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1. Introduction 
Connectedness [1] is a well-known notion in topology. Numerous authors studied 
connectedness. In [2], P-spaces and external disconnectednessare studied. Connectedness 
in [4–6] are used to expand some topological spaces. In [13], authors proved that neither 
first countable nor C~ech-complete spaces are maximal Tychonoff connected. Many other 
topologists defined and studied connectedness in bitopological spaces [3, 12]. It is 
important to study some types of connectedness in digital spaces. A point with integer 
coordinates is called a digital point. The problem of finding a topology for the digital 
plane and the digital 3-space is of importance in image processing and more generally in 
all situations where spatial relations are modeled on a computer. In all these applications 
it is essential to have a data structure on the computer which shares as many as possible 
features with the real topological situation. Connectedness and compactness are powerful 
tools in topology but they have many dissimilar properties. The concept of Hausdorff 
spaces is almost an integral part of compactness. Investigations into the properties of cut 
points of topological spaces which are connected, compact and Hausdorff date back to 
the 1920s. Connectedness together with compactness with the assumption of Hausdorff 
has been studied in [15] from the view point of cut points. In [7], authors studied some 
types of connected topological spaces. Recently Palanimani [9] introduced and studied a 
new class of sets called β* -closed sets in topological spaces. Since then these concepts 
have used to define and investigate many topological properties. The aim of this paper is 
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to study β* -connectedness. Also digital spaces are examined in the context of these new 
concepts. However, our main interest shall be digital spaces that are also topological 
spaces. 
 
2. Preliminaries 
Throughout the present paper, the space (� , τ) and (
,σ) always mean topological 
spaces on which no separation axioms are assumed unless explicitly stated. 
Here we present some of the definitions, which are used in our study.  
 
Definition 2.1. A subset � of a topological spaces (� , τ)  is called a  

(i) generalized closed (briefly, �-closed) [8] if 
�(�)  ⊆� whenever �⊆�and � 
is open in (�, τ). 

(ii) β*-closed [9] is 
�(���(�))  ⊆� whenever �⊆� and � is g-open in (�, τ). 
The Complements of the above mentioned closed sets are their respective open sets. We 
denote the collection of all g-closed (resp. β*-closed) sets by �
(�) (resp. β*
(�)). We 
set�
(�, �)  =  {� ∶  �∈�∈�
(�)} (resp. β*
(�, �) = {� ∶  �∈�∈β*
(�)}. Theβ* 
closure of a set�, denoted by β*
�(�), is the intersection of all β*-closed sets 
containing�.β*
�(�) is the smallest β* -closed set containing�. The β* -interior of a set � 
denoted by β*���(�), is the union of all β* -open sets contained in�.β*���(�) is the 
largest β* -open set contained in�. The family of all β*-open (resp. β* -closed) sets in a 
space � will be denoted by β*�(�) (resp. β*
(�)) . 
 
Proposition 2.1. [9] (i) The union of any family of β* -open sets is a β* -open set. 
(ii) The intersection of an open and a β* -open set is a β* -open set. 
 
Lemma 2.1. [9] The β*-closure of a subset �of�, denoted by β*
�(�), is the set of allx 
∈X such that�∩�≠φ  for every�∈β*�(�, �),  whereβ*�(�, �)= {� ∶  �∈�∈β*�(�, τ)}. 
 
Definition 2.2. The β*-boundary of a set � of a space � is defined byβ*-��(�) 
=β*
�(�)∩β*
�(�– �).  
 
Definition 2.3. A space � is said to be β* -connected if � cannot be expressed as the 
union of two disjoint nonempty β* -open sets of�. 
 
Lemma 2.2. Let� be a subset of a topological space�. Then �∈β*�(�) if and only 
ifβ*
�(�) is β* -clopen in � (i.e., β* -open and β* -closed). 
 
Definition 2.4. [11] A subset �⊆� is called a β*-neighborhood (briefly β* -nbd) of a 
point �∈�if there exists a β* -open set �⊆� such that�∈�⊆�. 
 
3. ββββ* - Separateness and ββββ*-connectedness 
Definition 3.1. Two subsets � and � in a space � are said to be β* -separated if and only 
if �∩β*
�(�) = φandβ*
�(�) ∩� = φ.From the fact that β*
�(�) ⊂
�(�), for every 
subset �of�, every separated set is β*-separated. But the converse may not be true as 
shown in the following example. 



R. Ramesh,A. Vadiveland D. Sivakumar 

11 
 

Example 3.1. Let� =  { , �, !, �} with a topology τ =  {�, φ, {�}, {!, �}, {�, !, �}}. 
The subsets {!}, { , �} are β* -separated but not separated. 
 
Remark 3.1. Each two β* -separated sets are always disjoint, since�∩�⊆�∩β*
�(�) =
φ. The converse may not be true in general. 
 
Example 3.2. In Example 3.1, β*O(X) = {X, φ, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {a, b, 
c}, {a, b, d},{b, c, d}}. The subsets {�, !}, { , �} are disjoint but not β* -separated. 
 
Theorem 3.1. Let� and � be nonempty sets in a space�. The following statements hold: 

(i) If � and � are β* -separated and �" ⊆�and�"⊆�, then �"and �" are so. 
(ii) If �∩� =  φsuch that each of � and � are both β* -closed (β* -open), then � 

and � are β* -separated. 
(iii)If each of � and � are both β*-closed (β*-open) and if # =  �∩ (�– �) and 

� = �∩ (�– �), then # and � are β* -separated. 
Proof: (i) Since�" ⊂�, then β*
�(�")⊂β*
�(�). Then �∩β*
� (�)  =  φ implies 
�" ∩β

*
�(�)  =  φand �" ∩β
*
�(�")  =  φ. Similarly,�" ∩β

*
�(�")  =  φ. Hence �" and 
�" are β* -separated. 
(ii) Since � =   β*
�(�) and � =  β*
�(�)and�∩� =  φ, then β*
�(�) ∩� =  φ and 
β*
�(�)∩� =  φ. Hence � and � are β* -separated. If � and � are β* -open, then their 
complements are β* -closed. 
(iii) If � and �areβ*-open, then �– � and �– � are β*-closed. Since#⊂�– �, 
β*
�(#)⊂β*
�(� − �)  =  �– � and so β*
�(#) ∩� =  φ. Thus �∩β*
� (#)  =
 φ.Similarly, #∩β*
�(�)  =  φ.Hence # and � are β* -Separated. 
 
Theorem 3.2. The sets � and � of a space � are β* -separated if and only if there exist � 
and % in β*�(�) such that �⊂�, �⊂% and �∩% = φ, �∩� = φ. 
Proof: Let � and � be β* -separated sets. Set % = � − β*
�(�) and � =  � − β*
�(�). 
Then�, %∈β*�(�) such that �⊂�, �⊂% and �∩% =  φ, �∩� =  φ. On the other hand, 
let �, %∈β*�(�) such that �⊂�, �⊂% and �∩% =  φ, �∩� =  φ. Since �– % and �– � 
are β* -closed, then β*
�(�)⊂�– %⊂�– � and β*
�(�)⊂�– �⊂�– �. Thus 
β*
� (�) ∩� =  φand β*
�(�)∩� =  φ. 
 
Definition 3.2. A point �∈�is called a β* -limit point of a set �⊂� if every β* -open set 
�⊆� containing � contains a point of � other than�. 
 
Theorem 3.3. Let A and B be nonempty disjoint subsets of a space Xand E =  A∪B. 
Then A and B are β*-separated if and only if each ofA and B is β* -closed (β* -open) in E. 
Proof: Let A and B are β* -separated sets. By Definition 3.1., A contains no β* -limit 
points ofB. Then B contains all β* -limit points of B which are in A∪B and B is β* -closed 
in A∪B. Therefore B is β* -closed inE. Similarly A is β* -closed in E. 
 
Definition 3.3. A subset S of a space X is said to be β* -connected relative to X if there is 
not exist two β* -separated subsets A and B relative to XandS =  A∪B. Otherwise, S is 
said to beβ* -disconnected. 
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By Definition 3.3., one can show that each β
* -connected set is connected. The converse 

may not be true in general as shown in the below examples. In other words, each 
disconnected isβ* -disconnected. 
 
Example 3.3.  Any space with indiscrete topology is connected but not β*-connected 
since β* -open sets establish a discrete topology. 
 
Example 3.4. LetX =  {a, b, c, d} with a topologyτ =  {X, φ, {a}, {b}, {a, b}, {a, b, c}}. 
The subset  {a, b, c}is connected but not β* -connected. 
 
Theorem 3.4. Let A and B be subsets in a space X such that A⊂B⊂β*Cl(A). If A isβ*-
connected, then B is β*-connected. 
Proof: If B is β*-disconnected, then there exist two β*-separated subsets U and V relative 
to X such that B =  U∪V.Then either A⊆UorA⊆V. Without loss of generality, let A⊆U. 
As A⊆U⊆B,β*Cl5(A)⊆β*Cl5(U)⊂β*Cl(U).Alsoβ*Cl5(A)=B∩β*Cl(A) = B⊇β*Cl(U).This 
implies toB =  β*Cl(U). So U and V are not β*-separated and B isβ*-connected. 
 
Theorem 3.5. If E is β* -connected, thenβ*Cl(E) is β* - connected. 
Proof: By contradiction, suppose that β*Cl(E) is β*-disconnected. Then there are two 
nonempty β* -separated sets G and H in X such that β*Cl(E)  =  G∪H. 
Since E = (G∩E)∪(H∩E) and β*Cl(G∩E)⊂β*Cl(G) and β*Cl(H∩E)⊂β*Cl(H) and G∩H= 
φ, then (β*Cl(G∩E)) ∩H = φ. Hence (β*Cl(G∩E)) ∩(H∩E)= φ. Similarly (β*Cl(H∩E)) 
∩(G∩E)= φ. Therefore Eis β* -disconnected. 
 
Lemma 3.1. Let A⊆B∪C such that A be a nonempty β*-connected set in a space Xand B, 
C are β* -separated. Then only one of the following conditions holds: 
(i)A⊆BandA∩C = φ,(ii)A⊆Cand A∩B = φ. 
Proof: Since A∩C =  φ, then A⊆B. Also, ifA∩B =  φ, then A⊆C. Since A⊆B∩C, then 
both A∩B =  φ and A∩C =  φcannot hold simultaneously.  
Similarly, suppose that A∩B≠φand A∩C≠φ, then, by Theorem 3.5.(i), A∩B and A∩C are 
β

*-separated such that A = (A∩B) ∪ (A∩C) which contradicts with the   β*-
connectedness of A. Hence one of the conditions (i) and (ii) must be hold. 
 
Definition 3.4. [10], [11]  A function f ∶  X → Y is said to be: 
(i) β* -continuous if the inverse image of each open set in Y is β* -open in X. 
(ii) β* -open if the image of each open set in X is β* -open in Y. 
(iii) β* -closed if the image of each closed set inX is β

* -closed in Y. 
 
Lemma 3.2. Letf ∶ X → Y be a β*-continuous function. Then β*Cl<f ="(B)>⊆f ="(Cl(B)), 
for each B⊆Y.  
Proof: Let A be subset of (X, τ). Let B =  f(A) be subset of Y. Then Cl(B) is closed 
inY.Since f is β*-continuous, f ="(Cl(B)) is β*-closed in X and A⊂f ="<f(A)>⊂f ="(Cl(B)) 
that is f ="(Cl(B)) is β* -closed subset of XcontainingA. By Definition of β*-closed sets 
implies β*-Cl(A)⊆f ="( Cl(B)). Hence β*Cl<f ="(B)>⊆f ="(Cl(B)). 
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Theorem 3.6. For a β*-continuous function f ∶  X → Y, if K is β*-connected in X, then 
f(K) is connected in Y 
Proof: Suppose that f(K) is disconnected inY. There exist two separated sets P and Q of Y 
such thatf(K) =  P∪Q. Set A =  K∩f ="(P) andB =  K∩f ="(Q). Sincef(K)∩P≠φ, then 
K∩f ="(P)≠φ and so A≠φ. SimilarlyB≠φ, SinceP∩Q =  φ, then A∩B =  K∩f ="(P∩Q) =
 φand soA∩B =  φ. Since f is β

*-continuous, then by Lemma 3.2., 
β*Cl<f ="(Q)>⊂f =" (Cl(Q))andB⊂f ="(Q), then β*Cl(B)) ⊂f ="(Cl(Q)). 
Since P∩Cl(Q)  =  φ, then A∩f ="<Cl(Q)>⊂ f ="(P)∩f ="(Cl(Q))  =  φ and then 
A∩β*Cl(B)  = φ. Thus A and B are β* -separated. 
 
Corollary 3.1. For a β* -continuous function f ∶  X → Y, if K is disconnected in X, then 
f(K) is β*- disconnected in Y. 
Proof: Obvious. 
 
Theorem 3.7. For a bijectiveβ* -closed B ∶  � → 
, if K is β*-connected in
, then B="(C) 
is connected in �. 
Proof: The proof is similar to that of Theorem 3.6. Thus we omit it. 
 
Definition 3.5. A function f ∶  X → Yis said to be: 

(i) β
* -Irresolute if for each point x∈X and each β* -open set V of Ycontainingf(x), 

there exists aβ* -open set U  of X containing x such thatf (U) ⊂V. 
(ii)  β

* -Irresolute [10] if f ="(V)∈β*O(X) for every V∈β*O(Y). 
(iii)  M-β* -open if f(V)∈β*O(Y) for every V∈β*O(X). 
(iv) M-β* -closed if f(V)⊂β*C(Y) for every V∈β*C(X). 
(v) Strongly β* -irresolute if f ="(V)∈β*O(X) for every open set Vin Y. 
(vi) StronglyM-β* -open if f(V)∈β*O(Y) for every open set Vin X. 
(vii)  Strongly M-β* -closed if f(V)∈β*C(Y) for every closed set Vin X. 

 
Lemma 3.3.  A function B ∶  � → 
is aβ*-irresolute if and only  
ifβ*
�<B="(�)>⊂B="(β*<
�(�)>⊂B="(
�(�)), for each �⊂
. 
Proof: Follows from the Definition 3.5. 
 
Theorem 3.8. Let B ∶  (�, τ)  →  (
,σ)be a β* -irresolute function. If C is β* -connected 
in �, then B(C) is β* -connected in 
. 
Proof: By using Definition 3.20.and Lemma 3.3, it is direct consequence of Theorem 3.6. 
 
3.1. Strongly β*-connectedness in compact spaces 
Definition 3.1.1. A space � is strongly β* -connected if and only if it is not a disjoint 
union of countably many but more than one β* -closed set i.e. if HI are nonempty disjoint 
closed setsof�, then �≠H" ∪ HJ ∪ ….  Otherwise� is said to be strongly β* -disconnected. 
Note the similarity between Definition 4.1.and that of β* -connectedness. If � is β* -
connected, and H1andH2 are any two nonempty disjoint closed sets of�, then �≠H" ∪ HJ.  
 
Lemma 3.1.1. For any surjectiveβ* -irresolute function B ∶  � → 
. The image B(�) is 
strongly β* -connected if � is strongly β* -connected. 
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Proof: Suppose B(�) is strongly β* -disconnected, by Definition 4.1. it is a disjoint union 
of countably many but more than one β* -closed sets. Since B is β* -irresolute, then the 
inverse image of β* -closed sets are still β* -closed, � is also a disjoint union of β* -closed 
sets. Therefore, B(�) is strongly β* -connected. 
 
Theorem 3.1.1. A space � is strongly β* -connected if there exists a constant surjective 
β*-irresolute functionB ∶  � → L, where L denote to a discrete space of�. 
Proof: Let � be strongly β*-connected and B ∶  � → L be a surjectiveβ*-irresolute 
function, then by Lemma 3.1.1., B(�) is strongly β*-connected. The only strongly β*-
connected subset of L are the one-point spaces. Hence Bis constant. Conversely, suppose 
� is a disjoint union of countably many but more than one β*-closed sets, � =  ∪MHM. 
Then define B: � → L by taking B(�) = Owhenever�∈HM. This Bis a surjectiveβ*-
irresolute and not constant. So �is strongly β*-connected. Strongly β*-connectedness is a 
stronger notion of β*-connectedness. In other words, given aβ*-connected space, we can 
make it strongly β*-connected by adding some conditions. But what conditions should be 
added is the difficulty. Our starting point is β*-connected spaces, thus aβ*-continuum may 
be useful. The concept of a β*-continuum is defined on a β*-connected set. 
 
Definition 3.1.2. A compact β* -connected set is called a β* continuum. 
 
Definition 3.1.3. A space � is called: 
(i)β*Q"if for each �, R∈�, �≠R, there exist two disjoint β*-open sets � and % such 

that�∈�, R∉�, and �∉%, R∈%. 
(ii) β*T2iffor each �,   R∈�,   �≠R, there exist two disjoint β*-open sets � and % such that 

�∈�, R∈%and �∩% = φ. 
(iii) β*-normal for any pair of disjoint β*-closed sets U" and UJ, there exist disjointβ*-

opensets� and % such that U"⊂� and UJ ⊂% such that  � ∩% = φ. 
 
Lemma 3.1.2. If A is any β* -continuum in a β*QJ space � and � is any β* -open set such 
that � ∩� ≠φ≠� ∩ (�– �), then every componentof <A ∩β*
�(�)>∩β* − bd(�)≠φ. 
Proof: It is obvious by Definitions 2.2., 3.1.2.and 3.1.3. 
 
Theorem 3.1.2. Let� be a compact β*QJ-space.Then  �  is β*-connected if and only if  � 
is strongly β*-connected. 
Proof: It is clear that if � is strongly β*-connected, then � is β*-connected. Now, 
supposethat � is a compact β*QJ   β

*-connected space and it is strongly β*-disconnected, 
then� is aunion of a countably many but more than one disjoint β*-closed sets. Then� =
 ∪ CM, where CIare β*-closed disjoint sets. Since a compact β*QJ-space isβ*-normal, then 
�, by Definition 3.1.3., is a β*-normal space. So there exist a β*-open sets � such that 
CJ ⊂� andβ*
�(�)∩C" = φ. Let �" be acomponent of β*
�(�) which intersects CJ. 
Then �" is compact and β*-connected. Now by Lemma 3.1.2.,�"  ∩β

*– bd(�)≠φi.e. �" 
contains a point V∈β*– bd(�) such that V∉� and V∉C" . Hence �"  ∩CM  ≠φfor some 
O >  2. Let CYJ  be the first CI for O >  2 which intersects�", and let % be a β*-open set 
satisfying CYJ ⊂%,andβ*
�(%)  ∩CJ = φ.Then let �J  be a component of �" ∩β

*
�(%) 
which contains a point of CYJ. Again we have �J ∩β

* – bd(%)≠φ, and �J contains some 
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point V∈β* – bd (%) such that  V∉%, V∉C"∪CJ. Hence �J ∩CM≠φ for some O > �J, and 
�J ∩CM  = φ forO < �J. Let CY[ be the first CI for O > �J, which intersects �J, then by 
methods similar to the above we can find a compact β* -connected �[ such that 
�[⊂�J ⊂�", and �[ intersects some CI with O > �[ but �[ ∩CI  = φ for O < �[. In this 
manner, we obtain a sequence of sub continuous of � ∶ �"�J�[ … , such that for 
each\, �]∩CI  = φ forO < �] and �] → ∞as\ → ∞. We know that ∩M�I≠φ. Also,(∩M �I) ∩
C] = φfor all \, so that (∩M �M)  ∩ <∪M C]> = φor (∩M �I)∩� = φ.But (∩M �I)⊂�, which 
contradicts the fact that ∩M �I≠φ. Therefore � is stronglyβ*connected. 
 
Theorem 3.1.3. Let� be a locally compact β*QJ-space. If � is locally β*-connected, 
then� is locally strongly β*-connected. 
Proof: Let � be a β*-open β*-nbd of a point �∈�. Then there exists a compact β*-
nbd% of  �lying inside �. Let 
 be a β*-connected component of %containing �.Since % is 
a β*-nbd of � and � is locally β*-connected, 
 is β*-nbd of�. Since 
 isβ*-closed in % 
and%is compact, then 
 is compact. So 
 is a compact β*-connectedβ*-nbd of � lying 
inside �By Theorem 3.1.2., 
 is strongly β*-connected.  
 
Theorem 3.1.4. Let � be a locally compact β*QJ -space. If � is locally β*-connected 
andβ*-connected, then� is strongly β* -connected. 
Proof: This follows from Theorems 3.1.2 and 3.1.3. 
 
Lemma 3.1.3. For a space � the following statements are equivalent:  
(i)  �is a β*Q" -space. 
(ii) For any point �∈�, the singleton set {�} is β* -closed. 
 
Corollary 3.1.1. strongly β*-connected β*Q"-space having more than one point 
isuncountable. 
Proof: By Lemma 3.1.3., a one-point set in a β*Q" -space is β* -closed. Thus by 
Definition 3.1.1., a β *Q" –space cannot have countably many but more than one point.   
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