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Abstract. The concept of range symmetric matrix is extendeithdefinite inner product
space. Equivalent characterizations of a range stnuenmatrix in an indefinite inner
product space in the setting of an indefinite maproduct are presented. Relations
between EP and range symmetric matrices in an ipnetluct space are discussed.
Characterization of the maximal subgroups of thdtiplicative semi groups of EP
matrices in indefinite inner product spaces undeinaefinite matrix multiplication is
presented.
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1. Introduction
An indefinite inner product irC™ is a conjugate symmetrigesquilinear from [x, y]
together with the regularity condition thpt, y] = 0 for ally € C™ only whenx = 0.
Any indefinite inner product is associated with miquie invertible complex matrix
(called a weight) such thdtx, y] = < x,Jy > where <, > denotes the Euclidean inner
product onC™, we also make an additional assumptiory pthat is,J?> = I, to present
the results with much algebraic ease. Thus an imtkefinner product space is a
generalization of Minkowski space, where the wejgls a diagonal matrix of order n,
with the first entryl and the remaining entries areall (as studied by physicists). For a
complex matrix A in Minkowski spacerank(AA*) = rank(A*A) = rank(4*) =
rank(A) fails under the usual product of matrices. Thistivades the study on the
existence of the Moore-Penrose inverse in [7].kantthere are two different values for
dot product of vectors in indefinite inner prodgpaces. To overcome these difficulties,
a new matrix product, called indefinite matrix niplication is introduced and some of its
properties are investigated in [9]he structure of certain class of EP matrices ther
complex field having the same range space have $tedied by Baskett and Katz in [1]
and by the author in [4]. A characterization of thaximal subgroup of complex matrices
obtained in [2] was extended to matrices over &itrary field by the author in [5].

The aim of this manuscript is to extend the conoépange symmetric matrix to
indefinite inner product space and present somerdsting characterizations of range
symmetric matrices similar to EP matrices in thtirsg of indefinite matrix product.
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Then we characterize the maximal subgroug™f* the semi group of complex matrices
containing ahermitian idempotent matrix with respect to the indefinite matrix product
in indefinite inner product spaces. The resultsatgebraic structure of complex EP
matrices having the same range space and charatiemi of EP matrices over a
Minkowski space [6] are deduced as special capesedtion 2, we recall the definitions
and preliminary results required in characterizthg maximal subgroups of complex
matrices over an indefinite inner product spacear@tterizations of a range symmetric
matrix in g, an indefinite inner product space in the settiigan indefinite matrix
product are presented in Section 3. Characterizaifothe maximal subgroups of the
multiplicative semi groups of EP matrices g¢n are presented in Section 4. Wherever
possible, we provide examples to illustrate ouultes

2. Preliminaries
We first recall the notion of an indefinite mulfigation of matrices.

Definition 2.1. Let A € C™ ™, B € C™ . LetJ, be an arbitrary but fixech X n complex
matrix such thaf, = J; = J;1. The indefinite matrix product of andB (relative toj)
is defined agl - B = AJ,B.

Definition 2.2. ForA € ¢™™, A"l = ] A*],.. is the adjoint of4 relative to/,, and]/,,,
the weights in the appropriate spaces.

Remark 2.1. When],, is the identity matrix the product reduces to tiseal product of
matrices and it can be easily verified that withpect to the indefinite matrix product,
rank(A o A1) = rank(A o A) = rank(A), where as this rank property fails under
the usual matrix multiplication. Thus the Moore aREse inverse of a complex matrix
over an indefinite inner product space, with respethe indefinite matrix product exists
and this is one of its main advantages.

Definition 2.3. 4 € C™™, is said to bg-invertible if there existX € C™*", such that
AoX =XoA=],. SucharX is denoted adl=11 = j4~1]..

Definition 2.4. For A € C™™, a matrixX is called the Moore-Penrose inverse if it
satisfies the following equations:

AoXoA=AXocAoX=X,(AeX) = Ao X and(X o A"l = X 0 A.

Such arX is denoted byAlTl and represented ast! = J,A%/,,,.

Definition 2.5. The Range space ol € ™™ is defined byR(A) = {y =4 o
xeC™/xeC"}.

The Null space of4 is defined byNu(A) ={xeC"/Aox =0}t is clear that
Nu(AM) = N4,

Property 2.1.
(i) (AMH = 4.
(ii) (A[ﬂ)[ﬂ = A.
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(iiiy (AR = B4l

(iv) R(AVT) = R(Al),

(v) R(A o AM) = R(A), R(A" 0 A) = R(Al)
(vi) N(A o A1) = N(Al), N(Al 0 A) = N(4).

3. Range symmetric matricesin indefiniteinner product space

Let o denotes the indefinite inner product space, witkigi /, under an indefinite
matrix multiplication. In this section, we shallfihe a range symmetric matrix i,
analogous to that of a range symmetric matrix entthitary space. We present equivalent
characterizations of a range symmetric matrigin

Definition 3.1. A € C™" is range symmetric ig if and only ifR(4A) = R(AM).

Remark 3.1. In particular for] = I,,, this reduces to the definition of range symmetric
matrix in Unitary space (or) equivalently to an m@Rtrix [1].

Theorem 3.1. For A € C™", the following are equivalent:
(1) A is range symmetric ig.
(2) 4] is EP.
(3)JAis EP.
(4) N(A) = N(AM).
(5)N(A") = N(A]).
(6) Al = AK = HA, for some invertible matricdé and H.
(7)R(A") = R(JA).
Proof: The proof of the equivalence of (1), (2) and (8)g as follows:
A is range symmetric ip < R(4) = R(AM)
& R(A)) = RJAY)).
< R(A]) = R(A))".

& A is EP.
& J(A))]* is EP.
< JAis EP.
Thus(l) & (2) & (3) hold.
(3) & (4.
(JA) is EP= N(JA) = N(JA)".
& N(A) = N(AY)).
& N(A) = NJA*])).

& N(A) = N,
Thus the equivalence of (3) and (4) is proved.
4) = ().
NA) = NAMY & N @) = NJAY)).
<= N(A) = N(A*)).
& A = A*].A9A. (A9 is a solution of AXA = A).
= AT =A(J A9)(A)D.
= A=A (ADA)D).
& N(4)) = N(A).
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Thus the equivalence of (4) and (5) is proved.
3)  (6).
(JA) isEP) & (JA)" = JAK , for some invertible matrix K.
= A = J4*] = AK.
& A = (AK)P. (By using property 2.1 (i)
= A= E)HNWM  (By using property 2.1(iii)).
o A = HA.  (whereH = (K)I)~1.
Thus(3) < (6) hold.
1 o ).
A is range symmetric ip < R(A) = R(Al)
& R(4A) = RUA))
< R(A) = R(JAY)
= JA* = AAIJAY
= A= (JAJA)IA®
< R(A™) = R(JA).
Thus(1) < (7) hold.

Remark 3.2. In particular, if ] is the Minkowski metric tensor, the above Theorem
reduces to Theorem 2.2 of [6].

The relation between EP matrices and range synumetatrices ing are
discussed in the following:

Theorem 3.2. ForA € C™™, any two of the following conditions imply the ethone.

(1)Ais EP.

(2) A is range symmetric ig.

(3)R(A) = R(JA).

Proof: First we prove that if (1) holds, then (2) is agént to (3). That is, iR(A) =

R(A"), then by Theorem(3.1), A is range symmetrigidr= R(4A) = R(A*) = R(JA).

Thus (2)< (3).

Hence, (1) and2) = (3) and (1) and (33 (2) hold. Now let us prove (2) and (3)(1).

By Theorem(3.1), (2> JA is EP. HenceR(JA) = R(JA)* = R(A*]) = R(A"). By (3), it

follows that,R(4A) = R(JA). HenceR(A) = R(A*) = Ais EP. Hence the Theorem.
Since the Moore Penrose inversdltl exists for4 € C™™, in the indefinite inner

product spacep, under the indefinite matrix product, we shall ider equivalent

conditions for4 to be range symmetric jn involving, Altl, in the following:

Theorem 3.3. ForA € ™™, the following are equivalent:

(1) A is range symmetric ig.

(2) (A o A[ﬂ) = (A[ﬂ o A)

(3)Ais J-EP.

(4) Al is a polynomial im.

Proof: A is range symmetric igp < JA is EP (By Theorem (3.1)
e JHUADT =JHTJA.
o JAAY] = AT JJA.
S AAY] = JATA.
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Ao JAT] = (JA*)) 0 A.

& (A0 Al = (Al o 4). (By Definition 2.4)
< Ais J-EP. (By Definition 3.1 of[ 3]
< A] is EP. (By Theorem (3.1)).

& (A))7T is a polynomial in(4)).
<JA* is a polynomial in(4)).
& Al is a polynomial im.

Lemma 3.1. For A € C™", (A o AM1) is the projection orR(4) and @10 4) is the
projection onR (A4™).

Proof: xER(A) @ x=Acy=AcAlodoy=240A10ox, by Definition 2.4,
Ao A1l s the projection o®(A), being symmetric and idempotentgn Similarly, we
can show thagAll o A) is the projection o (A*).

Theorem 3.4. ForA € C™", the following are equivalent:

(1) A is range symmetric ig.

(2) Al is range symmetric ip.

(3) There existsE = EIl = El21 € (™" suchthatl o E = E o A andR(A) = R(E).
Proof: (1)=(2): R(AITh = R(A) = R(4) = R(AMNHI = R4t Hence,Alt] is
range symmetric igp. Thus (2) holds.

(2)= (3): Since All is range symmetric igp and R(AlT) = R4, R4l [ =
R(AM, by Lemma 3.1(4 0 AlTh = (A1l o 4) = E € ¢™, satisfy, E = EIl = E[2],
By Definition (2.4),AcE =FE oA =A. R(A) € R(E) andrank A = rank E, implies
R(A) = R(E). Thus (3) holds.

(3)= (1): SinceE = EI*l = E[2] it can be verified that (] = E. SinceR(4) = R(E), E
is the projection onR(A). Hence, (Ao Alt)y = (At e A) = E andA=A-E=E - A.
By taking adjoint with respect tbon A =AoE = E o A, we getE o Al = Al o F =
Al Further,R(A) € R(E) = R(A) andrank(A*)) = rank(A). Hence,R(AM)) =
R(A) and A is range symmetric jn. Thus (1) holds. Hence the Theorem.

4. Characterization of maximal subgroups

In this section, we shall characterize the maxisuddgroups of:™*". Since,A is J-EP
andA is range symmetric igp are equivalent by Theorem 3.3, hence forth we dise,
J-EP. First we shall prove certain Lemmas to sifpjitie proof of the main results in this
section.

Lemma4.1. (Theorem 3.7 of [3]): A matrixd € C™", is J-EP if and only ifR (A[2)) =
R(AMY where A2l = 40 A,

Lemma4.2. If A andB are J-ER thend o B is J-ER if and only if R(A) = R(B).
Proof: Sinced andB are J-EP that is , J-EP ofank r, by Theorem 3.14] andBJ are
EPR. Now by a result of Baskett and katz [1] and Tkeor3.1,R(A) = R(B) &
R(A)) = R(B]) ,

< (A])(B]) IsER
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< (A°B)] isER
< (A°B)is J-ER
Hence the Lemma.

Lemma 4.3. Let E andT € C™™", such thatE[?! = E and T[?! = T with R(E) = R(T),

then there exists an invertible matfof ordern, such thaf” = PEP[=1].

Proof: SinceE =EoE andT =T o T, (E]) and (T]) are idempotentsR(E) = R(T)
impliesR(EJ) = R(T]). Thusk] andT] are idempotents having the same range space.
Therefore there exists an invertible matPixe C™™", such thatf/j = PEJP~. Which
implies,T = PE(JP™1))

= PEPI~1. Hence the Lemma.

Theorem 4.1. Let E = El = E2l € ¢™™, Then,H(E) = {4 € C™™,/ A is J-ER and
R(A) = R(E)} is the maximal subgroup ¢*", containingE as the identity element
under the indefinite inner product multiplication.

Proof: Since E = E*l = E[2] E is J-EP follows from Lemma 4.1. Fro®(A) = R(E),
we getrank(A) = rank(E) = r. HenceE € H(E). ForA,B € H(E), A andB arej-
EP, with R(A) = R(E) = R(B), by Lemma 4.2A0-B is J-ER. R(A°B) € R(A) =
R(E) and rank (Ao B) =rank(A) =rank(E)=r. Hence AeB € H(E). Thus
H(E)is closed under the indefinite matrix producd is J-ER, & AJ is ER (By
Theorem 3.1)= (4T =J(A)T is ER & Al = j(4)T] is J-ER. (by Theorem 3.1).
Since rank(A) = rank(AlY)), R(A")) = R(A) = R(E). Hence A1l is J-ER. with
R((A) = R(E). Thus , Al € H(E) for eachd € H(E).

Ao Altl = AjjAT] = AAT) (4.1)
Altle 4 = JAT]IA = JATA (4.2)
Since EJ is hermitian idempotent withR(AJ) = R(A) = R(E) = R(E]), E] is a
projection onR (4]) = R(A))T .Hence, we have the following:

EJ] = (AD(AD' = AAT andE] = (A))'(4)) = JATAJ.

Hence AAT] = E = JATA. By using (4.1) and (4.2) , we get

AcAlNl = F = Altlo 4 ®.3
Then by Definition 2.4, we have, = Ao Alfle A=Eo4d and A=A40A4tlcA=40
E.

ThusA=AoE=E-A (4.4)
From (4.3)A!] is the inverse ofl and from (4.4) it follows thaE is the identity element
of H(E) under the indefinite inner product multiplicatiorhus H(E) is a subgroup of
C™™ under the indefinite matrix product containifig The maximality off (E) can be
proved along the same lines as that for matrices am arbitrary field (refer :Theorem
2.1 of [5]) and hence omitted. Hence the Theorem.

Corollary 4.1. Let A be a fixed/-EP, matrix. ThenB, = {B € C"™*",/ B is J-ER and
R(B) = R(A)} = H(E),wherekE is the orthogonal projection &{A4).

Proof: Since4 is J-ER, by the above Theorem (4.13,0 ATl = E = Alfl o 4 is the
orthogonal projection oR(A4). Further,A isJ- ER if and only if Ao E = E o A. Since
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R(A) = R(E), the result follows from the Definitions a8, and H(E). Hence the
Corollary.

Remark 4.1. In particular for0 = E # ] =1I,,, E reduces to a hermitian idempotent
matrix in C™™ under the usual matrix multiplication a#f{E) in Theorem (4.1) is
equivalent toH(E) = {A € C""/AE = EA and R(A) = R(E)}. Thus our Theorem
(4.1) reduces to Theorem 2 of [2] and Corollani)4educes to Theorem 2 of [1].

Remark 4.2. For] = I,,, from Theorem (2.2) we havkis EP< R(4%?) = R(4*). By
Theorem (2.3) of [5], for an EP matrik over an arbitrary field with involutiof=’,
rank(A) = rank(A?) is an equivalent condition for the existence4df. Thus our
Theorem (4.1) is an analogue of Theorem (2.1) fatrices over an arbitrary field [5].

Remark 4.3. For E =1, R(A)=R(E) implies eachA € H(E) is invertible.
Substituting forE, in equation (4.3), we get = Ao [, =1,0A ,thatisA =A] =JA.
Hence,] = I, being the identity of the multiplicative groug(E) under the usual
multiplication of matrices.

Remark 4.4. We observe that, faf = I,,, the unique partial isomet# associated with

eachA € (™™ called the carrier matrix [8], reducestp Therefore, the indefinite

matrix product defined ad - B = AP*B in [4] reduces to the usual multiplication of
matrices, and the group(4) is identical with H(E), the multiplicative group of

inventible matrices of order.

Remark 4.5. Let us illustrate that the condition on E is esisétit Theorem 4.1 by the
following example.

Example4.1. Let us consider
11 10 01
a=[yp gl E=[p ] ands=[]
Clearly, ] =J* =J~! . On computation, we see théte E = EJE = E and El*l =

JE*] # E. HenceE is not J-symmetric buf is J-idempotent.A] = A is ER, being
symmetric ofrank 1. By Theorem 3.14 is also/-EP;,

20
Here, Ao E = AJE = AE = | O]th.

_ _ma-[1 11_
andE o A =EJA=EA=; 1]_,4.

Here,E is not the identity element. HowewéA™ = EE*, sinceR(A) = R(E).
Therefore the condition o is essential in Theorem (4.1).

Theorem 4.2. G is a maximal subgroup @™*™, under the indefinite matrix product if
and only if¢ = PH(E)P!= for someE = EI*] = E[2] and some invertibl@ € c™".
Proof: Let G be a maximal subgroup 6f<", with identity To T =T. LetE = Ell =
E™?] be the orthogonal projection at(T). SinceT andE are idempotents igp under
indefinite matrix product having the same rangecepay Lemma (4.3), there exists an
invertible P € C™™, such thatl = PEPI=Y. Since,PH(E)P=! being the isomorphic
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image of the multiplicative group under indefinitetrix product,H(E) is also a group
containingT. By the above Theorem 3.5, sing€F) is maximal, its isomorphic image
PH(E) PI=1 is also maximal containing the identi§. Thus G = PH(E)PI™1l,
Conversely, ifG = PH(E)P[‘” , thengG is clearly maximal. Hence the Theorem.

Corollary 4.2. If U is unitary inC™™", then UH(E)U™ = H (UEUD)) for any E =
Ell = g2l € ¢,

Proof: Let T be the identity of the groupH(E)U*! under indefinite matrix product.
Then by the above Theorem (4.1),

T = UEU. Since,E = E*) = E[2l| EJ is hermitian idempotent ardUu!*! = u*ly = J
is equivalent toUU* = U*U = I,,, ThusU is unitary andT] is hermitian idempotent.
ThereforeT = TI*l = T[2] js the identity element of the maximal subgrdiig(E)U*],
ThusUH (E)U™ = H(T) = H(UEU™) . Hence the corollary.
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