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1. Introduction and preliminaries 
In 1970, Levine [11] initiated the study of so called g-closed sets in topological spaces. 
The concept of g-continuity was introduced and studied by Balachandranet.al in 1991 [2]. 
In 1993, Palaniappan and Rao [17] introduced the notions of regular generalized closed 
(rg-closed) sets and rg-continuity in topological spaces. In 2000, Sundaram and Rajamani 
[20] obtained three different decompositions of rg-continuity by providing two types of 
weaker forms of continuity, namely Cr -continuity and Cr

* -continuity. Recently, Noiriet. 
al. [15] introduced the notions of αg-I-open sets, gp-I-open sets, gs-I-open sets, C(S)-I-
sets, C*-I-sets and S*-I-sets to obtain three different decompositions of g-continuity via 
idealization. Recently Ravi et. al. [18] obtained three different decompositions of rg-
continuity. In this paper, we introduce the notions of rαg-I-open sets, gpr-I-open sets, Cr-
I-sets and Cr

* -I-sets to obtain further decompositions of rg-continuity. 
Let (X, τ ) be a topological space. An ideal is defined as a nonempty collection 

Iof subsets of X satisfying the following two conditions: 
(i) If A ∈ I and B ⊆A, then B ∈I 
ii) If A ∈ I and B ∈ I, then A ∪B∈I. 

For a subset A ⊆X, A*(I) = {x ∈X/U∩A∉I for each neighborhood U of x} is called the 
local function of A with respect to I and τ [9]. We simply write A* instead of A*(I) in 
case there is no chance for confusion. X* is often a proper subset of X. For every ideal 
topological space (X, τ, I) there exists a topology τ*(I), finer than τ, generated by β(I,τ) = 
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{U\I:U ∈τand I∈I }, but in general β(I,τ) is notal ways a topology [22]. Also, cl*(A) = 
A∪A*defines a Kuratowski closure operator for τ*(I) [22]. Additionally, cl*(A) ⊆cl (A) 
for any subset A of X [7]. Throughout this paper, X denotes the ideal topological space 
(X,τ,I) and also cl(A) and int(A)denote the closure of A and the interior of A in (X; τ ), 
respectively. 
 
Definition 1.1. A subset A of (X,τ) is said to be 
(1) α-open [13] if A ⊆int(cl(int(A))), 
(2) preopen [12] if A ⊆int(cl(A)), 
(3) regular open [19] if A = int(cl(A)), 
(4) rg-open [17] iff F ⊆int (A) whenever F ⊆A and F is regular closed in (X,τ), 
(5) gpr-open [4] iff  F⊆pint(A) whenever F ⊆A and F is regular closed in (X,τ ), 
(6) rαg-open [18] iff  F⊆αint(A) whenever F ⊆A and F is regular closed in (X,τ), 
(7) a t-set [21] if int(A) = int(cl(A)), 
(8) anα*-set [6] if int(A) = int(cl(int(A))), 
(9) a Cr-set [18] if A = U ∩V, where U is rg-open and V is a t-set in (X, τ), 
(10) aCr

* -set [18] if A = U ∩ V, where U is rg-open and V is an α*-set in (X, τ ). 
The complements of the above mentioned open sets are called their respective 

closed sets. The pre interior pint(A) (resp. α-interior, αint(A)) of A is the union of all 
preopen sets (resp. α-open sets) contained in A. The α-closure αcl(A) of A is the 
intersection of all α-closed sets containing A. 
 
Lemma 1.2. [1] If A is a subset of X, then 

(1) pint(A) = A ∩ int(cl(A)), 
(2) αint(A) = A ∩ int(cl(int(A))) and αcl(A) = A∪ cl(int(cl(A))). 

 
Definition 1.3. A subset A of an ideal topological space (X,τ, I) is said to be 

(1) pre-I-open [3] if A ⊆int(cl*(A)), 
(2) α-I-open [5] if A ⊆int(cl*(int(A))), 
(3) a t-I-set [5] if int(cl*(A)) = int(A), 
(4) an α*-I-set [5] if int(cl*(int(A))) = int(A). 
Also, we have α-I-int(A) = A ∩int(cl*(int(A))) [15] and p-I-int(A) = A ∩int(cl* 

(A)) [15], where α-I-int(A) denotes the α-I interior of A in (X, τ, I) which is the union of 
all α-I-open sets of (X,τ,I) contained in A. p-I-int(A) has similar meaning 

. 
Remark 1.4. The following hold in a topological space. 

(1) Every rg-open set is gpr-open but not conversely [4] 
2) Every rg-open set is rαg-open but not conversely [18] 

 
2. rαg-I-open sets and gpr-I-open sets 
Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called 

(1) rαg-I-open if F⊆α -I-int(A) whenever F ⊆A and F is regular closed in X. 
(2) gpr-I-open if F⊆ p-I-int(A) whenever F⊆ A and F is regular closed in X. 
 

Proposition 2.2. For a subset of an ideal topological space, the following hold: 
(1) Every rαg-I-open set is rαg-open. 
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(2) Every gpr-I-open set is gpr-open. 
(3) Every rαg-open set is gpr-open. 

Proof: (1) Let A be an rαg-I-open set. Let F⊆A and F is regular closed in X. Then, F⊆α -
I-int(A) = A ∩(int(cl*(int(A)))) ⊆A∩int(cl(int(A))) = αint(A). This shows that A is rαg-
open. 

(2) Let A be gpr-I-open set. Let F ⊆A and F is regular closed in X. Then, F⊆ p-I-
int(A) = A ∩int(cl*(A))⊆ A∩int(cl(A)) = pint(A). This shows that A isgpr-open. 

(3)  It follows from the definitions. 
 

Remark 2.3. The converses of Proposition 2.2 are not true, in general. 
 
Example 2.4. Let X = {a, b, c, d},τ = {∅, X, {a}, {b}, {a,b},{b,c},{a,b,c}} and I ={ ∅, 
{b}}. Then {a, b, d} is rαg-open but not an rαg-I-open set. 

Example 2.5. In Example 2.4, {a, b, d} is gpr-open but not a gpr-I-open set. 

Example 2.6. Let X= f{a, b, c, d} and τ= {∅, {d}, {a,c},{a,c,d},X}. Then {b, c, d} is gpr-
open set but not an rαg-open. 

Proposition 2.7. For a subset of an ideal topological space, the following hold: 
(1) Every rαg-I-open set is gpr-I-open. 
(2) Every rg-open set is gpr-I-open. 
(3) Every rg-open set is rαg-I-open. 

Proof: (1) Let A be rαg-I-open. Then, for any regular closed set F with F⊆A, we have F 
⊆α-I-int(A) = A ∩int(cl*(int(A)))⊆ A ∩int(cl*(A)) = p-I-int(A) which implies that A is 
gpr-I-open. 

(2) Let A be an rg-open set. Then, for any regular closed set F with F ⊆A, we 
have F⊆int(A) ⊆int((int(A))* ) ∪int(A) = 
int((int(A))*)∪int(int(A))⊆int((int(A))*∪int(A)) = int(cl* (int(A))). That is, F⊆ 
A∩int(cl*(int(A))) =α-I-int(A) = A∩int(cl*(int(A))) ⊆A∩int(cl* (A)) = p-I-int(A) which 
implies that A is gpr-I-open. 

(3) Let A be an rg-open set. Then, for any regular closed set F with F⊆ A, we 
have F ⊆int(A) ⊆int((int(A))*) ∪int(A) = int((int(A))*) 
∪int(int(A))⊆int((int(A))*∪int(A)) = int(cl* (int(A))). That is, F ⊆A ∩int(cl*(int(A)))= 
α-I-int(A) which implies that A is rαg-I-open. 

Remark 2.8. The converses of Proposition 2.7 are not true, in general. 

Example 2.9. Let X = {a, b, c, d, e}, τ= {∅,X, 
{a},{e},{a,e},{c,d},{a,c,d},{c,d,e},{a,c,d,e},{b,c, d,e}} and I = {∅,{a},{e},{a,e}}. Then 
{a, b, d, e} is gpr-I-open but not an rαg-I-open set. 

Example 2.10. Let X = {a, b, c, d},τ = {∅,X,{a},{b},{a,b},{b,c},{a,b,c}} and I = 
{∅,{d}}. Then {a, b, d} is gpr-I-open but not arg-open set. 

Example 2.11. In Example 2.10, {a, b, d} is rαg-I-open but not arg-open set. 
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Remark 2.12. By Remark 1.4, Propositions 2.2 and 2.7, we have the following diagram. 
In this diagram, there is no implication which is reversible as shown by examples above. 

rαg-I-open  rαg-open 

rg-open
  

gpr-I-open  gpr-open 

3. Cr-I-sets and Cr
*-I-sets 

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is called 
(1) aCr-I-set if A = U ∩ V, where U is rg-open and V is a t-I-set, 
(2) aCr

* -I-set if A = U ∩V, where U is rg-open and V is an α*-I-set. 
We have the following proposition: 
 
Proposition 3.2. For a subset of an ideal topological space, the following hold: 

(1) Every t-I-set is an α*-I-set [5] and a Cr-I-set. 
(2) Every α*-I-set is a Cr

* -I-set. 
(3) Every Cr -I-set is a Cr

*-I-set. 
(4) Every rg-open set is a Cr -I-set. 
(5) Every Cr -set is a Cr -I-set and a Cr

* -I-set. 
(6) Every Cr

* -set is a Cr
* -I-set. 

From Proposition 3.2, we have the following diagram. 
 

rg-open set         Cr – set Cr-I-set         t-I-set 

 

                             Cr
*-set         Cr

*-I-set         α*-I-set 

 

    

Remark 3.3. The converses of implications in Diagram II need not be true as the 
following examples show. 

Example 3.4. In Example 2.4, {a, b, d} is Cr -I-set but not a Cr -set. 

Example 3.5. In Example 2.4, {a, b, c} is Cr -I-set but not a t-I-set. 

Example 3.6. In Example 2.4, {a, d} is Cr-set but not arg-open set. 

Example 3.7. In Example 2.6, {a, b, d} is Cr
*-set but not a Cr-set. 

Example 3.8. In Example 2.9, {a, b, c, e} is Cr
*-I-set but not a Cr -I-set. 

Example 3.9. In Example 2.4, {a, b, d} is Cr
*-I-set but not a Cr

* -set. 
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Example 3.10. In Example 2.4, {a, b, c} is Cr
*-I-set but not an α*-I-set. 

Example 3.11. Let X = {a, b, c},τ = {∅,X,{a,b}} and I = {∅,{a}}. Then {b} is α*-I-set 
but not a t-I-set. 

Remark 3.12. Examples 3.13 and 3.14 show that Cr-I-sets and Cr
*-sets are independent 

of each other. 

Example 3.13. In Example 2.9, {a, c, d} is Cr
*-set but not a Cr -I-set. 

Example 3.14. In Example 2.4, {a, b, d} is Cr -I-set but not a Cr
* -set. 

Proposition 3.15. A subset A of X is rg-open if and only if it is both gpr-I-open and a Cr-
I-set in X. 
Proof: Necessity is trivial. We prove the sufficiency. Assume that A is gpr-I-open and a 
Cr-I-set in X. Let F⊆ A and F is regular closed in X. Since A is a Cr-I-set in X, A = U 
∩V, where U is rg-open and V is a t-I-set. Since A is gpr-I-open, F⊆ p-I-int(A) = A 
∩int(cl*(A)) = (U ∩ V ) ∩int(cl*(U ∩ V ))⊆ (U ∩ V ) ∩int(cl*(U)∩ cl* (V )) = (U ∩ V ) 
∩int(cl*(U)) ∩int(cl*(V )). This implies F⊆int(cl*(V )) = int(V ) since V is a t-I-set. 
Since F is regular closed, U is rg-open and F⊆ U, we have F⊆int(U). Therefore, 
F⊆int(U)∩int(V ) = int(U ∩ V ) = int(A). Hence A is rg-open in X. 
 
Corollary 3.16. A subset A of X is rg-open if and only if it is both rαg-I-open and a Cr-I-
set in X. 
Proof: This is an immediate consequence of Proposition 3.15. 

Proposition 3.17. A subset A of X is rg-open if and only if it is both rαg-I-open and a Cr
* 

-I-set in X. 
Proof: Necessity is trivial. We prove the sufficiency. Assume that A is rαg-I-open and a 
Cr

* -I-set in X. Let F ⊆A and F is regular closed in X. Since A is a Cr
* -I-set in X, A = U 

∩V , where U is rg-open and V is an α*-I-set. Now since F is regular closed, F⊆U and U 
is rg-open, F⊆int(U). Since A is rαg-I-open, F⊆α-I-int(A) = A ∩int(cl*(int(A))) = (U ∩ 
V ) ∩int(cl*(int(U∩ V ))) = (U ∩ V ) ∩int(cl*(int(U)∩int(V )))⊆ (U ∩V ) 
∩int(cl*(int(U)) ∩ cl* (int(V ))) = (U ∩V ) ∩int(cl*(int(U))) ∩int(cl*(int(V ))) = (U ∩ V) 
∩int(cl*(int(U))) ∩int(V ), since V is an α*-I-set. This implies F⊆int(V ). Therefore, 
F⊆int(U) ∩int(V ) = int(U ∩ V ) = int(A). Hence 
A is rg-open in X. 
 
Remark 3.18. (1) The concepts of gpr-I-open sets and Cr-I-sets are independent of each 
other. 

(2) The concepts of rαg-I-open sets and Cr-I-sets are independent of each other. 
(3) The concepts of rαg-I-open sets and Cr

*-I-sets are independent of each other. 

Example 3.19. In Example 2.10, 
(1) {b, c, d} is Cr-I-set but not a gpr-I-open. 
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(2) {a, b, d} is gpr-I-open but not a Cr-I-set. 
 

Example 3.20. In Example 2.10, 
(1) {b, c, d} is Cr-I-set but not an rαg-I-open set. 
(2) {a, b, d} is rαg-I-open set but not a Cr-I-set. 
 

Example 3.21. In Example 2.10, 
(1) {b, c, d} is Cr

*-I-set but not an rαg-I-open set. 
(2) {a, b, d} is rαg-I-open set but not a Cr

*-I-set. 
 

4. Decompositions of rg-continuity 
Definition 4.1. A mapping f : (X, τ) → (Y,σ ) is said to be rg-continuous [17] (resp. gpr-
continuous [4], rαg-continuous [18], Cr-continuous [18] and Cr

*-continuous [18]) if f -
1(V) is rg-open (resp. gpr-open, rαg-open, Cr-set and Cr

*-set) in (X, τ) for every open set 
V in (Y, σ). 

Definition 4.2. A mapping f : (X,τ , I) → (Y,σ ) is said to be rαg-I-continuous (resp. gpr-
I-continuous, Cr-I-continuous and Cr

*-I-continuous) if for every V∈σ , f -1(V) is rαg-I-
open (resp. gpr-I-open, a Cr-I-set and a Cr

*-I-set) in (X, τ, I). 

From Propositions 3.15 and 3.17 and Corollary 3.16 we have the following 
decompositions of rg-continuity. 

Theorem 4.3. Let (X,τ,I) be an ideal topological space. For a mapping f : (X,τ ,I) → 
(Y,σ), the following properties are equivalent: 

(1) f is rg-continuous; 
(2) f is gpr-I-continuous and Cr-I-continuous; 
(3) f is rαg-I-continuous and Cr-I-continuous; 
(4) f is rαg-I-continuous and Cr

*-I-continuous. 
 

Remark 4.4. (1) The concepts of gpr-I-continuity and Cr-I-continuity are in- dependent 
of each other. 
(2) The concepts of rαg-I-continuity and Cr-I-continuity are independent of each other. 
(3) The concepts of rαg-I-continuity and Cr

*-I-continuity are independent of each other. 
 

Example 4.5. (1) Let X = Y = {a, b, c, d},τ = {∅,X,{a},{b},{a,b},{b,c},{a,b,c}}, I = 
{∅,{b}} and σ= {∅,Y,{a,d}}. Let f : (X, τ, I) → (Y,σ ) be the identity function. Then f is 
Cr-I-continuous but not gpr-I-continuous. 

(2) Let  X=Y={a, b, c, d},τ = {∅,X,{d},{a,c},{a,c,d}}, I = { ∅,{a},{d},{a,d}} and 
σ= {∅,Y,{b,c,d}}. Let f : (X, τ, I) → (Y,σ ) be the identity function. Then f is gpr-I-
continuous but not Cr-I-continuous. 

Example 4.6. (1) Let  X=Y={a, b, c, d}, τ = {∅,X,{a},{b},{a,b},{b,c},{a,b,c}}, I = 
{∅,{c}} and σ= {∅,Y,{b,c,d}}. Let f : (X, τ, I) → (Y,σ ) be the identity function. Then f 
is Cr-I-continuous but not rαg-I-continuous. 
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(2) Let X=Y={a, b, c, d},τ = {∅,X,{a},{b},{a,b},{b,c},{a,b,c}}, I = { ∅,{d}} and 
σ= {∅,Y,{a,b,d}}. Let f : (X, τ, I) → (Y,σ ) be the identity function. Then f is rαg-I-
continuous but not Cr-I-continuous. 

Example 4.7. Let X, Y,τ , I and f be as in Example 4.6 (2). Let σ= {∅,Y,{b,c,d}}. Then f 
is Cr

* -I-continuous but not rαg-I-continuous. 

In Example 4.6 (2), f is rαg-I-continuous but not Cr
*-I-continuous. 

Corollary 4.8. [18] Let (X,τ , I) be an ideal topological space and I = {∅}. For a mapping 
f : (X, τ, I) → (Y,σ ), the following properties are equivalent: 

(1) f is rg-continuous; 
(2) f is gpr-continuous and Cr-continuous; 
(3) f is rαg-continuous and Cr-continuous; 
(4) f is rαg-continuous and Cr

*-continuous. 
Proof: Since I= {∅}, we have A* = cl(A) and cl*(A) = A*∅ A = cl(A) for any subset A 
of X [[5], Proposition 2.4(a)]. Therefore, we obtain (1) A is rαg-I-open (resp. gpr-I-open) 
if and only if it is rαg-open (resp. gpr-open) and (2) A is a Cr-I-set (resp. a Cr

*-I-set) if 
and only if it is a Cr-set (resp. a Cr

*-set). The proof follows from Theorem 4.3 
immediately. 
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