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1. Introduction and preiminaries
In 1970, Levine [11] initiated the study of so edllg-closed sets in topological spaces.
The concept of g-continuity was introduced andistithy Balachandranet.al in 1991 [2].
In 1993, Palaniappan and Rao [17] introduced th@®n® of regular generalized closed
(rg-closed) sets and rg-continuity in topologigahees. In 2000, Sundaram and Rajamani
[20] obtained three different decompositions ofcogiinuity by providing two types of
weaker forms of continuity, namely @ontinuity and ¢ -continuity. Recently, Noiriet.
al. [15] introduced the notions of-l-open sets, gp-l-open sets, gs-l-open sets,-E(S)
sets, C-l-sets and S*-I-sets to obtain three differentatepositions of g-continuity via
idealization. Recently Ravi et. al. [18] obtaindutee different decompositions of rg-
continuity. In this paper, we introduce the notiafisag-1-open sets, gpr-I-open sets; C
I-sets and € -I-sets to obtain further decompositions of rgtauuity.

Let (X, 1) be a topological space. An ideal is defined a®m@empty collection
lof subsets of X satisfying the following two cotidins:

() If A € l and BEA, then Bel

i) If A € land Be |, then AUBEI.
For a subset AX, A*(l) = {x eX/UNAgI for each neighborhood U of x} is called the
local function of A with respect to | and[9]. We simply write A* instead of A*(l) in
case there is no chance for confusion. X* is oftgoroper subset of X. For every ideal
topological space (%, I) there exists a topology(l), finer thant, generated bg(l,t) =
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{U\l:U etand EI }, but in generalf(l,t) is notal ways a topology [22]. Also, cl*(A) =
AUA*defines a Kuratowski closure operator fgfl) [22]. Additionally, cl*(A) <cl (A)

for any subset A of X [7]. Throughout this paperd&notes the ideal topological space
(X,1,l) and also cl(A) and int(A)denote the closurefoénd the interior of A in (X1 ),
respectively.

Definition 1.1. A subset A of (Xs) is said to be

(1) a-open [13] if Acint(cl(int(A))),

(2) preopen [12] if Acint(cl(A)),

(3) regular open [19] if A = int(cl(A)),

(4) rg-open [17] iff F<int (A) whenever FEA and F is regular closed in (%,
(5) gpr-open [4] iff Epint(A) whenever FEA and F is regular closed in (iX),
(6) rag-open [18] iff F=aint(A) whenever F=A and F is regular closed in (&%,
(7) at-set [21] if int(A) = int(cl(A)),

(8) arw’-set [6] if int(A) = int(cl(int(A))),

(9) a Cr-set [18] if A = LNV, where U is rg-open and V is a t-set in X,
(10) aG -set [18] if A=UN V, where U is rg-open and V is anset in (X,t).

The complements of the above mentioned open setsalled their respective
closed sets. The pre interior pint(A) (respinterior, aint(A)) of A is the union of all
preopen sets (resp-open sets) contained in A. Theclosure acl(A) of A is the
intersection of albi-closed sets containing A.

Lemma 1.2. [1] If A is a subset of X, then
(1) pint(A) = AN int(cl(A)),
(2) aint(A) = A N int(cl(int(A))) andacl(A) = Au cl(int(cl(A))).

Definition 1.3. A subset A of an ideal topological spacet(X) is said to be

(1) pre-l-open [3] if Acint(cl*(A)),

(2) a-l-open [5] if A cint(cl*(int(A))),

(3) a t-I-set [5] if int(cl*(A)) = int(A),

(4) ana -I-set [5] if int(cl*(int(A))) = int(A).

Also, we haver-I-int(A) = A Nint(cl*(int(A))) [15] and p-I-int(A) = A Nint(cl*
(A)) [15], wherea-I-int(A) denotes thei-I interior of A in (X, 1, I) which is the union of
all o-l1-open sets of (%,1) contained in A. p-I-int(A) has similar meaning

Rernark 1.4. The following hold in a topological space.
(1) Every rg-open set is gpr-open but not convgrggl
2) Every rg-open set isig-open but not conversely [18]

2. rag-l-open setsand gpr-1-open sets

Definition 2.1. A subset A of an ideal topological space {Xl) is called
(2) rag-l-open if FE=a -I-int(A) whenever FEA and F is regular closed in X.
(2) gpr-l-open if E p-l-int(A) whenever E A and F is regular closed in X.

Proposition 2.2. For a subset of an ideal topological space, thewiong hold:
(1) Every ng-l-open set isag-open.

96



Decompositions of rg-Continuity via ldealization

(2) Every gpr-l-open set is gpr-open.

(3) Every ng-open set is gpr-open.
Proof: (1) Let A be anag-l-open set. Let EA and F is regular closed in X. Therg:é -
I-int(A) = A N(int(cl*(int(A)))) <ANint(cl(int(A))) = aint(A). This shows that A isug-
open.

(2) Let A be gpr-l-open set. Let®&A and F is regular closed in X. Therz p-I-
int(A) = A Nint(cl*(A)) € ANint(cl(A)) = pint(A). This shows that A isgpr-open.

(3) It follows from the definitions.

Remark 2.3. The converses of Proposition 2.2 are not trugeimeral.

Example2.4. Let X = {a, b, ¢, dx = {9, X, {a}, {b}, {a,b},{b,c},{a,b,c}} and | ={ @,
{b}}. Then {a, b, d} is rag-open but not arug-I-open set.

Example 2.5. In Example 2.4, {a, b, d} is gpr-open but not a-tjopen set.

Example 2.6. Let X= f{a, b, c, d} and= {9, {d}, {a,c}.{a,c,d},X}. Then {b, c, d} is gpr-
open set but not ang-open.

Proposition 2.7. For a subset of an ideal topological space, thewiong hold:

(1) Every ng-l-open set is gpr-l1-open.

(2) Every rg-open set is gpr-l-open.

(3) Every rg-open set isig-1-open.
Proof: (1) Let A be ag-l-open. Then, for any regular closed set F withtAFwe have F
Co-l-int(A) = A Nint(cl*(int(A))) € A Nint(cl*(A)) = p-I-int(A) which implies that A is
gpr-l-open.

(2) Let A be an rg-open set. Then, for any regalased set F with EA, we
have Eint(A) Cint((int(A))* ) uint(A) =
int((int(A))*) vint(int(A)) cint((int(A))* vint(A)) = int(cl* (int(A))). That is, F=
ANint(cl*(int(A))) =a-I-int(A) = ANint(cl*(int(A))) cANint(cl* (A)) = p-I-int(A) which
implies that A is gpr-l-open.

(3) Let A be an rg-open set. Then, for any regadlesed set F with & A, we
have FCint(A) cint((int(A))*) vint(A) = int((int(A))*)
vint(int(A)) cint((int(A))* vint(A)) = int(cl* (int(A))). That is, FEA Nint(cl*(int(A)))=
a-l-int(A) which implies that A isag-1-open.

Remark 2.8. The converses of Proposition 2.7 are not trugeimeral.

Example2.9. Let X ={a, b, ¢, d, e}g={0,X,
{a},{e},{a,e}{c,d}{a,c,d},{c,d,e},{a,c,d,e}{b,c, d,e}} and | = {@ {a},{e}.{a,e}}. Then
{a, b, d, e} is gpr-lI-open but not ang-1-open set.

Example2.10. Let X ={a, b, c, d}z = {0,X,{a},{b}.{a,b},{b,c},{a,b,c}} and | =
{9,{d}}. Then {a, b, d} is gpr-l-open but not arg-opeset.

Example 2.11. In Example 2.10, {a, b, d} isug-l-open but not arg-open set.
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Remark 2.12. By Remark 1.4, Propositions 2.2 and 2.7, we hhaeddllowing diagram.
In this diagram, there is no implication whichéversible as shown by examples above.
_

__—"7 rag-l-open ng-open

4

\

rg-oper

—_—
gpr-l-open gpr-open

3. C,-l-setsand C, -1 -sets
Definition 3.1. A subset A of an ideal topological space {Xl) is called
(1) aG-l-set if A=UN V, where U is rg-open and V is a t-I-set,
(2) aG’ -I-set if A= UNV, where U is rg-open and V is aft+l-set.
We have the following proposition:
Proposition 3.2. For a subset of an ideal topological space, thewiong hold:
(1) Every t-I-set is an*-I-set [5] and a Gl-set.
(2) Everyo*-l-setis a G -I-set.
(3) Every G-I-set is a ¢-I-set.
(4) Every rg-open set is a d-set.
(5) Every G-setis a -I-set and a C-l-set.
(6) Every G -setis a ¢ -I-set.
From Proposition 3.2, we have the following diagram

rg-open set—i, —se —» C-l-set «—I-se

| v |

Gset C-l-set o -l-set
—> 4__

Remark 3.3. The converses of implications in Diagram Il neetllre true as the
following examples show.

Example 3.4. In Example 2.4, {a, b, d} is Gl-set but not a Gset.
Example 3.5. In Example 2.4, {a, b, c} is Gl-set but not a t-I-set.
Example 3.6. In Example 2.4, {a, d} is 2set but not arg-open set.
Example 3.7. In Example 2.6, {a, b, d} is Gset but not a Gset.
Example 3.8. In Example 2.9, {a, b, c, €} is,Gl-set but not a GI-set.

Example 3.9. In Example 2.4, {a, b, d} is Gl-set but not a € -set.
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Example 3.10. In Example 2.4, {a, b, c} is Gl-set but not an*-I-set.

Example 3.11. Let X = {a, b, ¢}z = {@,X,{a,b}} and | = {@,{a}}. Then {b} is o*-I-set
but not a t-I-set.

Remark 3.12. Examples 3.13 and 3.14 show thatl-Gets and C-sets are independent
of each other.

Example 3.13. In Example 2.9, {a, c, d} is Gset but not a Gl-set.
Example 3.14. In Example 2.4, {a, b, d} is Gl-set but not a C-set.

Proposition 3.15. A subset A of X is rg-open if and only if it is togpr-1-open and a,€
I-set in X.

Proof: Necessity is trivial. We prove the sufficiency.sime that A is gpr-lI-open and a
Cr-l-set in X. Let = A and F is regular closed in X. Since A is alGet in X, A=U
NV, where U is rg-open and V is a t-lI-set. SincesAgpr-l-open, E p-l-int(A) = A
Nint(cl*(A)) = (U N'V) Nint(cl*(U NV ))c (UN V) Nint(cl*(U)N c* (V))=UNV)
Nint(cl*(V)) Nint(cl*(V )). This implies FEint(cl*(V )) = int(V ) since V is a t-I-set.
Since F is regular closed, U is rg-open ard B, we have Eint(U). Therefore,
Fcint(U)Nint(V ) = int(U N V) = int(A). Hence A is rg-open in X.

Corollary 3.16. A subset A of X is rg-open if and only if it is thorag-I-open and a @-
setin X.
Proof: This is an immediate consequence of Propositidh. 3.

Proposition 3.17. A subset A of X is rg-open if and only if it is thorag-1-open and a C
-I-setin X.

Proof: Necessity is trivial. We prove the sufficiency.stime that A isag-I-open and a
C. -l-setin X. Let FEA and F is regular closed in X. Since Aisa-Gsetin X, A=U
NV, where U is rg-open and V is aftl-set. Now since F is regular closedzB and U
is rg-open, Eint(U). Since A is ag-lI-open, Ea-l-int(A) = A Nint(cl*(int(A))) = (U N
V) Nint(cl*(@int(UN V))) = (U N V) Nint(cl*@int(U) Nint(V )))< (UNV)
Nint(cl*(int(U)) N cl* (int(V ))) = (U NV) Nint(cl*(int(U))) Nint(cl*(int(V ))) = (U N V)
Nint(cl*(int(V))) Nint(V ), since V is ar*-I-set. This implies Eint(V ). Therefore,
FCint(U) Nint(V ) = int(U N V) = int(A). Hence

Ais rg-open in X.

Remark 3.18. (1) The concepts of gpr-I-open sets and-§ets are independent of each
other.
(2) The concepts ofig-l-open sets and,d-sets are independent of each other.
(3) The concepts ofig-1-open sets and,Gl-sets are independent of each other.

Example 3.19. In Example 2.10,
(1) {b, c, d} is G-I-set but not a gpr-I-open.
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(2) {a, b, d} is gpr-1-open but not a-Gset.

Example 3.20. In Example 2.10,
(2) {b, c, d} is G-I-set but not anag-l-open set.
(2) {a, b, d} is mg-lI-open set but not aCset.

Example 3.21. In Example 2.10,
(1) {b, c, d} is G -I-set but not anag-1-open set.
(2) {a, b, d} is mg-l-open set but not a,A-set.

4. Decompositions of rg-continuity

Definition 4.1. A mapping f : (X;1) — (Y,c ) is said to be rg-continuous [17] (resp. gpr-
continuous [4], ag-continuous [18], Econtinuous [18] and Gcontinuous [18]) if f
(V) is rg-open (resp. gpr-operyg-open, Gset and €-set) in (X,t) for every open set
Vin (Y, o).

Definition 4.2. A mapping f: (X7, I) — (Y,0 ) is said to beag-Il-continuous (resp. gpr-
I-continuous, Gl-continuous and GI-continuous) if for ever Viic , f (V) is rog-I-
open (resp. gpr-l-open, a-Gset and a €-I-set) in (X,1, 1).

From Propositions 3.15 and 3.17 and Corollary 3vé6ave the following
decompositions of rg-continuity.

Theorem 4.3. Let (X;1,) be an ideal topological space. For a mappingdX,t ,I) —
(Y,0), the following properties are equivalent:

(2) fis rg-continuous;

(2) fis gpr-l-continuous and,d-continuous;

(3) fis rag-l-continuous and d-continuous;

(4) fis rag-I-continuous and Gl-continuous.

Remark 4.4. (1) The concepts of gpr-I-continuity anglecontinuity are in- dependent
of each other.

(2) The concepts ofg-I-continuity and GI-continuity are independent of each other.
(3) The concepts ofig-l-continuity and ¢-l-continuity are independent of each other.

Example 4.5. (1) Let X =Y = {a, b, c, dk = {0,X,{a},{b}{a,b},{b,c},{a,b,c}}, | =
{0,{b}} and o= {0,Y {a,d}}. Let f: (X, 1, I) = (Y,0 ) be the identity function. Then f is
C-I-continuous but not gpr-I-continuous.

(2) Let X=Y={a, b, c, d}s = {0,X,{d},{a,c},{a,c,d}}, | ={ ©,{a},{d},{a,d}} and
o= {0,Y{b,c,d}}. Let f: (X, 1, I) = (Y,0 ) be the identity function. Then f is gpr-I-
continuous but not &-continuous.

Example 4.6. (1) Let X=Y={a, b, c, d},= = {0,X,{a},{b}.{a,b}.{b,c},{a,b,c}}, | =
{0,{c}} and o= {@,Y,{b,c,d}}. Letf: (X, 1, I) — (Y, ) be the identity function. Then f
is G-I-continuous but notag-I-continuous.
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(2) Let X=Y={a, b, c, d}x = {0,X,{a},{b}.{a,b}.{b,c}.{a,b,c}}, I ={ ©,{d}} and
o= {0,Y {a,b,d}}. Let f: (X, 1, I) = (Y,0 ) be the identity function. Then f isg-I-
continuous but not d-continuous.

Example4.7. Let X, Y,r, | and f be as in Example 4.6 (2). loat {@,Y,{b,c,d}}. Then f
is C" -I-continuous but nototg-I-continuous.

In Example 4.6 (2), f isug-I-continuous but not Gl-continuous.

Corollary 4.8. [18] Let (X, I) be an ideal topological space and I33.{For a mapping
f: (X, 1, 1) > (Y,0), the following properties are equivalent:

(2) fis rg-continuous;

(2) fis gpr-continuous and,&€ontinuous;

(3) fis rmg-continuous and &ontinuous;

(4) fis rag-continuous and Gcontinuous.
Proof: Since I= 8}, we have A* = cl(A) and cl*(A) = A® A = cl(A) for any subset A
of X [[5], Proposition 2.4(a)]. Therefore, we obidil) A is ug-I-open (resp. gpr-l-open)
if and only if it is mg-open (resp. gpr-open) and (2) A is al8et (resp. a Gl-set) if
and only if it is a @Gset (resp. a Gset). The proof follows from Theorem 4.3
immediately.
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