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Abstract. In this paper the concept of metric is applied to fuzzy labeling graph. Some 
results related with µ-length, eccentricity, diameter and radius of fuzzy labeling graph G 
have been derived. It has been proved that, the center of G is a cut node of G and if G* is 
complete, then there exist only one center. And a necessary condition for a graph G to 
have more than one center is given. Some relation between diametrical nodes and 
eccentric nodes is also given.     
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1. Introduction  
In 1965, Zadeh [10] introduced the modern concept of uncertainty by fuzzy set through 
the publication of a seminal paper. A fuzzy set is defined mathematically by assigning to 
each possible individual in the universe of discourse a value, representing its grade of 
membership, which corresponds to the degree, to which that individual is similar or 
compatible with the concept represented by the fuzzy set. 
 The fuzzy graph introduced by Rosenfield [6] using fuzzy relation, represents 
the relationship between the objects by preciously indicating the level of the relationship 
between the objects of the function set. Also he coined many fuzzy analogous graph 
theoretic concepts like bridge, cut vertex and tree. Fuzzy graphs have many more 
applications in modeling real time systems where the level of information inherent in the 
system varies with different levels of precision. In the same year Yeh and Bang [9], 
published a paper which contains fuzzy relation, fuzzy graph and their application in 
cluster analysis. Bhattacharya [1] introduced the notion of centre in fuzzy graph. Sunitha 
and Vijayakumar introduced the notion of a self centered fuzzy graph in [7,8]. 
Nagoorgani and Chandrasekar  [2] discussed multiple properties of fuzzy graphs in their 
book entitled “A First Look at Fuzzy Graph Theory”. Ramakrishanan and Laxmi [4] 
introduced the concept of strong and super strong vertex in fuzzy graph. For other works 
on fuzzy graphs see [12-17]. 
 In this paper section 1 deal with µ- distances related results and section 2 deals 
with some centre properties of fuzzy labeling graph. Section 3 contains the some 
relationship between diametrical nodes and eccentric nodes.  
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2. Preliminaries 
We first introduce some notations and recall some basics about fuzzy graph and fuzzy 
labeling graph. Let U and V be two sets. Then ρ is said to be a fuzzy relation [10] from U 
into V if ρ is a fuzzy set of U×V.A fuzzy graph G = (σ, µ) is a pair of functions σ: V → 
[0, 1] and µ: V×V → [0, 1], where for all u, v � V, we have µ (u, v) ≤ σ (u) Λ σ (v). A 
path P in a fuzzy graph is a sequence of distinct nodes v1, v2, ...., vn such that µ (vi, vi+1) > 
0; 1 ≤ i ≤ n; here n ≥ 1 is called the length of the path P. The consecutive pairs (vi, vi+1) 
are called the edge of the path. A path P is called a cycle if v1=vn and n ≥ 3. The strength 
of a path P is defined to be the weight of the weakest arc of the path. Let G :( σ, µ) be a 
fuzzy graph. The strength of connectedness between two vertices u and v is 
�∞(u,v)=sup{µk(u,v)/k=1,2,……} where µk(u,v)= sup{µ(uu1) ʌ µ(u1u2)ʌ…. ʌ µ(uk-1v) / 
u1,……,uk-1� V}. A strongest path joining any two nodes x, y has strength �∞(x, y); 
sometimes this is referred as connectedness between the nodes. An arc of a fuzzy graph is 
called strong if its weight is at least as great as the strength of the connectedness of its 
end nodes when it is deleted. An edge is called a fuzzy bridge of G if its removal reduces 
the strength of connectedness between some pair of nodes in G. A node is a fuzzy cut 
node of G = (σ, µ) if removal of it reduces the strength of connectedness between some 
other pair of nodes. A node u of G is called the end node if it has at most one strong 
neighbor in G. 

 A graph G = (σ, µ) is said to be a fuzzy labeling graph, if σ: V → [0, 1] and µ: 
V×V → [0, 1] is bijective such that the membership value of edges and vertices are 
distinct and µ (u, v) < σ (u) Λ σ (v) for all u, v � V. Let G = (σ, µ) be a fuzzy graph and 
let v � σ*. v is called a super strong vertex if �∞(v,x)= α for every x (≠ v) � σ* and for 
some α �(0,1]. 

 An elegant definition of a metric in a fuzzy graph has been given in Rosenfeld 
(1975). If ρ is the path consisting of the vertices x0, x1, …, xn in a fuzzy graph G= (σ, µ), 
the µ- length of ρ is defined by l(ρ) = ∑ �����	, ����	�

�	  if n=0 then l(ρ) is chosen to be 
0. Now, for two vertices x, y in G, the µ- distance δ(x, y) is defined to be the minimum of 
the µ- length of all paths joining x and y. It has been shown that δ is metric in [5]. Now 
we introduce some basic definitions in metric. Suppose G= (σ, µ) is a fuzzy graph with V 
as the set of vertices. The eccentricity e(v) of a vertex v �V is defined to be the maximum 
of all the µ- distances δ(v, w) for all w in V. A center of a connected fuzzy graph is a 
vertex whose eccentricity is the minimum. The radius of a connected fuzzy graph is the 
minimum of all eccentricities of the vertices of the fuzzy graph. An eccentric node v, is a 
node v* such that e(v) = δ(v, v*). A node v is called a diametrical node if e(v) = d(G).   
 
3.  µ- distance in fuzzy labeling graph 
Theorem 3.1. If G is a fuzzy labeling graph, such that µ (x, y) � G is a bridge of G, then 

δ(x, y) = 
	

 µ ��,��
. 

Proof: Let �	(x, y) be a bridge of G and ��, ��… be the strength of the paths joining x 
and y. And let ���

, ���
… ���

be the weights of the remaining edges in G. 
Now �∞(x, y) = Max ��	 ��, ������…����  

⇒µ1 (x, y) > ��>…>��. 
⇒l(µ1) > l(µ2) > … > l(µn). 

⇒
	

µ� ��,��
 < 

	

��
<…<

	

��
                                                                                         (3.1) 
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� δ (x, y)  =  Min{
	

 µ� ��,��
,

	

��
�  

	

���

� … �
	

���

,
	

��
�

	

���

�  �
	

���

, …, 

                                   
	

��
�

	

���

�  �
	

���

 }  

  = 
	

µ���,��
 {by (3.1)} 

Remark 3.2. Converse of the above proposition is not true.  
 
Example 3.3.  Consider a triangle (i.e) V = {u, v, w} such that µ (u, v) = 0.02, µ (v, w) = 
0.03 and µ (w, u) = 0.04. Here δ(u, v) = 50, but (u, v) is not bridge of G.  
 
Theorem 3.4. If G is a fuzzy labeling graph, such that G* is a cycle, then δ(x, y) = 

	

 µ ��,   ��
 for all x, y � V x V. 

Proof: If (x, y) � V x V, then the µ-distance between the nodes x and y has only two 
paths. 
(i.e.)     !	 : x, y. 
 !� : x, u, v, w,…y. 
 
� δ (x, y) =  Min{ l (!	), l (!�)} 

     = Min { 
	

��",#�
, ∑

	

�$ 
′ %� } 

     = 
	

��",#�
 

 
Observation 3.5. The maximum µ-length of a fuzzy labeling graph G is unique. 
 
Proposition 3.6. If the maximum µ-length of a graph G exists between the nodes u and v, 
then there exist a strongest path between the nodes u and v. 
Proof: It is proved by constructing a graph G such that G* is a cycle with 5 nodes 
v1,v2,v3,v4,v5 and  assume that µ1 (v1,v2) < µ2 (v2,v3) < µ3 (v3,v4) < µ4 (v4,v5) < µ5 (v5,v1). 
By observation 1.5 there exist a unique maximum µ-length of G between the nodes (v2, 
v5). Since between v2 and v5 there exist two disjoint path  !	 & v2, v3, v4, v5 and !� & v2, v1, 
v5. 
 
� δ (v2,v5)  = Min { l (!	) and l (!�)} 
  = l (!�) 

Since 
	

�� �'�,'��
> 

	

�� �'�,'��
> 

	

�� �'�,'(�
> 

	

�( �'(,')�
> 

	

�) �'),'��
 

⇒ 
	

�� �'�,'��
 + 

	

�) �'),'��
 > 

	

�� �'�,'��
 + 

	

�� �'�,'(�
 + 

	

�( �'(,')�
 

 
Now the connectedness of G between v2,v5 is given by  
�∞(v2,v5) = Max ��	, ��� = µ2 

Therefore, there exist a strongest path between the nodes of v2 and v5. Hence the proof 
 
Remark 3.7. Even σ and µ are bijective, the µ-length δ (xi , xi+1) need not be unique. 
This is verified by the following example. 
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Example 3.8. 

 

Figure 3.1: A fuzzy labeling graph 
In fig: 3.1, δ (a, b) = 33.33, δ (a, c) = 133.33, δ (a, d) = 83.33, δ (a, e) = 16.67,  δ (a, f) = 
20, δ (a, g) = 25, δ (b, c) = 100, δ (b, d) = 50, δ (b, e) = 50, δ (b, f) = 53.33, δ (b, g) = 
58.33,  δ (c, d) = 150, δ (c, e) = 150, δ (c, f) = 153.33, δ (c, g) = 158.33, δ (d, e) = 100, δ 
(d, f) = 103.33, δ (d, g) = 108.33, δ (e, f) = 36.67, δ (e, g) = 41.67, δ (f, g) = 45. Here δ (b, 
d) = δ (b, e) and δ (c, d) = δ (c, e). But in example 1.3, every µ-length of G is unique. 
 
Proposition 3.9. Let G be a fuzzy labeling graph such that G* is a cycle. If {e(x), e(y)} = 
diameter of G, then there exist a weakest arc of G between the nodes of x and y. 
Proof: Let diameter G = {e(x), e(y)}, it is trivial that there exist two disjoint path 
between the nodes of x and y (i.e.) !	, !�by proposition 1.6. If !	 is the strongest path, 
then !�is a path which contains the weakest arc. Since, there exist only one weakest arc if 
G* is a cycle in a fuzzy labeling graph.  
 
Theorem 3.10. Let G be a fuzzy labeling graph, if µ(x, y) � V x V such that µ(x, y) < µi

’s 
then max {e(x), e(y)}= diameter of G. 
Proof: Construct a graph G with four vertices x, y, u, v and assume that µ(x,y) < µ(y,v) < 
µ(v,u) < µ(u,x) < µ(x,v). Here µ(x, y) < µi

’s where i= 1,2,3. 
Now δ (x,y) =  Min {l(!	), l(!�), l(!�)} = l(!�), where, !	 & x, y  !� & x, v, y   !� & x, u, v, 
y . 

l (!	) = 
	

��",#�
, l(!�) = 

	

��",'�
 + 

	

��',#�
    

l (!�) = 
	

��",*�
 + 

	

��*,'�
  + 

	

��',#�
    

Consider +, and +-  
∵ ���, ��< ���, /� 0  ��/, �� 

⇒ 
	

��",#�
>

	

��#,'�
1

	

��',"�
 

⇒ 
	

��",#�
 ≥ 

	

��#,'�
�

	

��',"�
                                                                                                  (3.2)  

Consider +- and +2  
∵ ��3, /�< ���, 3�< ���, /�                         (common arcs were omitted on both sides) 

⇒ 
	

��*,'�
>

	

��",*�
>

	

��",'� 
 

⇒ 
	

��",*�
 + 

	

��*,'�
  ≥ 

	

��",'�
                                                                                                  (3.3) 

From (3.2) and (3.3)  
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δ (x,y) =  l(!�). 
Similarly δ (u,v) =  Min {l(!4), l(!5), l(!6)} = l(!6). 
δ (u,v) =  Min {l(!7), l(!8), l(!9), l(!	:)} = l(!7), where !4 & u, v       !5 & v, x, u      !6 & v, 
y, x, u. 
 
!7 & y, v, u       !8 & y, x, u      !9 &  y, v, x, u  !	: & y, x, v, u.  

and δ (x, v) = 
	

���,;�
 , δ (x, u) = 

	

��",*�
 , δ (y, v) = 

	

��#,'�
       ∵ (x,v), (x, u), (y, v) are bridges 

of G. Here e(x) = l(!�)   
 
 ∵  ���, /�> ��3, �� 1  ���, /�      

   ⇒ 
	

��",'�
<

	

��*,"�
0

	

��#,'�
 

⇒ 
	

��*,"�
 ≤ 

	

��#,'�
�

	

��',"�
       

Similarly e(y) = l(!7) = e(u), e(v) = 
	

��#,'�
  

 
Therefore Max {e(x), e(y)}= Max{l(!�), l(!7)} = l(!7)  =  diameter of G  
∵ ���, /�> ��/, 3� 1  ���, /�      

  ⇒ 
	

��",'�
<

	

��',*�
0

	

��#,'�
 

⇒ 
	

��',*�
 ≥ 

	

��",'�
�

	

��#,'�
 . 

 
Remark 3.11. The converse of the above theorem is true.  
 
Example 3.12. 

                                       

                                                Figure 3.2. Connected FLG  
 

In the above fig.3.2, δ (a, b) = 30.95, δ (a, c) = 14.29, δ (a, d) = 11.11, δ (b, c) = 
16.67, δ (b, d) = 36.67, δ (c, d) = 20, e (a) = 30.95, e (b) = 36.67, e (c) = 20, e (d) = 36.67, 
d (G) = 36.67. Here µ(a, b) < µi’s. Therefore Max {e (a), e (b)} = {30.95, 36.67}= 36.67.     

Note 3.13. The above theorem is not true if G* is a cycle. 

In fig. 3.3, e (a) = 95, e (b) = 126.79, e (c) = 132.5, e (d) = 130.96, e (e) = 126.79, e (f) = 
132.5, e (g) = 130.96, e (h) = 107.5. Here µ(d, e) < µi’s. But Max {e (d), e (e)} = {130.96, 
126.79}= 130.96 <   d(G) = 132.5. 
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Example 3.14. 

 

Figure 3.3: 
 
4. Center in fuzzy labeling graph 
Theorem 4.1. If x  G be the center of G, then r (G) =  for all µ (x, yi) > 0. 

Proof: Consider a fuzzy labeling graph G such that G* is a cycle with three vertices x1, 
x2, x3 and assume that µ (x1, x2) < µ (x2, x3) < µ (x3, x1) 

 µ (x1, x2) is the least and x3 is the center of G. 
 r (G) = e (x3) 

 = Max [δ (x3, x1), δ (x3, x2)] 

 = Max  

            =   

            =  for all  > 0, i = 1,2. 

 
Note 4.2. The above condition is not necessary for a node to be the center. 
 
Example 4.3. 

 

Figure 4.1: 
In the above graph, Fig.4.1, e (x) = 42.06, e (y) = 42.06, e (u) = 27.78, e (v) = 30.95 and 

‘u’ is the center with radius 27.78 ≠   
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Theorem 4.4. The fuzzy labeling graph G has exactly only one center, if G* is complete. 
Proof:  Let G be a fuzzy labeling graph such that G* is complete with four vertices 
v1,v2,v3,v4 and assume that µ(v1,v2) < µ(v2,v3) < µ(v3,v4) < µ(v4,v1) < µ(v1,v3) < µ(v2,v4). 
Consider, 

δ (v1,v2) =  Min { l(!	), l(!�), l(!�),l(!4), l(!5)} 
                          = l(!�) 
where, !	 & v1,v2      !� & v1,v3,v2       !� & v1,v4,v2      !4 & v1,v4,v3,v2       !5 & v1,v3,v4,v2 

l (!	) = 
	

��'�,'��
, l(!�) = 

	

��'�,'��
 + 

	

��'�,'��
    

l (!�) = 
	

��'�,'(�
 + 

	

��'(,'��
   

l (!4) = 
	

��'�,'(�
 + 

	

��'(,'��
+ 

	

��'�,'��
    

l (!5) = 
	

��'�,'��
 + 

	

��'�,'(�
+ 

	

��'(,'�� 

Consider +, and +2  
∵ ��/	, /��< ��/	, /4� 0  ��/4, /�� 

⇒ 
	

��'�,'��
>

	

��'�,'(�
1

	

��'(,'��
 

⇒ 
	

��'�,'��
 ≥ 

	

��'�,'(�
�

	

��'(,'��
                                                                                           (4.1)  

Consider +- and +2  
∵ ��/�, /��< ��/	, /��< ��/	, /4�< ��/�, /4� 

⇒ 
	

��'�,'��
>

	

��'�,'��
>

	

��'�,'(�
>

	

��'�,'(�
 

⇒ 
	

��'�,'��
 + 

	

��'�,'��
  ≥ 

	

��'�,'(�
 + 

	

��'�,'(�
                                                                           (4.2) 

Consider += and +2  
∵ ��/4, /��> ��/4, /�� 1  ��/�, /��         [∵ ��/	, /4� is common in both paths, which is 
omitted]  

⇒ 
	

��'(,'��
<

	

��'(,'��
0

	

��'�,'��
 

⇒ 
	

��'(,'��
 ≤ 

	

��'(,'��
�

	

��'�,'��
                                                                                           (4.3)  

Consider +2 and +>  
It is obvious that l(!5) > l(!�)                                                                                        (4.4) 
From (4.1), (4.2), (4.3) and (4.4) 
δ (v1,v2) = l (!�) 

By our assumption   δ (v1,v3) = 
	

��'�,'��
 , δ (v1,v4) = 

	

��'�,'(�
 , δ (v2,v3) = 

	

��'�,'��
 ,     

                   δ (v2,v4) = 
	

��'�,'(�
, δ (v3,v4) = 

	

��'�,'(�
 

Now the eccentricity e (v1) = l (!�)         ∵ l (!�) >
	

��'�,'(�
>

	

��'�,'��
 

Similarly e (v2) =  l (!�)  

and e (v3) =  
	

��'�,'��
                  ∵

	

��'�,'��
 >

	

��'�,'(�
>

	

��'�,'��
 

e (v4) =  
	

��'�,'(�
                        ∵

	

��'�,'(�
 >

	

��'�,'(�
>

1

��'2,'4�
 

� Radius of G = e (v4)             ∵
	

��'�,'(�
 <

	

��'�,'��
< l(ρ3) 

⇒Center of G = v4 
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Here the proposition is proved. 
 
Remark 4.5. The above result is not true, If G* is a cycle. 
Example 4.6. 

 

Figure 4.2: 
The above graph G in fig.4.2 with four vertices has two center’s ‘y’ and ‘v’.  
 
Theorem 4.7. If x  � G is the center of G, then it is a cut node of G and the converse is not 
true. 
Proof: By the proof of theorem 4.4, v4 in the center of G and by the definition of cut 
node v1 and v4 are cut nodes of G. conversely, v1 and v4 are cut nodes of G, but v1 is not a 
center of G. 

Proposition 4.8. Removal of a center reduces the strength of connectedness between the 
nodes.  
Proof: By theorem 4.7, center of G is a cut node of G. Therefore removal of a center 
reduces the strength of a connectedness between the nodes.  

Proposition 4.9. If x  � G is the center of a fuzzy labeling graph, then it G, then it is not 
super strong vertex of G. 
Proof: If ‘x’ is the center of a fuzzy labeling graph G, then by theorem 4.7, ‘x’ is a cut 
node of G. 
By proposition 3.11 [3] ‘x’ is not a super strong vertex of G. 
 
5. Diametrical and eccentric nodes in FLG 
Proposition 5.1. If each node of a fuzzy labeling graph G is eccentric, then it has two 
centers. 

Remark 5.2. The above condition is not sufficient. In the following example, the graph G 
has two centers but each node is not eccentric. 
 
Proposition 5.4. If G is a fuzzy labeling graph with exactly only one center x ʌ G, then x 
is not an eccentric node of G. 
 
In Fig. 5.1 e (a) = 42.07= e (e), e (v) = 26.79 = e (x), e(w) = 30.96 and 
 a* = c, e,     b* = d,    c* =  -,   d*= b,   e* = a 
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Example 5.3. 

 
Figure 5.1: 

 
Proposition 5.5. If G is a fuzzy labeling graph then the diametrical nodes of G are 
eccentric nodes of G. 
 
Example 5.6. 

 
Figure 5.2: 

Here, δ (a, b) = 50, δ (a, c) = 36.67, δ (a, d) = 16.67, δ (b, c) = 25, δ (b, d) = 45, δ (c, d) = 
20, e (a) = 50 = e (b) , e (c) = 36.67, e (d) = 45, d (G) = 50. Center c (G) = ‘c’ and  a* = c, 
b,     b* = a, d. In fig. 7 G has exactly only one center ‘c’ which is not eccentric. The 
diametrical nodes of G are ‘a’ and ‘b’ which are the eccentric nodes of G. 
 
Proposition 5.7. If G is a fuzzy labeling graph such that G* is a tree, then the diametrical 
nodes are the only eccentric nodes in G. 
 
Example 5.8. 

 
Figure 5.3: 

In fig. 5.3, ‘f’ is the center of G and the diametrical nodes of G are‘d’ and ‘e’ which are 
the only eccentric nodes of G. (i.e) δ (a, f) = 11.11, δ (a, b) = 23.61, δ (a, c) = 25.37, δ (a, 
d) = 27.78, δ (a, e) = 31.11, δ (b, c) = 26.79, δ (b, d) = 29.17, δ (b, e) = 32.5, δ (b, f) = 
12.5, δ (c, d) = 30.95, δ (c, e) = 34.29, δ (c, f) = 14.29, δ (d, e) = 36.67, δ (d, f) = 16.67, δ 
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(e, f) = 20. And e(a) = 31.11, e(b) = 32.5, e(c) = 34.29, e(d) = 36.67= e(e), e(f) = 20. d(G) 
= 36.67. Therefore e* = a, b, c, d, f       d* = e. 
 
Proposition 5.9. If G is a fuzzy labeling graph such that G* is a path then the end nodes 
of G are the diametrical nodes of G. 
Proof: Consider a path v1-vi. As G* is a path, the end nodes of G are v1 and vi. Now it is 
trivial that δ(v1,vi) will have the maximum µ- length, since G* is a path. And since µ is 
symmetric  δ(v1,vi) = δ(vi,v1). By the definition of eccentricity e(v) and e (vi) will have the 
maximum eccentricity and are same. Hence v and vi are the diametrical nodes of G.   
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