = 1/M$

implies T is weakly 2-fuzzy bounded.

Case (iii) If $f \neq \overline{0}$ and $t \leq 0$ then $N_1(u, t/M) = N_2(T(u), t) = 0$ for any M > 0

Case (iv) If f = 0 and M > 0

 $N_1(u, t/M) = N_2(T(u), t) = 1$ if t > 0

 $N_1(u, t/M) = N_2(T(u), t) = 0 \text{ if } t \le 0$

from all the above cases we get

 $N_1(u, t/M) \ge 1-r$ implies $N_2(T(u), t) \ge 1-r$, for all $u \in F(X)$, $r \in (0, 1)$ and t > 0 implies T is weakly 2-fuzzy bounded.

3.1. 2-Fuzzy Banach space

Definition 3.1.1. Every complete 2-fuzzy normed linear space is said to be a 2-fuzzy Banach space.

Definition 3.1.2. A mapping T from a 2-fuzzy Banach space A to a 2-fuzzy Banach space B is said to be a 2-fuzzy linear mapping if it satisfies the following conditions

- (i) T(f + g) = T(f) + T(g), where $f, g \in A$
- (ii) $T(\alpha f) = \alpha T(f)$, where $\alpha \in \mathbb{R}^+$, $f \in \mathbb{A}$.

Definition 3.1.3. T is said to be bounded with respect to α -norm if there exist a constant $M \in [0, 1]$ such that $T(f) \le M \|f\|_{\alpha}$ for every $f \in A$. If T is bounded, define

$$\|\mathbf{T}\| = \operatorname{glb}\{\mathbf{M} : |\mathbf{T}(\mathbf{f})| \le \mathbf{M} \|\mathbf{f}\|_{\alpha}, \text{ for every } \mathbf{f} \in \mathbf{A}\} \text{ (or)}$$
$$\|\mathbf{T}\| = \sup\{\mathbf{M} : |\mathbf{T}(\mathbf{f})| > \mathbf{M} \|\mathbf{f}\|_{\alpha}, \text{ for every } \mathbf{f} \in \mathbf{A}\}$$

Theorem 3.1.1. If $B[f_0, r_0, t] = \{f \in F(X) / N(f-f_0, t) \ge 1-r_0\}$ then

- (i) $B[f_0, r_0, t] f_0$ is a closed ball centered at the origin
- (ii) $\frac{1}{r_0} [B[f_0, r_0, t] f_0]$ is a unit closed ball centered at the origin.

Proof:

(i) Let $g_0 \in B[f_0, r_0, t] - f_0$ then $g_0 = f - f_0$ where $f \in B[f_0, r_0, t]$ $N(g_0, t) = N(f-f_0, t) \ge 1-r_0$

implies that $g_0 \in B[0, r_0, t]$, a closed ball centered at the origin.

(ii) Let
$$g \in \frac{1}{r_0} [B[f_0, r_0, t] - f_0]$$
 then $g = \frac{1}{r_0} [f - f_0]$ where $f \in B[f_0, r_0, t]$
 $N(g, t) = N\left(\frac{1}{r_0}(f - f_0), t\right)$
 $= N(f - f_0, r_0 t)$
 ≥ 0 (by definition)

which implies $\frac{1}{r_0}[B[f_0, r_0, t] - f_0]$ is a unit closed ball centered at the origin.

Theorem 3.1.2. (Uniform Boundedness Theorem)

Let $(F(X), N_1)$ be a 2-fuzzy Banach space and $(F(Y), N_2)$ a 2-fuzzy normed linear space. If $\{T_i\}$ is a nonempty set of continuous linear function from F(X) into F(Y) and $\{T_i(f)\}$ is a bounded subset of F(Y) for every f in F(Y) with the property that $N_2(T_i(f), t_{f,k}) \ge 1$ - k then $N_1(T_i, t) \ge k$ is a sequence of values in [0, 1], that is $\{T_i\}$ is bounded as a subset of $\mathcal{B}(F(X), F(Y))$, (the set of all bounded functions from F(X) to F(Y)).

Proof: For
$$t_{f,k} > 0$$
, define $A_{t_{f,k}} = \{f \in F(X) : N_2(T_i(f), t_{f,k}) \ge 1 - k\}$

which is a subspace of F(X), a 2-fuzzy Banach space.

Let $B[\overline{0},M,t] = \{f \in F(X) / N(f,t) > 1 - M\}$ be a closed ball centered at the origin $\overline{0}$ and radius M in (F(X), N).Now, if $f \in A_{t_{f,k}}$ then $N_2(T_i(f), t_{f,k}) \ge 1 - k$

which implies $T_i(f) \in B[\overline{0}, k, t_{f,k}]$.

Thus $A_{t_{f,k}}$ is a closed subspace of F(X), and F(X) = $\bigcup_{t_{r,k}>0} A_{t_{f,k}}$

Since F(X) is a 2-fuzzy Banach space it is complete. By Baires theorem, $\overline{A}_{t_{f_0,k_0}}$ has a nonempty interior for any t_{f_0,k_0} and so it contains a closed ball say B[f_0, r_0, t].

Hence $N_2(T_i(f), t_{f,k}) \ge 1$ - k for $f \in \overline{A}_{t_{f_0,k_0}}$ and so $N_2(T_i(B[f_0,r_0,t]), t_{f,k}) \ge 1$ - k. Thus

$$N_{2}\left(T_{i}\left(\frac{B[f_{0},r_{0},t)-f_{0}}{r_{0}}\right),t_{f,k}\right) = N_{2}(T_{i}(B[f_{0},r_{0},t]-f_{0}),r_{0}t_{f,k}) > 1-k$$
(1)

As $\frac{B[f_0, r_0, t] - f_0}{r_0}$ is a unit closed ball centered at origin let it be $B[\overline{0}, \overline{1}, t]$ and from (1) we

get $N_2(T_i(B[\overline{0},\overline{1},t]),t_{f_k}) \ge 1-k$ (2) By definition $||T_i(f)||_{\alpha} = \sup\{t: N_2(T_i(f),t) \ge 1-\alpha\}$, for every $\alpha \in (0, 1)$ and $||T||_{\alpha} = \sup\{t: N(T,t) \ge 1-\alpha\}$, from (2) we get, $||T_i(f)||_{\alpha} \ge t_0$ as $N_2(T_i(f), t_0) \ge 1-k$ further $||T_i(f)|| = \sup\{||T_i(f)||_{\alpha} : ||f||_{\alpha} \le 1\}$ $\ge t_0$

equivalently, $N_{1}(T_{i}, t) = \sup\{k : ||T_{i}||_{\alpha} \ge 1 - t\}$ $\ge k, \quad k \in [0, 1]$

Hence $\{T_i\}$ is bounded as a subset of $\mathcal{B}(F(X), F(Y))$

3.2. 2-Fuzzy dual space

Definition 3.2.1. Let (F(X), N) be a 2-fuzzy normed linear space. A weak bounded 2-fuzzy linear mapping defined from (F(X), N) to R (the set of real numbers) is said to be weakly 2-fuzzy functional. The set of all weakly 2-fuzzy functionals is known as the first weak 2- fuzzy dual space denoted by $(F(X)^*, N^*)$.

Definition 3.2.2. Let (F(X), N) be a 2-fuzzy normed linear space and $T \in F(X)^*$ and $\|\|^*$

be the family of all 2-fuzzy α -norms on F(X). Define $\|T\|_{\alpha}^* = \sup\left\{\frac{|T(f)|}{\|f\|_{\alpha}}\right\}$, for every $f \in F(X)$

and $\alpha \in (0, 1)$. Then $\{\|\cdot\|_{\alpha}^{*} : \alpha \in (0,1)\}$ is an ascending family of α - norms on $F(X)^{*}$.

Define N^{*}(T,t) = $\begin{cases} \sup\{\alpha : \|T\|_{\alpha}^{*} \ge t\}, & (T,t) \neq 0\\ 1, & (T,t) = 0 \end{cases}$

Then N^* is said to be a 2-fuzzy norm on $F(X)^*$ and the weak 2-fuzzy dual space $(F(X)^*, N^*)$ is a 2-fuzzy normed linear space.

Definition 3.2.3. The set of all weakly 2-fuzzy functional from $(F(X)^*, N^*)$ to R^+ is the dual of $(F(X)^*, N^*)$ known as the second weak 2- fuzzy dual of (F(X), N). It is denoted by $F(X)^{**}$. Let $S \in F(X)^{**}$ is a mapping from $F(X)^{*}$ to \mathbb{R}^{+} . Define $\mathbb{N}^{**}(S, t) = \sup\{\alpha : \|S\|_{\alpha}^{**} \ge t\}$ where $\left\| \mathcal{S} \right\|_{\alpha}^{**} = \sup\{t : N^{*}(\mathcal{S}, t) \le \alpha\}$ (or) $\left\| \mathcal{S} \right\|_{\alpha}^{**} = \sup\left\{ \frac{\left| \mathcal{S}(T) \right|}{\left\| T \right\|^{*}} \right\}$ **Theorem 3.2.1.** $(F(X)^{**}, N^{**})$ is a 2-fuzzy normed linear space. **Proof:** (i) For all $t \in \mathbb{R}$, $t \le 0$, $\mathbb{N}^*(S, t) = 0$ $\left\|\mathcal{S}\right\|_{\alpha}^{**} = \sup\{t: N^{*}(\mathcal{S}, t) \leq \alpha\} = 0$. Therefore $N^{**}(\mathcal{S}, t) = 0$. (ii) For all $t \in \mathbb{R}$, t > 0, $N^*(S, t) = 1$ $\|S\|_{\alpha}^{**} = \sup\{t: N^{*}(S, t) \le \alpha\} = 1$. Therefore $N^{**}(S, t) = 1$. (iii) For all $t \in R$, t > 0 and $c \neq 0$ $N^{*}(c \ S, t) = N^{*}(S, t/|c|) \text{ and } \|cS\|_{1}^{**} = |c| \|S\|_{1}^{**}$ $N^{**}(cS, t) = \sup \{ \alpha : |c| \|S\|_{\alpha}^{**} \ge t \}$ $= \sup\{\alpha : \|S\|_{a}^{**} \ge t/|c|\}$ $= N^{**}(S, t/|c|)$ Therefore $N^{**}(cS, t) = N^{**}(S, t/|c|)$ (iv) For all s, $t \in R$ $\mathbf{N}^{*}(\mathcal{S}+\mathcal{T},\mathbf{s}+\mathbf{t}) \geq \min\{\mathbf{N}^{*}(\mathcal{S},\mathbf{s}),\mathbf{N}^{*}(\mathcal{T},\mathbf{t})\} \text{ and } \|\mathcal{S}+\mathcal{T}\|_{a}^{*} \leq \|\mathcal{S}\|_{a}^{*} + \|\mathcal{T}\|_{a}^{*}$ $N^{**}(\mathcal{S}+\mathcal{T},s+t) = \sup\{\alpha: \|\mathcal{S}+\mathcal{T}\|_{\alpha}^{**} \ge s+t\}$ $= \sup \{ \alpha_1 + \alpha_2 : \| S \|_{\alpha}^{**} + \| T \|_{\alpha}^{**} \ge s + t \}$ $\geq \sup\{\alpha_1: \|\mathcal{S}\|_{\alpha}^{**} \geq s\} + \sup\{\alpha_2: \|\mathcal{T}\|_{\alpha}^{**} \geq t\}$ $= N^{**}(S,s) + N^{**}(T,t)$ So, $N^{**}(S+T,s+t) \ge \min\{N^{**}(S,s),N^{**}(T,t)\}$ (v) $N^{**}(S, \cdot)$ be the non decreasing function such that $\lim N^{**}(S, t) = 1$. By definition, $N^{**}(S, t) = \sup\{\alpha : \|S\|_{\alpha}^{**} \ge t\}$ where $\alpha \in (0, 1)$ and $\lim_{t\to\infty} N^{**}(S, t) = 1$. Therefore $(F(X)^{**}, N^{**})$ is 2-fuzzy normed linear space.

Theorem 3.2.2. Let $F(X)^{**}$ be the second weak 2-fuzzy dual of (F(X), N). If every element of f in (F(X),N) gives rise to a functional say S_f in $F(X)^{**}$ defined as $S_f(T) = T(f)$ where $T \in F(X)^*$ then S_f belongs to $F(X)^{**}$ is linear for every element f in F(X).

Proof: Consider (i) $S_{f_1+f_2}(T) = S_{f_1}(T) + S_{f_2}(T)$ and (ii) $S_{kf}(T) = k S_f(t)$ where $k \in \mathbb{R}$, the space of real numbers

(i) $S_{f_1+f_2}(T) = T(f_1 + f_2)$

$$= T(f_1) + T(f_2)$$

= $S_{f_1}(T) + S_{f_2}(T)$
(ii) $S_{kf}(T) = T(kf)$
= k T(f)
= k $S_f(T)$. Hence S_f is linear

Theorem 3.2.3. $(F(X)^{**}, N^{**})$ is a 2-fuzzy normed linear space where N^{**} is defined as $N^{**}(S,t) = \sup\{\alpha : \|S\|_{\alpha}^{**} \ge t\}$ such that $N^{**}(S_{f},t) = N^{*}(T,t)$ for $T \in F(X)^{*}$

$$N^{**}(S_{f}, t) = \sup\{\alpha : \|S_{f}\|_{\alpha}^{**} \ge t\}$$

= sup{ $\alpha : \|S_{f}\|_{\alpha}^{*} \ge t\}$ (by[7])
$$N^{**}(S_{f}, t) = \sup\{\alpha : \|T\|_{\alpha}^{*} \ge t\}, \text{ since } S_{f}(T) = T(f)$$

= $N^{*}(T, t)$
Therefore $N^{**}(S_{f}, t) = N^{*}(T, t).$

Definition 3.2.4. The weak * topology on $F(X)^*$ is the weakest topology such that all $S \in F(X)^{**}$ are weakly 2- fuzzy continuous. This topology is generated by the subbasis element

$$S(f, T_0, r, t) = \{T \in F(X)^* \mid N^*(T-T_0, t) > 1-r\} = \{T \in F(X)^* \mid N^{**}(S_f(T) - S_f(T_0, t) > 1-r\}$$

Theorem 3.2.4. (Banach Alaoglu Theorem)

If F(X) is a 2-fuzzy normed linear space then the fuzzy closed set \mathcal{B}^* in $F(X)^*$ is a fuzzy compact hausdorff space in the weak * topology on $F(X)^*$.

Proof: If T and U are distinct functionals in \mathcal{B}^* then there exist $f \in F(X)$ such that $T(f) \neq U(f)$. If $\varepsilon = \frac{|T(f) - U(f)|}{3}$ then $S(f, T, \varepsilon, t)$ and $S(f, U, \varepsilon, t)$ are disjoint neighborhoods of T and U in weak * topology. Hence \mathcal{B}^* is a hausdorff space.

For each $f \in F(X)$ define a closed interval $f_x = \left[\inf_{x \in X} f(x), \sup_{x \in X} f(x) \right]$ then the product of f_x , $\sum_{f \in F(X)} f_x$ is a closed subspace and by classical Tychonoff theorem, it is compact.

From the definition of weak * topology on \mathcal{B}^* it is the same as the topology as a subspace of F(X). Since $\underset{f \in F(X)}{X} f_x$ is compact it is enough to show that \mathcal{B}^* is closed as a subspace of

 $\underset{f \in F(X)}{X} f_{x}.$ It is enough to show that if $T \in \overline{\mathcal{B}}^{*}$ then $T \in \mathcal{B}^{*}$. We know that $\overline{\mathscr{B}^*} = \inf\{C^* : C^* \text{ is a closed subspace containing } \mathscr{B}^*\}$. If $T \in F(X)$ then clearly $T \in \underset{f \in F(X)}{X} f_x$ and so $T \in \mathscr{B}^*$. Finally let us show that T is linear in F(X). For any $\varepsilon > 0$, let f, $g \in F(X)$, since $T \in \overline{\mathfrak{g}^*}$ every subbasic open set containing T intersects \mathfrak{g}^* say at H such that $|T(f_1) - H(f_1)| < \epsilon/3$, $|T(f_2) - H(f_2)| < \epsilon/3$ and $|T(f_1 + f_2) - H(f_1 + f_2)| < \epsilon/3$. Since H is linear, $H(f_1 + f_2) - H(f_1) - H(f_2) = 0$ and H(kf) - k H(f) = 0, $k \in K$, therefore

$$\begin{aligned} \left| \mathsf{T}(f_1 + f_2) - \mathsf{T}(f_1) - \mathsf{T}(f_2) \right| &= \left| (\mathsf{T}(f_1 + f_2) - \mathsf{H}(f_1 + f_2)) - ((\mathsf{T}(f_1) - \mathsf{H}(f_1)) - (\mathsf{T}(f_2) - \mathsf{H}(f_2)) \right| \end{aligned}$$

$$\leq |\mathbf{T}(\mathbf{f}_{1} + \mathbf{f}_{2}) - \mathbf{H}(\mathbf{f}_{1} + \mathbf{f}_{2})| + |\mathbf{T}(\mathbf{f}_{1}) - \mathbf{H}(\mathbf{f}_{1})| + |\mathbf{T}(\mathbf{f}_{2}) - \mathbf{H}(\mathbf{f}_{2})|$$

$$<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$$

implies $T(f_1 + f_2) = T(f_1) + T(f_2)$, for $\varepsilon > 0$ and for any $k \in K$, the space of real numbers we have $|T(kf) - H(kf)| < \frac{\varepsilon}{2}$. Now

$$\begin{aligned} \left| \mathbf{T}(\mathbf{k}\mathbf{f}) - \mathbf{k}\mathbf{T}(\mathbf{f}) \right| &= \left| (\mathbf{T}(\mathbf{k}\mathbf{f}) - \mathbf{H}(\mathbf{k}\mathbf{f})) - (\mathbf{k}\mathbf{T}(\mathbf{f}) - \mathbf{k}\mathbf{H}(\mathbf{f})) \right| \\ &\leq \left| \mathbf{T}(\mathbf{k}\mathbf{f}) - \mathbf{H}(\mathbf{k}\mathbf{f}) \right| + \left| \mathbf{k} \right| \left| \mathbf{T}(\mathbf{f}) - \mathbf{H}(\mathbf{f}) \right| \\ &< \frac{\varepsilon}{2} + \left| \mathbf{k} \right| \frac{\varepsilon}{2|\mathbf{k}|} \\ &= \varepsilon \end{aligned}$$

implies T(kf) = k T(f). Therefore T is linear.

REFERENCES

- 1. T.Bag and S.K.Samata, Finite dimensional fuzzy normed linear spaces, *Journal of Fuzzy Mathematics*, 11 (3) (2003) 687-705.
- 2. T.Bag and S.K.Samanta, Fuzzy bounded linear operators, *Fuzzy Sets and Systems*, 151 (2005) 513-547.
- 3. S.Gahler, Lineare 2-normierte raume, Math. Nachr., 28 (1964) 1-43.
- 4. Jialuzhang, The continuity and boundedness of fuzzy linear operator in fuzzy normedspaces, *J. Fuzzy Math.*, 13 (3) (2005) 519-536.
- 5. R.Saadati and S.M.Vaezpour, Some results on fuzzy banach spaces, J. Appl. Math.Comput., 17 (1-2) (2005) 475-484.
- 6. R.M.Somasundaram and Thangaraj Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, *Bull. Malyasian Math. Sci. Soc.*, 32 (2) (2009) 211-222.
- 7. T.Beaula and R.A.S.Gifta, On complete 2- fuzzy dual normed linear spaces, *Journal of Advanced Studies in Topology*, 4 (2) (2013) 34-42.
- 8. L.A.Zadeh, Fuzzy sets, Inform. Control, 8 (1965) 338-353.