Intern. J. Fuzzy Mathematical Archive Vol. 6, No. 1, 2015, 85-90 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 22 January 2015 www.researchmathsci.org

******g Closed Sets in Topological Spaces

N.Gomathi¹, N.Meenakumari² and T.Indira³

¹Department of Mathematics, Srimad Andavan Arts and Science College (Autonomous) Trichy-620005, e-mail: gomathi198907@gmail.com Corresponding Author

^{2, 3}Department of Mathematics, Seethalakshmi Ramasamy College (Autonomous) Trichy-620002, e-mail: ²meemamega25@gmail.com, ³drtindirachandru@gmail.com

Received 28 August 2014; accepted 28 November 2014

Abstract. The aim of this paper is to introduce a new class of sets called **g closed sets and investigate some of the basic properties of this class of sets.

Keywords: **g closed sets, **g open sets

AMS Mathematics Subject Classification (2010): 54A05

1. Introduction

Levine [5] introduced generalized closed sets and semi open sets. Abd Monsef, Deeb and Mahmoud introduced β sets and Njastad introduced α sets and Mashour, Abd El-Monsef and Deeb introduced pre-open sets. Andregvic called β sets as semi pre-open sets. Veerakumar [12] introduced g* closed sets. The aim of this paper is to introduce a new type of closed sets namely **g closed sets and investigate some of the basic properties of this class of sets.

2. Preliminaries

Definition 2.1. A subset A of topological space (X, τ) is called

- (1) a generalized closed [5] (briefly g-closed) set, if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) ; the complement of a g-closed set is called a g-open set.
- (2) a **generalized semi-closed** (briefly gs- closed) set, if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of a gs-closed set is called a **gs-open** set.
- (3) a semi-generalized closed(briefly sg- closed) set, if scl(A) ⊆U and A ⊆U and U is semi-open in (X, τ); the complement of a sg-closed set A is called a sg-open set.
- (4) a Ψ -closed set [9], if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ) the complement of a Ψ -closed set is called a Ψ -open set.
- (5) a α -generalized closed [5] (briefly α g- closed) set, if α cl(A) \subseteq U, whenever A \subseteq U and U is open in (X, τ); the complement of an α g-closed set is called a α g-open set.

**g closed sets in topological spaces

- (6) a generalized α closed [4] (briefly gα closed) set, if α cl(A) ⊆ U whenever A ⊆ U and U is α -open in (X, τ); the complement of a gα -closed set is called a gα -open set.
- (7) a generalized pre-closed (briefly gp-closed) set, if pcl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ); the complement of a gp-closed set is called a gp-open set.
- (8) a generalized semi-pre closed [2] (briefly gsp- closed) set, if $Spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of a gsp-closed set is called a gsp-open set.
- (9) a **generalized*-closed**(briefly g*-closed) set, if $cl(A \subseteq U$ whenever $A \subseteq U$ and U is g open in (X, τ) ; the complement of a g*-closed set is called a g*-open set.
- (10) a generalized pre*-closed (briefly gp*-closed) set, if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is gp-open in (X, τ) ; the complement of a gp*-closed set is called a gp*-open set.
- (11) a **generalized** [#] **closed** [7] (briefly g# closed) set, if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α g open in (X, τ); the complement of a g[#] closed set is called g[#] open set.
- (12) a **regular generalized** –**star closed** (briefly $rg^*closed$) set, if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) ; the complement of a rg^* closed set is **rg* open** set.
- (13) a ***generalized closed**(briefly *g closed) set, if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} –open in (X, τ); the complement of a *g-closed set is called a ***g-open** set.
- (14) a **strongly g* closed**(briefly sg* closed) set, if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g open in (X, τ); the complement of a.
- (15) a **regular weakly generalized closed** (briefly rwg closed)set, if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) ; the complement of a rwg closed set in called **rwg open** set.

3. **g closed sets

Definition 3.1. If a subset A of a topological space (X,τ) is called **g closed set, if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g* open in (X, τ) ; the complement of a **g closed set is called **g open set.

Example 3.1. $X = \{a,b,c\}$ $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ τ (Closed sets) = $\{X, \phi, \{c\}, \{b,c\}, \{a,c\}\}$ g closed sets = $\{X, \phi, \{c\}, \{b,c\}, \{a,c\}\}$ g* closed sets = $\{X, \phi, \{c\}, \{b,c\}, \{a,c\}\}$ g* open sets = $\{X, \phi, \{c\}, \{b,c\}, \{a,c\}\}$ **g closed sets = $\{X, \phi, \{c\}, \{b,c\}, \{a,c\}\}$ **g open sets = $\{X, \phi, \{c\}, \{b,c\}, \{a,c\}\}$

N.Gomathi, N.Meenakumari and T. Indira

Theorem 3.1. Every closed set is **g closed set. **Proof:** Let A be a closed set. **TPT:** A is **g closed set, (i.e.) **TPT:** if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g* open Since A is closed, A = cl(A). Let $A \subseteq U$, U is g* open. Now $cl(A) = A \subseteq U$ \Rightarrow A is **g closed.

Example 3.2. The Converse of the above theorem is need not be true as seen from the following example $X = \{a, b, c\}$.

 $\tau_{=\{X, \varphi, \{a\}, \{a,c\}\}} \tau_{\text{(Closed sets)}=\{X, \varphi, \{b\}, \{b,c\}\}}$ **g closed sets ={ X, $\varphi, \{b\}, \{a,b\}\{b,c\}\}$ Here A={a,b} be a **g closed set but not a closed set.

Theorem 3.2. Every g^* closed set is **g closed set. **Proof:** Let A be g^* closed set **TPT:** A is **g closed, (i.e.) **TPT** if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* open By the definition of g^* closed set, if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g open Let $A \subseteq U$ where U is g^* open. Since U is g^* open=> U is g open. Thus $cl(A) \subseteq U$, U is g^* open. \Rightarrow A is **g closed.

Example 3.3. The converse of the above theorem is need not be true as seen from the following example $X = \{a, b, c\}$.

 $\begin{aligned} \tau = & \{X, \phi, \{a\}, \{a, c\}\} \tau \text{ (Closed sets)} = & \{X, \phi, \{b\}, \{b, c\}\} \\ g^* \text{ closed sets} = & \{X, \phi, \{c\}, \{a, c\} \{b, c\}\}^{**}g \text{ closed sets} = & \{X, \phi, \{b\}, \{a, b\} \{b, c\}\} \\ \text{Here } A = & \{a, b\} \text{ is } a^{**}g \text{ closed set , but not } a g^* \text{ closed set} \end{aligned}$

Remark 3.1. **g closedness is independent of $g^* \psi$ closedness. It can be seen from the following examples.

Example 3.4. X={a,b,c, d}. τ ={{X, φ ,{a},{b},{a,b},{a,b,c}} τ (Closed sets)={{X, φ ,{d},{c,d},{a,c,d},{b,c,d}} **g closed sets={{X, φ ,{d},{c,d},{a,c,d},{b,c,d},{a,d},{b,d},{a,b,d}} Here A={b} be a g* Ψ closed set, but not **g closed set

Example 3.5. X={a,b,c}. τ ={{X, φ ,{a},{b,c}} τ (Closed sets)={{X, φ ,,{a},{b,c}}. **g closed sets={{X, φ ,{a},{b},{c},{a,b},{b,c},{a,c}}. Here A={a,b} is a **g closed set, but not g* Ψ set.

Remark 3.2. Similarly we can prove **g closedness is independent of g# closedness.

**g closed sets in topological spaces

Theorem 3.3. If A is strongly g* closed and A is open then A is **g closed set. **Proof:** Let $A \subseteq U$ and U is g^* open. Since A is strongly g* closed set. $cl(int((A)) \subseteq U$ whenever $A \subseteq U$ and U is g open in X. Since A is open, int(A)=A, also g^* open=>g open. Thus $cl(A) \subseteq U$, U is g* open. \Rightarrow A is **g closed.

3.1. Properties of **g closed sets

Theorem 3.1.1. If A and B are**g closed sets then $A \cup B$ is **g closed set. **Proof:** Let U be a g* open in X such that $A \cup B \subseteq U$. Since A and B are **g closed sets. Then, $cl(A) \subseteq U$, $A \subseteq U$ and U is g*open. Similarly $cl(B) \cup B \subseteq U$ and U is g*open.

 \Rightarrow cl(A \cup B)=cl(A) \cup cl(B) \subseteq U \Rightarrow cl(A \cup B) \subseteq U

 \Rightarrow A \cup B is **g closed.

Example 3.1.1. X={a,b,c} $\tau_{=\{X, \varphi, \{a\}, \{b\}, \{a, b\}\}}$ **g closed sets ={ X, φ , {c}, {b,c}, {a,c}} Let $A = \{c\}$ and $B = \{b, c\}$. Then $A \cup B = \{b, c\}$ which is **g closed.

Remark 3.1.1. The intersection of two **g closed sets need not be **g closed set.

Theorem 3.1.2. If a subset A of X is **g closed set if cl(A) – A does not contain any non-empty g*closed set. **Proof:** Let A be a **g closed set. Suppose cl(A) - A contains a non-empty g*closed set namely F, (ie) F \subset cl(A) - A $F \subseteq cl(A) \& F \subseteq A^c \rightarrow (1), (i.e.) A \subseteq F^c$ =>cl(A) \subset F^c $F \subseteq cl(A^c) \rightarrow (2)$ From (1) and (2) $F \subseteq cl(A) \cap cl(A^c)$ \Rightarrow F= φ This is a contradiction to our assumption. Hence the theorem.

The converse is not true.

Theorem 3.1.3. If A is a **g closed set of X such that $A \subseteq B \subseteq cl(A)$ then B is also a **g closed set. **Proof:** Let U be a g*open set of X such that $B \subseteq U$. Now $B \subseteq cl(A)$

N.Gomathi, N.Meenakumari and T. Indira

 $\Rightarrow cl(B) \subseteq cl(cl(A))$ $\Rightarrow cl(A) \subseteq U, \text{ since A is **g closed.}$ $cl(B) \subseteq U$ =>B is **g closed set.

Theorem 3.1.4. If A is g^* open and **g closed set then A is closed set. **Proof:** Let A be both g^* open and **g closed. **TPT:** A is closed Since A is **g closed, $cl(A) \subseteq U$, U is g^* open Since A is g^* open, we can take A=U

- $\Rightarrow Cl(A) \subseteq A, but A \subseteq cl(A)$
- \Rightarrow A=cl(A)
- \Rightarrow A is closed.

Theorem 3.1.5. If a subset A of a topological space (X, τ) is both open and **g closed

```
then A is closed set.

Proof: Let A be both open and **g closed

TPT : A is closed

cl(A) \subseteq U where U is g*open

We know that, open =>g*open

\Rightarrow A is g*open

Now take U=A

cl(A) \subseteq A

Also A \subseteq cl(A)

\Rightarrow cl(A)=A

\Rightarrow A is closed.
```

Theorem 3.1.6. If a subset A of a topological space (X, τ) is both open and regular closed

then A is **g closed set. **Proof:** Let A be both open and regular closed. **TPT:** A be a **g closed A=cl(int(A)) Let $A \subseteq U$ whenever $A \subseteq U$ and U is g*open. Since A is open, int(A)=A. Since A is regular closed, cl(int(A))=A. \Rightarrow cl(int(A))=A \Rightarrow cl(A) \subseteq U [since int(A)=A] \Rightarrow A is **g closed.

Theorem 3.1.7. If a subset A of a topological space (X, τ) is both open and **g closed then A is both regular open and regular closed set. **Proof:** Let A be both open and **g closed. Then by the above theorem (4.7)

A is closed, (ie) cl(A)=A

**g closed sets in topological spaces

Also as A is open int(A)=A -->(*) Sub A=cl(A) in eq (*) \Rightarrow int(cl(A))=A \Rightarrow A is regular open Since A is Closed, cl(A)=A cl(int(A))=A [since int(A)=A] \Rightarrow A is regular closed.

Theorem 3.1.8. If a subset A of a topological space (X, τ) is both open and **g closed

then A is rg closed set. **Proof:** If A is both open and **g closed then by the above theorem (3.1.5). A is closed, (ie) cl(A)=AAlso by the above theorem (3.1.7) A is both regular open and regular closed Let $A \subseteq U$ where U is regular open $cl(A) \subseteq U=A$

 \Rightarrow A is rg closed.

Theorem 3.1.9. Let A be a **g closed and suppose that F is closed then $A \cap F$ is **g closed.

Proof: Let A be a **g closed. **TPT :** $A \cap F$ is **g closed.

Let F be such that $A \cap F \subseteq U$ where U is g*open. Since F is closed $A \cap F$ is closed in A.

 \Rightarrow cl(A \cap F)= A \cap F \subseteq U

- $\Rightarrow cl(A \cap F) \subseteq U$
- \Rightarrow A \cap F is **g closed.

REFERENCES

- 1. M.E.Abd El-Monsef, S.N.El.Deeb and R.A.Mohamoud, β open sets and β continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12 (1983) 77-80.
- 2. D.Andrijevic, Semi-pre opensets, Mat. Vesnik, 38(1) (1986) 24-32.
- 3. N.Biswas, On Characterizations of semi-continuous functions, *Atti, Accad. Naz. Lincei Rend. Cl. Fis. Mat. Natur.*, 48(8) (1970) 399-402.
- 4. R.Devi, H.Maki and K.Balachandran, Generalized α-closed maps and α generalized closed maps, *Indian. J. Pure. Appl. Math*, 29(1) (1998) 37-49.
- 5. N.Levine, Generalized closed sets in topology, *Rend. Circ. Math. Palermo*, 19(2) (1970) 89-96.
- 6. N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1963) 36-41.
- 7. T.Rajendrakumar and G.Anandajothi, On fuzzy strongly g*-closed sets in fuzzy topological spaces, *Intern. J. Fuzzy Mathematical Archive*, 3 (2013) 68-75.
- 8. K.Rekha and T.Indira, Somewhat *b-continuous and somewhat *b-open functions in topological spaces, *Intern. J. Fuzzy Mathematical Archive*, 2 (2013) 17-25.

N.Gomathi, N.Meenakumari and T. Indira

- 9. M.K.R.S.Veerakumar, g[#]-closed sets in topological spaces, *Mem. Fac. Sci. Kochi Univ. Ser. A., Math.*, 24 (2003) 1-13.
- 10. M.K.R.S.Veerakumar, g[#]-semiclosed sets in topological spaces, *Indian. J. Math*, 44(1) (2002) 73-87.
- 11. M.K.R.S.Veerakumar, Between Ψ-closed sets and gsp-closed sets, *Antartica J. Math.*, 2(1) (2005)123-141.
- 12. M.K.R.S.Veerakumar, Between closed sets and g-closed, *Mem. Fac. Sci Koch Univ.* Ser. A. Math., 21 (2000) 1-19.
- 13. M.K.R.S Veerakumar, g-closed sets and GIC -functions, *Indian J. Math.*, 43(2) (2001) 231-247.