Intern. J. Fuzzy Mathematical Archive Vol. 6, No. 2, 2015, 105-109 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

k–Semi–Similar Interval–Valued Fuzzy Matrices

P. Jenita

¹Krishna College of Engineering and Technology, Kuniyamuthur Coimbatore - 641 008, India. E-mail: sureshjenita@yahoo.co.in

Received 25 October 2014; accepted 29 November 2014

Abstract. In this paper, we have introduced the concept of k-semi-similar interval-valued fuzzy matrices (IVFM) as a generalization of semi-similar IVFM and as a special case of semi-similar fuzzy matrices.

Keywords: k-semi-similar fuzzy matrices, semi-similar IVFM

AMS Mathematics Subject Classification (2010): 15A57; 15A09

1. Introduction

In this paper, we deal with interval-valued fuzzy matrices (IVFM) that is, matrices whose entries are intervals and all the intervals are subintervals of the interval [0, 1]. Recently, the concept of IVFM a generalization of fuzzy matrix was introduced and developed by Shyamal and Pal [6], by extending the max-min operations on fuzzy algebra F=[0, 1], for elements $a,b \in F$, $a+b=max\{a,b\}$ and $a \cdot b=min\{a,b\}$ for intervals. In [4], Meenakshi and kaliraja have represented an IVFM as an interval matrix of its lower and upper limit fuzzy matrices. The concept of Pseudo-similar fuzzy matrices studied by Meenakshi in [3] is generalized for fuzzy matrices and IVFM in [5] and [1] respectively.

In section 2, some basic definitions and results required are given. In section 3, we have introduced the concept of k-semi-similar interval-valued fuzzy matrices (IVFM) as a generalization of semi-similar IVFM and as a special case of semi-similar fuzzy matrices [3].

2. Preliminaries

Definition 2.1. [3] $A \in F_m$ and $B \in F_n$ are said to be pseudo-similar and denote it by $A \cong B$ if there exist $X \in F_{mn}$ and $Y \in F_{nm}$ such that A = XBY, B = YAX and XYX = X.

Definition 2.2. [3] $A \in F_m$ and $B \in F_n$ are said to be semi-similar and denote it by $A \approx B$ if there exist $X \in F_{mn}$ and $Y \in F_{nm}$ such that A = XBY and B = YAX.

Lemma 2.1. [3] Let $A \in F_m$ and $B \in F_n$. Then the following are equivalent:

- (i) $A \cong B$
- (ii) There exist $X \in F_{mn}$, $Y \in F_{nm}$ such that A = XBY, B = YAX, XYX = X and YXY = Y.
- (iii) There exist $X \in F_{mn}$, $Y \in F_{nm}$ such that A = XBY, B = ZAX, XYX = X = XZX.

k-Semi-Similar Interval-Valued Fuzzy Matrices

Definition 2.3. [4] An IVFM of order $m \times n$ is defined as $A=(a_{ij})_{m \times n}$, where $a_{ij}=[a_{ijL}, a_{ijU}]$, the ij^{th} element of A is an interval representing the membership value. All the elements of an IVFM are intervals and all the intervals are subintervals of the interval [0, 1].

For A= $(a_{ij})_{m \times n}$ and B= $(b_{ij})_{m \times n}$, their sum A+B is defined by, B= A= $(a_{ij}+b_{ij})=([(a_{ij1}+b_{ij1}), (a_{ij1}+b_{ij1})])$ (2.1)and their product

$$A+B=A=(a_{ij}+b_{ij})=([(a_{ijL}+b_{ijL}), (a_{ijU}+b_{ijU})]) (2.1) \text{ and their product is defined by,}$$
$$AB=(c_{ij})=\sum_{k=1}^{n}a_{ik}b_{kj}=\left[\sum_{k=1}^{n}(a_{ikL}b_{kjL}), \sum_{k=1}^{n}(a_{ikU}b_{kjU})\right]i=1,2,...,m \text{ and } j=1,2,...,p(2.2)$$

In particular if $a_{ijL} = a_{ijU}$ and $b_{ijL} = b_{ijU}$ then (2.2) reduces to the standard max-min composition of fuzzy matrices [1]. $A \le B \iff a_{ijL} \le b_{ijL}$ and $a_{ijU} \le b_{ijU}$.

Definition 2.4. [4] For a pair of fuzzy matrices $E=(e_{ij})$ and $F=(f_{ij})$ in F_{mn} such that $E \leq F$, let us define the interval matrix denoted as [E, F], whose ijth entry is the interval with lower limit e_{ij} and upper limit f_{ij} , that is ($[e_{ij}, f_{ij}]$). In particular for E=F, IVFM [E, E] reduces to $E \in F_{mn}$. For $A=(a_{ij})=[a_{ijL}, a_{ijU}] \in (IVFM)_{mn}$, let us define $A_L=(a_{ijL})$ and $A_U=(a_{ijU})$. Clearly A_L and A_U belongs to F_{mn} such that $A_L \leq A_U$ and from Definition (2.4) A can be written as $A=[A_L, A_U]$. For $A \in (IVFM)_{mn}$, A^T denotes the transpose of A.

Lemma 2.2. [4] For $A=[A_L, A_U] \in (IVFM)_{mn}$ and $B=[B_L, B_U] \in (IVFM)_{np}$ the following hold: (i) $A^T=[A_L^T, A_U^T]$ (ii) $AB=[A_L B_L, A_U B_U]$

Definition 2.4. [5] $A \in F_n$ is said to be right k-pseudo-similar to $B \in F_n$ and it is denoted by $A \stackrel{k}{\cong} B$ if there exist X, $Y \in F_n$ such that A = XBY, $B = YAX^k$, $X^kYX = X^k$ and YXY = Y.

Definition 2.5. [5] $A \in F_n$ is said to be left k-pseudo-similar to $B \in F_n$ and it is denoted by $A \stackrel{k}{\cong} B$ if there exist X, $Y \in F_n$ such that $A = X^k BY$, B = YAX, $XYX^k = X^k$ and YXY = Y.

Remark 2.1. In particular for k=1, Definitions 2.4 and 2.5 are identical. Hence k-pseudosimilar is reduced to pseudo-similar fuzzy matrices. However, both right and left kpseudo-similarity relations are not symmetric as in the case of pseudo-similarity of fuzzy matrices.

3. k-semi-similar interval-valued fuzzy matrices (IVFM)

Definition 3.1. A \in (IVFM)_m and B \in (IVFM)_n are said to be semi-similar IVFM and it is denoted by $A \approx B$ if there exist X \in (IVFM)_{mn} and Y \in (IVFM)_{nm} such that A = XBY and

B = YAX.

Remark 3.1. In particular, for fuzzy matrices $A \in F_m$, $B \in F_n$, since $A_L = A_U$ and $B_L = B_U$,

P. Jenita

Definition 3.1 reduces to semi-similar fuzzy matrices (Definition [2.2]). Also we observe that $A \approx B \Leftrightarrow B \approx A$.

Definition 3.2. $A \in (IVFM)_n$ is said to be right k-semi-similar to $B \in (IVFM)_n$ and it is denoted by $A \approx B^{I(k)} B$ if there exist X, $Y \in (IVFM)_n$ such that A = XBY and $B = YAX^k$.

Definition 3.3. $A \in (IVFM)_n$ is said to be left k-semi-similar to $B \in (IVFM)_n$ and it is denoted by $A \approx B$ if there exist X, $Y \in (IVFM)_n$ such that $A = X^k BY$ and B = YAX.

Remark 3.2. In particular, for fuzzy matrices $A \in F_m$, $B \in F_n$, since $A_L = A_U$ and $B_L = B_U$, Definition 3.2 and 3.3 to the following:

Definition 3.4. $A \in F_n$ is said to be right k-semi-similar to $B \in F_n$ and it is denoted by $A \approx B^k$ if there exist X, $Y \in F_n$ such that A = XBY and $B = YAX^k$.

Definition 3.5. $A \in F_n$ is said to be left k-semi-similar to $B \in F_n$ and it is denoted by $A \approx_{\ell}^{k} B$ if there exist X, $Y \in F_n$ such that $A = X^k BY$ and B = YAX.

Remark 3.3. For k=1, $A_L=A_U$ and $B_L=B_U$ Definitions 3.2 and 3.3 reduced to Definition 2.2.

Remark 3.4. It is clear that, k-pseudo-similar IVFM \Rightarrow k-semi-similar IVFM. But the converse is not true. This is illustrated in the following:

Example 3.1. Let us consider
$$X = \begin{bmatrix} (0.3, 0.5) & (1,1) \\ (0.5, 0.5) & (0.2, 0.5) \end{bmatrix}$$
 and $Y = \begin{bmatrix} (1,1) & (1,1) \\ (0,0) & (0,0) \end{bmatrix}$.
For $A = \begin{bmatrix} (0.3, 0.5) & (0.3, 0.5) \\ (0.5, 0.5) & (0.5, 0.5) \end{bmatrix}$ and $B = \begin{bmatrix} (0.5, 0.5) & (0.5, 0.5) \\ (0,0) & (0,0) \end{bmatrix}$, $A = XBY$ and $B = YAX^2$.

Therefore A is right 2-semi-similar IVFM to B, but $X^2YX \neq X^2$ and $YXY \neq Y$. Hence A is not right 2-pseudo similar IVFM to B.

Theorem 3.1. Let A, $B \in (IVFM)_n$. Then the following are equivalent.

(i) $A \approx B_{r}^{I(k)}$ (ii) $B^{T} \approx A^{T}$

(iii) $PAP^{T} \approx PBP^{T}$ for some permutation matrix $P=[P_L, P_U] \in (IVFM)_n$ with $P=P_L=P_U$.

Proof: (i) \Leftrightarrow (ii): This is direct by taking transpose on both sides and by using $(A^T)^T = A$ and $(AX)^T = X^T A^T$.

(ii) \Leftrightarrow (iii): Suppose $A \approx_{r}^{k} B$ then A = XBY and $B = YAX^{k}$.

k-Semi-Similar Interval-Valued Fuzzy Matrices

 $A = XBY \Longrightarrow PAP^{T} = PXBYP^{T} = (PXP^{T})(PBP^{T})(PYP^{T}) (3.1)$ $B = YAX^{k} \Longrightarrow PBP^{T} = PYAX^{k}P^{T} = (PYP^{T})(PAP^{T})(PX^{k}P^{T}) = (PYP^{T})(PAP^{T})(PXP^{T})^{k} (3.2)$ Hence $PAP^{T} \stackrel{k}{\approx} PBP^{T}$.

Conversely, suppose $PAP^T \approx PBP^T$.

Pre multiply by P^{T} and post multiply by P in Equations 3.1 and 3.2, we get A = XBY and $B = YAX^{k}$. Hence $A \approx_{T}^{k} B$.

Hence the proof.

Theorem 3.2. Let A, $B \in (IVFM)_n$. Then the following are equivalent.

- (i) $A \approx_{\ell}^{I(k)} B$ (ii) $B^{T} \approx_{r}^{I(k)} A^{T}$ (iii) $p \neq p^{T} = P^{I(k)}$
- (iii) $PAP^T \approx PBP^T$ for some permutation matrix $P=[P_L, P_U] \in (IVFM)_n$. with $P=P_L=P_U$.

Proof: Proof of the theorem is similar to Theorem 3.1 and hence omitted.

Remark 3.5. In particular, for k=1 Theorems 3.1 and 3.2 reduces to the following Theorem.

Theorem 3.3. Let $A \in (IVFM)_m$ and $B \in (IVFM)_n$. Then the following are equivalent.

- (i) $A \approx B$
- (ii) $A^T \stackrel{i}{\approx} B^T$
- (iii) $PAP^T \approx QBQ^T$ for some permutation matrices $P=[P_L, P_U] \in (IVFM)_n$ with $P=P_L=P_U$ and $Q=[Q_L, Q_U] \in (IVFM)_n$ with $Q=Q_L=Q_U$.

Remark 3.6. In particular, for fuzzy matrices $A \in F_m$, $B \in F_n$, since $A_L = A_U$ and $B_L = B_U$ then Theorems 3.1 and 3.2 reduces the following theorems.

Theorem 3.4. Let A, $B \in F_n$. Then the following are equivalent.

- (i) $A \approx B_r^{k} B$
- (ii) $B^T \approx_{\ell}^{k} A^T$
- (iii) $PAP^T \approx PBP^T$ for some permutation matrix $P \in F_n$.

Theorem 3.5. Let A, $B \in F_n$. Then the following are equivalent.

- (i) $A \approx B$
- (ii) $B^T \stackrel{k}{\approx} A^T$
- (iii) $PAP^T \approx_{e}^{k} PBP^T$ for some permutation matrix $P \in F_n$.

P. Jenita

Remark 3.7, In particular, for k=1, for fuzzy matrices $A \in F_m$, $B \in F_n$, since $A_L = A_U$ and $B_L = B_U$ then Theorem (3.1) and (3.2) reduces the following theorem.

Theorem 3.6. [3] Let $A \in F_m$ and $B \in F_n$. Then the following are equivalent.

- (i) $A \approx B$
- (ii) $A^T \approx B^T$
- (iii) $PAP^T \approx QBQ^T$ for some permutation matrices $P \in F_m$ and $Q \in F_n$.

Theorem 3.7. Let A, B, C \in (IVFM)_n. If $A \approx_r^{I(k)} B(A \approx_{\ell}^{I(k)} B)$ and $B \approx_r^{I(k)} C(B \approx_{\ell}^{I(k)} C)$ then $A \approx_r^{I(k)} C(A \approx_{\ell}^{I(k)} C)$

 $A \approx C$) if there exist matrices X, Y, Z and L with XL = LX.

Proof: Since $A \approx B^{I(k)}$, by Definition [3.2] A = XBY and $B = YAX^k$.

Since $B \approx C^{I(k)}$, by Definition 3.2 B = LCZ and $C = ZBL^k$.

A = XBY = X(LCZ)Y = (XL)C(ZY) = UCV, where U=XL and V=ZY.

 $C = ZBL^{k} = Z(YAX^{k})L^{k} = (ZY)A(X^{k}L^{k}) = (ZY)A(XL)^{k} = VAU^{k}.$

Hence the proof.

Remark 3.8. In particular, for k=1 Theorem 3.7 reduces to the following theorem.

Theorem 3.8. Let $A \in (IVFM)_m$, $B \in (IVFM)_n$ and $C \in (IVFM)_p$. If $A \approx_r^{l} B$ and $B \approx_r^{l} C$ then $A \approx_r^{l} C$.

Remark 3.9. In particular, for fuzzy matrices $A \in F_m$, $B \in F_n$, since $A_L = A_U$ and $B_L = B_U$ then Theorem 3.7 reduces the following theorem.

Theorem 3.9. Let A, B, $C \in F_n$. If $A \approx_r^k B(A \approx_\ell^k B)$ and $B \approx_r^k C(B \approx_\ell^k C)$ then $A \approx_r^k C(A \approx_\ell^k C)$ if there exist matrices X, Y, Z and L with XL = LX.

Remark 3.10. In particular, for k=1, Theorem 3.9 reduces the following theorem.

Theorem 3.10. [3] Let $A \in F_m$, $B \in F_n$ and $C \in F_n$. If $A \approx B$, $B \approx C$ then $A \approx C$.

REFERENCES

- 1. P.Jenita, *k*-Pseudo-similar interval-valued fuzzy matrices, *Intern. J. Fuzzy Mathematical Archive*, 5(1) (2014) 1-9.
- 2. K.H.Kim and F.W.Roush, Generalized fuzzy matrices, *Fuzzy Sets and Systems*, 4 (1980) 293-315.
- 3. AR.Meenakshi, *Fuzzy Matrix Theory and Applications*, MJP Publishers, Chennai, 2008.
- 4. AR.Meenakshi and M.Kaliraja, Regular interval valued fuzzy matrices, *Advances in Fuzzy Mathematics*, 5(1) (2010) 7-15.
- 5. AR.Meenakshi and P.Jenita, k-Pseudo-similar fuzzy matrices, communicated.
- 6. A.K.Shyamal and M.Pal, Interval valued fuzzy matrices, *Journal of Fuzzy Mathematics*, 14(3) (2006) 582-592.