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1. Introduction and preiminaries

Let X be a non-empty set and I= [0,1]. A fuzzy eetX is a mapping from X into I. The
null fuzzy set 0 is the mapping from X in to | whi@assumes only the value is 0 and
whole fuzzy sets 1 is a mapping from X on to | whiakes the values 1 only. The union
(resp. intersection) of a family {A aJA} of fuzzy sets of X is defined by to be the
mapping sup A(resp. inf A) . A fuzzy set A of X is contained in a fuzzy &bf X if
A(x) < B(x) for each XIX. A fuzzy point xin X is a fuzzy set defined by; Xy) = p for
y=x and x(y) =0 for y# x, B0[0,1] and yO X .A fuzzy point ¥ is said to be quasi-
coincident with the fuzzy set A denoted QyAif and only if B + A(x) > 1. A fuzzy set A

is quasi —coincident with a fuzzy set B denotedA\gB if and only if there exists a point
xOX such that A(x) + B(x) > 1 .A B if and only if [(A,B9).

A family t of fuzzy sets of X is called a fuzzy topology onf)0,1 belongs ta
andt is super closed with respect to arbitrary uniod finite intersection .The members
of T are called fuzzy super open sets and their comgié are fuzzy super closed sets.
For any fuzzy set A of X the closure of A (denobgdcl(A)) is the intersection of all the
fuzzy super closed super sets of A and the imtefié\ (denoted by int(A) )is the union
of all fuzzy super open subsets of A.

Definition 1.1. A subset A of a fuzzy topological space s called
1. fuzzy super closure scl(A)=X:cl(U) n A<}
2. fuzzy super interior sint(A) =fXX:cl(U)<A+g}
3. fuzzy super closed if scl(Ag A.
4. fuzzy super open if 1-Ais fuzzy super closid(8)=A
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Let X be a fuzzy topological space and A be a fugey of X. The fuzzy interior
(respectively fuzzy closure) of a fuzzy set A imKl be denoted by int(A) (resp.cl(A)).

Definition 1.2. A subset A of a fuzzy topological space X is called

1.

2.

3.

4.
5.

fuzzy pre super open set if Aint(cl (A)) and a pre super closed set if cl(int
(A)=<A.

fuzzy semi super open set iflint (A) and a semi super closed set if int(cl
(A)=A.

fuzzy regular super open set if A = int(cl (A))daa regular super closed set if A
= cl(int(A)).

fuzzy e super open set if A is a finite union of regukuper open sets.

fuzzy regular semi super open[4]if there is a fagusuper open U such that U
<A < cl(V).

Definition 1.3. A fuzzy set A of (X,I') is called,

1.

2.

3.

10.

11.

12.

13.

14.

15.

semi super open (in short, fs-open) if<Acl (int (A)) and a fuzzy semi super
closed (fs- super closed) if int (cl (ADA.

fuzzy pre- super open (fp-open) if Aint [cl (A)] and a fuzzy pre super closed
(fp- super closed) if cl (int (A¥ A.

fuzzy - super open { super open ) if A int [cl (int (A))] and a fuzzya- super
closed (&i- super closed ) if cl (int [cl (A)]X A.

fuzzy semi pre- super open (fsp- super open) i & (int [cl (A)]) and a fuzzy
semi pre- super closed (fsp- super closed) ifahgift (A))] < A.

fuzzy 6- super open ¢F super open) if A =inb (A) and a fuzzyp- super closed
(f0- super closed) if A =d (A) where clo (A) =n {cl (W) : A< U, UET]

fuzzy generalized super closed (fg- super clodead)(A) < H, whenever A< H
and H is fuzzy super open set in X.

fuzzy generalized semi super closed (gfs- supesed) if scl (A H, whenever
A < H and H is fs- super open set in X. This set $® @lalled generalized fuzzy
weakly semi super closed set.

fuzzy generalized semi super closed (fgs- supesedpif scl (A)< H, whenever
A <H and H is fuzzy super open set in X.

fuzzy generalized pre- super closed (fgp- supased) if pcl (A)< H, whenever
A <Hand H is fuzzy super open set in X.

fuzzy a-generalized super closedi@f super closed) iicl (A) < H, whenever A
< H and H is fuzzy super open set in X.

fuzzy generalized super -closed (fg super closed) ificl (A) < H, whenever H
is fuzzy super open set in X.

fuzzy generalized semi pre- super closed (fsp-eswgosed) if spcl (A)<
H,whenever A< H and H is fuzzy super open setin X.

fuzzy semi pre-generalized super closed (fspgersefpsed) if spcl (A H,
whenever A< H and H is fs- super open in X.

fuzzy 6-generalized super closeddf super closed) if cB((A)) < H, whenever
A <Hand H is fuzzy super open in X.

fuzzy g=- super closed (fg- super closed) if cl (A¥ H, whenever <A H and H
is fg- super open in X.
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Definition 1.4. A fuzzy set in X is called a fuzzy point if and il it takes the value 0
for all y € X except one, say & X. If its value at x is p (0 < g 1), we denote this fuzzy
point by %, where the point x is called its support.

2. 89 * - super closed sets

Definition 2.1. A fuzzy point x is said to be a fuzzy+cluster point of a fuzzy set A in a
fts X if every fuzzy regular super open quasi nbmtood of H of X, is quasi coincident
with A.

Definition 2.2. The union of all fuzzy-cluster points of A is called the fuzdy super
closure of A, is denoted kil (A).

Definition 2.3. A subset A of a topological space (¥, is called a fuzzy g- super closed
set if fcl (A) < H, whenever A< H and H is super open in (X).

Definition 2.4. The complement of a fg- super closed set is callégr super open set.

Definition 2.5. A subset A of a space X is calleitjfclosed if fcb (A) <H, whenever A<
H and H is a fuzzy super open set.

Definition 2.6. A fuzzy set A in fts (Xx) is called fuzzyg *- super closed if and only if
fcld (A) < B, whenever A< B and B is fuzzy g- super open in X.

Theorem 2.7. Every fuzzys- super closed set is a fuzag *-super closed set in (X).
Proof. Let A be a fuzzys- super closed set in a fts X and B be a fuzzyugesopen set
in X such that A< B. Since A is a fuzzy- super closed, fd (A) = A. Therefore fclb
(A) = A <B. Hence A is a fuzz§g *- super closed set.

Theorem 2.8. If A is fuzzy é- super open and fuzdg - super closed in (%), then A is
fuzzy 8- super closed in (X)).

Proof. Let A be fuzzys- super open and fuzg =- super closed in X. SupposesfA,
then fclé (A) < A. But A< fcl & (A), which implies that fcb (A) = A. Hence A is fuzzy
8- super closed.

Theorem 2.9. Let (X, I') be a fts and A be a fuzzy set of X. Then A iszfu&g *- super
closed if and only if A —g B implies fd (A) —q B for every fuzzysg *-closed set B of
(X, ).

Proof. Suppose A is a fuzzyg =- super closed set of X. Let B be a fuzzy g supesed
set in X such that A —-q B. Then A1 - B and 1 - B is a fuzzy g- super open set of X.
Therefore fcld (A) <1 — B, as A is fuzzyg *- super closed. Hence fél (A) —q B.
Conversely, let D be a fuzzy g- super open set sugh that A<<D. Then A—-q (1 - D)
and 1 - D is a fuzzy g- super closed set in X. Bydthesis, fcb (A) —q (1 — D) which
implies, cld (A) < D. Hence A is fuzzyg *- super closed.
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Theorem 2.10. If A is a fuzzydg *-closed set in (X7) and A< B <fcl 6 (A), then B is a
fuzzyég *- super closed set in (X).

Proof. Let A be a fuzzyg *-closed set in (X). Given A< B <fcl 6 (A). Suppose B<H
where H is fuzzy g- super open set. Since B<H and A is a fuzzyg *- super closed
set, we get fcb (A) <H. As B<fcl & (A),fclé (B)<fcld (fcld (A)) =fcld (A) we get
f cld ( B) < H. Hence B is a fuzz§g *- super closed set in (X).

Theorem 2.11. If A is a fuzzyég *-open set in (Xg) and finb (A) <B <A, then B is a
fuzzy dg *- super open set in (X).

Proof. Let A be fuzzydg *- super open set and B be any fuzzy set in X shahfintd
(A) <B<A.Then 1-Aisafuzz§g=-closedsetand1l-A1l-B<fcld (1-A), as
1-fint (A) =fcld (1 — A). Therefore 1 — B is a fuzdg *- super closed. Hence B is
fuzzy 8g *- super open.

3. Fuzzy strongly g *- super closed setsin fuzzy topological spaces

Definition 3.1. Let (X, 1) be a fuzzy topological space. A fuzzy set A of [Xis called
fuzzy strongly g«- super closed if cl (int (A)X H, whenever A< H and H is fg- super
open in X.

Theorem 3.2. Every fuzzy closed set is a fuzzy strongly-guper closed set in the fuzzy
topological space (X;,).

Proof. Let A be fuzzy super closed set in X and H be-asfger open set in X such that
A < H. Since A is fuzzy super closed, cl (A) = A. Téfre cl (A)< H.Now, cl (int (A))
<cl(A)< H. Hence A is fuzzy strongly g*-super-closed seXi

Theorem 3.1. Every fuzzy g *- super closed set is a fuzzy sthpmpg*- super closed set
in (X, ).

Proof. Suppose that A is fg *- super closed in X. Letélebfg- super open set in X such
that A<H. Then cl (A)< H, since A is fg *- super closed. Now,cl (int (A)cl (A) <H,
hence A is fuzzy strongly g *- super closed set.it¥owever the converse of the
Theorem 4.5 need not be true in general.

Theorem 3.2. Let A be a fuzzy strongly g *- super closed sef{iT 1) and x,be a fuzzy
point of (X,I") such that x pqcl (int(A)) then cl (int(x p)) gA.

Proof. Let A be a fuzzy strongly g *- super closed sefdiT) and x p be a fuzzy point of
(X, 1) such that x pqcl (int (A)). Suppose cl (intdx—gA,then cl (int (x,)) q1 - A and
hence A< 1 - cl (int (xp)). Now, 1 —cl (int (X)) is fuzzy super open. Moreover, since A
is fuzzy strongly g *- super closed, cl (int (&)1 - cl (int (xp)) < 1 - X,. Hence x,—qcl
(int (A)), which is a contradiction.

Theorem 3.3. If A is a fuzzy strongly g *- super closed set ¥ () and A<B < cl (int
(A)), then B is fuzzy strongly g *- super closed(i 1).

Proof. Let A be a fuzzy strongly g *- super closed sef{nl") and B< H where H is a
fuzzy g- super open set in X. Then<Ad. Since A is a fuzzy strongly g *- super closed
set, it follows that cl (int (A)X H . Now, B< cl (int (A)) implies cl (int (B))< cl (int (cl
(int (A)))) =cl (int (A)).We get, cl (int (B)X H. Hence, B is a fuzzy strongly g *- super
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closed set in (7).

Definition 3.2. A fuzzy set A of (X,1) is called fuzzy strongly g *- super open set iiif X
and only if 1 — A is fuzzy strongly g *- super cmbin X. In other words, A is fuzzy
strongly g *- super open if and only if £tl (int (A)), whenever K< A of H is fg- super

closed in X.

Theorem 3.4. Let (Y, tY) be a subspace of a fuzzy topological spac€)d&nd A be a
fuzzy set of Y. If A is fuzzy strongly g *- supelosed in X, then A is a fuzzy strongly g
*- super closed in Y.

Proof. Let Y be a subspace of X and H be a fg- supenapéin Y such that A H. We
have to prove that cly (int y (AR H. Since H is fg-super open in Y, we have H AiF
where G is fg- super open in X. HencesMd = GN Y implies A< G and A is fuzzy
strongly g *- super open in X. We get cl (int (A)G. Therefore cl (int (AN Y <GN

Y = H. Thus cl (int (A))< H, whenever A< H and H is fuzzy g-super open in Y. Hence
A is fuzzy strongly g *- super openin.

Theorem 3.5. If a fuzzy set A of a fuzzy topological space Xbisth fuzzy super open
and fuzzy strongly g *- super closed, then it Bziusuper closed.

Proof. Suppose that a fuzzy set A of X is both fuzzy sumen and fuzzy strongly g *-
super closed. Now, 4 cl (int (A)) > cl (A). That is A> cl (A), since A< cl (A). So we
get A =cl (A). Hence A is fuzzy super closed in X.

Theorem 3.6. If a fuzzy set A of a fuzzy topological space Xoisth fuzzy strongly g *-
super closed and fuzzy semi super open, therigttissuper closed.

Proof. Suppose a fuzzy set A of X is both fuzzy strongly- super closed and fuzzy
semi open in X. Let H be a fg-open set such thatlA. Since A is fuzzy strongly g *-
super closed, therefore cl (int (AH)H. Also since A is fs- super open,<Acl (int (A)).
We have cl (AX cl (int (A)) <H. Hence A is fg *- super closed in X.
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