
Intern. J. Fuzzy Mathematical Archive 
Vol. 5, No. 2, 2014, 49-56 
ISSN: 2320 –3242 (P), 2320 –3250 (online) 
Published on 20 December 2014 
www.researchmathsci.org 
  

49 

 

International Journal of  

Range Symmetric Matrices in 
Indefinite Inner Product Space 

AR.Meenakshi 

Emeritus Professor, Annamalai University, Annamalainagar-608002. India 
Email: arm _meenakshi @yahoo.co.in 

Received 16 December 2014; accepted 19 December 2014 

Abstract. The concept of range symmetric matrix is extended to indefinite inner product 
space. Equivalent characterizations of a range symmetric matrix in an indefinite inner 
product space in the setting of an indefinite matrix product are presented. Relations 
between EP and range symmetric matrices in an inner product space are discussed. 
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matrices in indefinite inner product spaces under an indefinite matrix multiplication is 
presented.  
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1. Introduction  
An indefinite inner product in �� is a conjugate symmetric sesquilinear from ��, �� 
together with the regularity condition that ��, �� � 0 for all � � �� only when � � 0. 
Any indefinite inner product is associated with a unique invertible complex matrix � 
(called a weight) such that  ��, �� �  �, �� �  where   , � denotes the Euclidean inner 
product on ��, we also make an additional assumption on �, that is, ��  �  �, to present 
the results with much algebraic ease. Thus an indefinite inner product space is a 
generalization of  Minkowski space, where the weight � is a diagonal matrix of order n, 
with the first entry 1 and the remaining entries are all �1 (as studied by physicists). For a 
complex matrix A in Minkowski space, ��������� � ��������� � �������� �
������� fails under the usual product of matrices. This motivates the study on the 
existence of the Moore-Penrose inverse in [7]. Further, there are two different values for 
dot product of vectors in indefinite inner product spaces. To overcome these difficulties, 
a new matrix product, called indefinite matrix multiplication is introduced and some of its 
properties are investigated in [9]. The structure of certain class of EP matrices over the 
complex field having the same range space have been studied by Baskett and Katz in [1] 
and by the author in [4]. A characterization of the maximal subgroup of complex matrices 
obtained in [2] was extended to matrices over an arbitrary field by the author in [5]. 

The aim of this manuscript is to extend the concept of range symmetric matrix to 
indefinite inner product space and present some interesting characterizations of range 
symmetric matrices similar to EP matrices in the setting of indefinite matrix product. 
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Then we characterize the maximal subgroup of ���� the semi group of complex matrices 
containing a hermitian idempotent matrix with respect to the indefinite matrix product 
in indefinite inner product spaces. The results on algebraic structure of complex EP 
matrices having the same range space and characterization of EP matrices over a 
Minkowski space [6] are deduced as special cases. In section 2, we recall the definitions 
and preliminary results required in characterizing the maximal subgroups of complex 
matrices over an indefinite inner product space. Characterizations of a range symmetric 
matrix in �, an indefinite inner product space in the setting of an indefinite matrix 
product are presented in Section 3. Characterization of the maximal subgroups of the 
multiplicative semi groups of EP matrices in � are presented in Section 4. Wherever 
possible, we provide examples to illustrate our results.  

 
2. Preliminaries 
We first recall the notion of an indefinite multiplication of matrices. 
 
Definition 2.1. Let � � ����, � � ����. Let �� be an arbitrary but fixed  � � � complex 
matrix such that ��  �  ���  �  �� �. The indefinite matrix product of � and � (relative to �) 
is defined as � ! � �  ����. 
 
Definition 2.2.  For � � ���� , ���� � ������ is the adjoint of � relative to �� and ��, 
the weights in the appropriate spaces.  
 
Remark 2.1. When �� is the identity matrix the product reduces to the usual product of 
matrices and it can be easily verified that with respect to the indefinite matrix product,  
����"� ! ����# � ����"���� ! �# � �������, where as this rank  property fails under 
the usual matrix multiplication. Thus the Moore –Penrose inverse of a complex matrix 
over an indefinite inner product space, with respect to the indefinite matrix product exists 
and this is one of its main advantages.  
 
Definition 2.3.  � � ���� , is said to be �-invertible if there exists $ � ���� ,  such that 
� ! $ � $ ! � � ��. Such an $ is denoted as �� �� � �� ��.. 
 
Definition 2.4. For � � ����, a matrix $ is called the Moore-Penrose inverse if it 
satisfies the following equations: 
� ! $ ! � � �, $ ! � ! $ � $, �� ! $���� � � ! $ and �$ ! ����� � $ ! �. 
Such an $ is denoted by  ��%� and represented as ��%� � ���%��. 
 
Definition 2.5. The Range space of � � ����   is defined by &��� �  '� � � !
�∈ ��/�∈ ��). 
The Null space of � is defined by *+��� � ' �∈ ��/� ! � � 0). It is clear that 
*+"����# � *����. 
 
Property 2.1. 
(i) ��������� � �.     
(ii) ���%���%� � �. 
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(iii) ������� � �������� 
(iv) &"����# � &"��%�#. 
(v) &"� ! ����# � &���, &"���� ! �# � &������ 
(vi) *"� ! ����# � *"����#, *"���� ! �# � *���. 
 

3. Range symmetric matrices in indefinite inner product space 
Let � denotes the indefinite inner product space, with weight �, under an indefinite 
matrix multiplication. In this section, we shall define a range symmetric matrix in �, 
analogous to that of a range symmetric matrix in the unitary space. We present equivalent 
characterizations of a range symmetric matrix in �. 
 
Definition 3.1. � � ���� is range symmetric in � if and only if &���  �  &������. 
 
Remark 3.1. In particular for � �  ��, this reduces to the definition of range symmetric 
matrix in Unitary space (or) equivalently to an EP matrix [1]. 
 
Theorem 3.1.  For  � � ����, the following are equivalent: 
(1) � is range symmetric in �. 
(2) �� is EP. 
(3) �� is EP. 
(4) *��� � *������. 
(5) *���� � *����. 
(6) ���� �  �- �  .�, for some invertible matrices - and  .. 
(7) &���� � &����. 
Proof: The proof of the equivalence of (1), (2) and (3) runs as follows: 
 � is range symmetric in � / &��� � &������ 

                                                / &���� � &������. 
                                                / &���� � &�����. 
                                                / �� is EP. 
                                                / �������  is EP.                                                 
                                               / �� is EP. 
Thus �1�  /  �2�  /  �3� hold. 
�3�  /  �4�. 
���� is EP / *����  �  *�����. 
                  /  *���   �  *�����. 
                  /  *���   �  *��� � ��. 
                  /  *���   �  *����� �. 
Thus the equivalence of (3) and (4) is proved.  
�4�  /  �5�. 
*���  �   *������  / * ���  �  *������. 
                            / *��� �  *�����. 
                            /  ��� � ���. �4�. ��4 56 � 678+957� 7: �$� �  ��. 
                            /  �� � ���� �4�����. 
                            /  �� � ������4����. 
                            /  *���� � *����. 
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Thus the equivalence of (4) and (5) is proved. 
�3�  /  �6�. 
����  56 <= �  / ����� � ��- , :7� 67>? 5�@?�95A8? >�9�5� -. 
                         / ���� � ���� � �-. 
                         / � � ��-����. ��� +65�B C�7C?�9� 2.1 �5��  
                         / � � �-����������     ��� +65�B C�7C?�9� 2.1�555��. 
                         / ���� � .�.       �DE?�? . � ��-����� �. 
Thus �3�  /  �6� hold. 
�1�   /    �7�. 
 � is range symmetric in � /  &��� �  &"����# 
                                             /  &��� �  &������ 
                                             /  &��� �  &����� 
                                             / ��� � ��4��� 
                                             /  �� � ��������4�� 
                                             /  &���� �  &����. 
Thus �1�   /  �7 � hold. 
 
Remark 3.2. In particular, if � is the Minkowski metric tensor, the above Theorem 
reduces to Theorem 2.2 of [6]. 

 The relation between EP matrices and range symmetric matrices in � are 
discussed in the following: 

 
Theorem 3.2. For � � ���� ,  any two of the following conditions imply the other one. 
(1) � is EP. 
(2) � is range symmetric in �. 
(3) &��� � &����. 
Proof: First we prove that if (1) holds, then (2) is equivalent to (3). That is, if &��� �
&����, then by Theorem(3.1), A is range symmetric in � / &���  � &���� �  &����. 
Thus (2) / (3). 
Hence, (1) and �2� G �3� and (1) and (3) G (2) hold. Now let us prove (2) and (3) G (1). 
By Theorem(3.1), (2) G �� is EP. Hence, &���� � &����� � &����� � &����. By (3), it 
follows that, &��� � &����. Hence, &���  �  &����  G � is EP.  Hence the Theorem. 
  Since the Moore Penrose inverse,  ��%� exists for � � ����, in the indefinite inner 
product space �, under the indefinite matrix product, we shall derive equivalent 
conditions for � to be range symmetric in � involving, ��%�, in the following: 
 
Theorem 3.3. For � � ���� , the following are equivalent: 
(1) � is range symmetric in �. 
(2) "� ! ��%�# � ���%� ! �� 
(3) � is J-EP. 
(4) ��%� is a polynomial in �. 
Proof: � is range symmetric in � / �� is EP            (By Theorem (3.1) 

                                                                                    /  ��������H � ����H����. 
                                                     /   ���H� � �H ���. 
                                                                                    /  ��H� � ��H�. 
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                                                     /� ! ��H� � ���H �� ! �. 

                                                     / "� ! ��%�# � ���%� ! ��.           (By Definition 2.4) 
                                                        / � is J-EP.               (By Definition 3.1 of[ 3 ] 
                                                        / �� is EP.                 (By Theorem (3.1)). 
                                                        / (���H  is a polynomial in ����. 
                                                        /��H is a polynomial in ����.   
                                                        / ��%�  is a polynomial in �.              
 
Lemma 3.1. For � � ���� , "� ! ��%�# is the projection on &��� and (��%� ! �� is the 
projection on &����. 
Proof: � � &��� / � � � ! � � � ! ��%� ! � ! � � � ! ��%� ! �, by Definition 2.4, 
� !  ��%� is the projection on &���, being symmetric and idempotent in �. Similarly, we 
can show that ���%� !  �� is the projection on &����. 
 
Theorem 3.4.  For � � ����, the following are equivalent: 
(1) � is range symmetric in �. 
(2) ��%� is range symmetric in �.  
(3) There exists, < � <��� � <��� � ���� such that � ! < � < ! �  and &���  �  &�<�. 
Proof: (1)G(2): &���%�� � &������ � &��� � &��������� � &���%������. Hence,  ��%� is 
range symmetric in �. Thus (2) holds. 
(2) G (3): Since   ��%� is range symmetric in � and  &���%�� �  &������, &���%��� ��� = 
&������, by Lemma 3.1, �� ! ��%�� � ���%� ! �� � < � ���� ,,satisfy, < � <��� � <���.. 
By Definition (2.4), � ! < � < ! � � �.  &��� I &�<� and ���� � �  ���� <, implies 
&��� � &�<�. Thus (3) holds. 
(3) G (1): Since, < � <��� � <���, it can be verified that <�%� � <. Since &��� � &�<�, < 
is the projection on  &���. Hence, �� ! ��%�� � ���%� ! �� � <  and � � � ! < � < ! �. 
By taking adjoint with respect to � on  � � � ! < � < ! �, we get, < ! ���� � ���� ! < �
����. Further, &������ I &�<� � &���  and ����������  �  �������. Hence, &������  �
 &��� and A is range symmetric in �. Thus (1) holds. Hence the Theorem. 
 
4. Characterization of maximal subgroups 
 In this section, we shall characterize the maximal subgroups of ����. Since, � is J-EP 
and �  is range symmetric in � are equivalent by Theorem 3.3, hence forth we use, � is 
J-EP. First we shall prove certain Lemmas to simplify the proof of the main results in this 
section. 
 
Lemma 4.1. (Theorem 3.7 of [3]): A  matrix  � � ���� , is J-EP if and only if  &������ �
 &������ where  ���� � � ! �. 
 
Lemma 4.2. If � and � are J-EPr, then � ! � is J-EPr  if and only if  &���  �  &���. 
Proof: Since � and � are J-EPr, that is , J-EP of ���� �, by Theorem 3.1, �� and �� are 
EPr. Now by a result of Baskett and katz [1] and Theorem 3.1, &��� � &��� /
&���� � &���� 
                                                                                                         / �������� is EPr. 
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                                                                                                         / �� ! ���  is EPr. 
                                                                                                         / �� ! �� is J-EPr 
Hence the Lemma. 
 
Lemma 4.3. Let  < and J � ����, such that  <��� � < and  J��� � J with &�<� � &�J�, 
then there exists an invertible matrix = of order �, such that J � =<=� ��. 
Proof: Since < � < ! < and J � J ! J, �<�� and �J�� are idempotents. &�<� � &�J�  
implies &�<�� � &�J��.  Thus <� and J� are idempotents having the same range space. 
Therefore there exists an invertible matrix = � ���� ,   such that J� �  =<�= �. Which 
implies, J �  =<��= ��� 
� =<=� ��. Hence the Lemma. 
 
Theorem 4.1. Let < � <��� � <��� � ����. Then, .�<� � '� � ����,/  � is J-EPr and 
&���  � &�<�) is the maximal subgroup of ����,  containing < as the identity element 
under the indefinite inner product multiplication. 
Proof:  Since  < � <��� � <���, < is �-EP follows from Lemma 4.1. From &��� � &�<�, 
we get, ������� � �����<�  �  �. Hence < �  .�<�. For �, � �  .�<�, � and � are �-
EPr with &��� � &�<� � &���, by Lemma 4.2, � ! � is �-EPr. &�� ! �� I &��� �
&�<� and ���� �� !  �� � ������� � �����<� � �. Hence � ! � �  .�<�.  Thus 
.�<�is closed under the indefinite matrix product.  � is �-EPr / �� is EPr    (By 
Theorem 3.1) / ����% � ����% is EPr /  ��%� � ����%� is J-EPr. (by Theorem 3.1). 
Since ������� �  �������%��, &���%�� � &��� � &�<�. Hence ��%� is �-EPr with 
&�"��%�# � &�<�. Thus ,  ��%� � .�<� for each � �  .�<�.  
� ! ��%� � ����%� � ��%�                                                                                            (4.1)  
��%� ! � � ��%��� � ��%�                                                                                             (4.2) 
Since <� is hermitian idempotent with &���� � &��� � &�<� � &�<��, <� is a 
projection on &���� � &����% .Hence, we have the following: 
<� � ��������% � ��%  and <� � ����%���� � ��%��. 
Hence, ��%� � < � ��%�. By using (4.1) and (4.2) , we get  
� ! ��%� � < � ��%� ! �                                                                                                  (4.3) 
Then by Definition 2.4, we have, � � � ! ��%� ! � � < ! �  and  � � � ! ��%� ! � � � !
<. 
Thus ,� � � ! < � < ! �                                                                                               (4.4) 
From (4.3) ��%� is the inverse of � and from (4.4) it follows that < is the identity element 
of .�<� under the indefinite inner product multiplication. Thus .�<� is a subgroup of 
���� under the indefinite matrix product containing <. The maximality of .�<� can be 
proved along the same lines as that for matrices over an arbitrary field (refer :Theorem 
2.1 of [5]) and hence omitted. Hence the Theorem. 
 
Corollary 4.1. Let � be a fixed �-EPr matrix.  Then �K � '� � ���� ,/ � is J-EPr  and 
&��� � &���) � .�<�,where < is the orthogonal projection on &���. 
Proof: Since � is �-EPr, by the above Theorem (4.1), � ! ��%� � < � ��%� ! � is the 
orthogonal projection of &���.  Further, � is �- EPr if and only if � ! < � < ! �. Since 
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&��� � &�<�, the result follows from the Definitions of �K and .�<�. Hence the 
Corollary. 
 
Remark 4.1. In particular for 0 L < L � � ��, < reduces to a hermitian idempotent 
matrix in ���� under the usual matrix multiplication and .�<� in Theorem (4.1) is 
equivalent to .�<� � '� � ����/�< � <� and &��� � &�<�).  Thus our Theorem 
(4.1) reduces to Theorem 2 of [2] and Corollary (4.1) reduces to Theorem 2 of [1].   
 
Remark 4.2. For � � ��, from Theorem (2.2) we have � is EP / &���� � &����.  By 
Theorem (2.3) of [5], for an EP matrix � over an arbitrary field with involution ‘ � ’, 
������� �  �������� is an equivalent condition for the existence of �H.  Thus our  
Theorem (4.1) is an analogue of Theorem (2.1) for matrices over an arbitrary field [5]. 
 
Remark 4.3. For < � ��, &��� � &�<� implies each � �  .�<� is invertible.  
Substituting for <, in equation (4.3), we get � � � ! �� � �� ! �  , that is, � � �� � ��.  
Hence, � � ��, being the identity of the multiplicative group .�<� under the usual 
multiplication of matrices. 
 
Remark 4.4. We observe that, for < � ��, the unique partial isometry = associated with 
each � � ����  called the carrier matrix [8], reduces to ��.  Therefore, the indefinite 
matrix product defined as � ! � �  �=�� in [4] reduces to the usual multiplication of 
matrices, and the group ���� is identical with .�<�, the multiplicative group of 
inventible matrices of order �.  
 
Remark 4.5. Let us illustrate that the condition on E is essential in Theorem 4.1 by the 
following example. 
 
Example 4.1.  Let us consider 

� � O1 1
1 1P         < � O1 0

1 0P    and   � � O0 1
1 0P 

Clearly, � � �� � � � . On computation, we see that < ! < �  <�< � < and <��� �
�<�� L <. Hence < is not J-symmetric but < is �-idempotent. �� � � is EP1, being 
symmetric of ���� 1. By Theorem 3.1, � is also �-EP1, 

 Here, � ! < � ��< � �< � O2 0
2 0P L �. 

and < ! � � <�� � <� � O1 1
1 1P � �. 

Here, < is not the identity element.  However ��H � <<H,  since &��� � &�<�. 
Therefore the condition on < is essential in Theorem (4.1). 
 
Theorem 4.2. Q is a maximal subgroup of ���� , under the indefinite matrix product if 
and only if Q � =.�<�=� �� for some < � <��� � <��� and some invertible = � ����. 
Proof: Let Q be a maximal subgroup of ���� , with identity  J ! J � J. Let < � <��� �
<��� be the orthogonal projection on &�J�. Since J and < are idempotents in � under 
indefinite matrix product having the same range space, by Lemma (4.3), there exists an 
invertible = � ���� , such that J � =<=� ��.  Since, =.�<�=� �� being the isomorphic 
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image of the multiplicative group under indefinite matrix product, .�<� is also a group 
containing J.  By the above Theorem 3.5, since .�<� is maximal, its isomorphic image 
=.�<� =� �� is also maximal containing the identity J.  Thus Q � =.�<�=� ��.  
Conversely, if Q � =.�<�=� �� , then Q is clearly maximal.  Hence the Theorem. 
 
Corollary 4.2. If R is unitary in ���� , then R.�<�R��� � . �R<R���� for any  < �
<��� � <��� � ���� . 
Proof: Let J be the identity of the group R.�<�R��� under indefinite matrix product.  
Then by the above Theorem (4.1), 
J � R<R���. Since, < � <��� � <���, <� is hermitian idempotent and RR��� � R���R � � 
is equivalent to RR� � R�R � ��, Thus R is unitary and J� is hermitian idempotent.  
Therefore J � J��� � J��� is the identity element of the maximal subgroup R.�<�R���. 
Thus R.�<�R��� � .�J� � .�R<R���� .  Hence the corollary. 
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