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1. Introduction and preliminaries  
Let X be a non-empty set and I= [0,1]. A fuzzy set on X is a mapping from X in to I. The 
null fuzzy set 0 is the mapping from X in to I which assumes only the value is 0 and 
whole fuzzy sets 1 is a mapping from X on to I which takes the values 1 only. The union 
(resp. intersection) of a family {Aα: α∈Λ} of fuzzy sets of X is defined by to be the 
mapping sup Aα (resp. inf Aα) . A fuzzy set A of X is contained in a fuzzy set B of X if 
A(x) ≤ B(x) for each x∈X. A fuzzy point xβ in X is a fuzzy set defined by xβ (y) = β for 
y=x and x(y) =0 for y ≠ x, β∈[0,1] and y ∈ X .A fuzzy point xβ is said to be quasi-
coincident with the fuzzy set A denoted by xβqA if and only if β + A(x) > 1. A fuzzy set A 
is quasi –coincident with a fuzzy set B denoted by AqB if and only if there exists a point 
x∈X such that A(x) + B(x) > 1 .A ≤ B if and only if (AqB

c). 
A family τ of fuzzy sets of X is called a fuzzy topology on X if 0,1 belongs to τ 

and τ is super closed with respect to arbitrary union and finite intersection .The members 
of τ are called  fuzzy super open sets and their complement are fuzzy super closed sets. 
For any fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection  of all the 
fuzzy super closed super sets of A  and the interior of A (denoted by int(A) )is the union 
of all fuzzy super open subsets of A. 

 
Definition 1.1. A subset A of a fuzzy topological space (X,τ) is called  

1. fuzzy super closure  scl(A)={x∈X:cl(U)∩A≠φ} 
2. fuzzy super interior  sint(A) ={x∈X:cl(U)≤A≠φ} 
3. fuzzy super closed if scl(A ) ≤ A. 
4.  fuzzy super open   if 1-A is  fuzzy super closed sint(A)=A 
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Let X be a fuzzy topological space and A be a fuzzy set of X. The fuzzy interior 
(respectively fuzzy closure) of a fuzzy set A in X will be denoted by int(A) (resp.cl(A)). 

Definition 1.2. A subset A of a fuzzy topological space X is called  
1. fuzzy pre super open set if A ≤ int(cl (A)) and a pre super closed  set if cl(int 

(A))≤ A.  
2. fuzzy semi super open set  if A ≤clint (A) and a semi super closed  set if int(cl 

(A))≤A.  
3. fuzzy regular  super open set if A = int(cl (A)) and a regular super closed  set if A 

= cl(int(A)).  
4. fuzzy π-  super open set  if A is a finite union of regular  super open sets.  
5. fuzzy regular semi  super open[4]if there is a regular  super open U such that U 

≤A ≤ cl(U).  
 

Definition 1.3. A fuzzy set A of (X, Γ) is called, 
1. semi super open (in short, fs-open) if A ≤ cl (int (A)) and a fuzzy semi super 

closed (fs- super closed) if int (cl (A)) ≤ A. 
2. fuzzy pre- super open (fp-open) if A ≤ int [cl (A)] and a fuzzy pre super closed 

(fp- super closed) if   cl (int (A)) ≤ A. 
3. fuzzy α- super open (fα- super open ) if A ≤ int [cl (int (A))] and a fuzzy  α- super 

closed (fα- super closed ) if cl (int [cl (A)]) ≤ A. 
4. fuzzy semi pre- super open (fsp- super open) if A ≤ cl (int [cl (A)]) and a fuzzy 

semi pre- super closed (fsp- super closed) if int [cl (int (A))] ≤ A. 
5.  fuzzy θ- super open (fθ- super open) if A = int θ (A) and a fuzzy θ- super closed 

(fθ- super closed) if A = cl θ (A) where cl θ (A) = ∩ {cl (µ) : A ≤ µ, µ ∈ τ }.  
6.  fuzzy generalized super closed (fg- super closed) if cl (A) ≤ H, whenever A ≤ H 

and H is fuzzy super open set in X. 
7.  fuzzy generalized semi super closed (gfs- super closed) if scl (A) ≤ H, whenever 

A ≤ H and H is fs- super open set in X. This set is also called generalized fuzzy 
weakly semi super closed set. 

8. fuzzy generalized semi super closed (fgs- super closed) if scl (A) ≤ H, whenever 
A ≤ H and H is fuzzy super open set in X. 

9.  fuzzy generalized pre- super closed (fgp- super closed) if pcl (A) ≤ H, whenever 
A ≤ H and H is fuzzy super open set in X. 

10. fuzzy α-generalized super closed (fαg- super closed) if αcl (A) ≤ H, whenever A 
≤ H and H is fuzzy super open set in X. 

11. fuzzy generalized α super -closed (fgα- super closed) if αcl (A) ≤ H, whenever H 
is fuzzy super open set in X. 

12.  fuzzy generalized semi pre- super closed (fsp- super closed) if spcl (A) ≤ 
H,whenever A ≤ H and H is fuzzy super open set in X. 

13.  fuzzy semi pre-generalized super closed (fspg- super closed) if spcl (A) ≤ H, 
whenever A ≤ H and H is fs- super open in X. 

14.  fuzzy θ-generalized super closed (fθg- super closed) if cl (θ (A)) ≤ H, whenever 
A ≤ H and H is fuzzy super open in X. 

15.  fuzzy g ∗- super closed (fg ∗- super closed) if cl (A) ≤ H, whenever A ≤ H and H 
is fg- super open in X. 
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Definition 1.4. A fuzzy set in X is called a fuzzy point if and only if it takes the value 0 
for all y ∈ X except one, say x ∈ X. If its value at x is p (0 < p ≤ 1), we denote this fuzzy 
point by xp, where the point x is called its support. 
 
2. δg ∗∗∗∗ - super closed sets 
Definition 2.1. A fuzzy point xa is said to be a fuzzy δ-cluster point of a fuzzy set A in a 
fts X if every fuzzy regular super open quasi neighborhood of H of x a is quasi coincident 
with A. 
 
Definition 2.2. The union of all fuzzy δ-cluster points of A is called the fuzzy δ- super 
closure of A, is denoted by δcl (A). 
 
Definition 2.3. A subset A of a topological space (X, Γ) is called a fuzzy g- super closed 
set if fcl (A) ≤ H, whenever A ≤ H and H is super open in (X, Γ). 
 
Definition 2.4. The complement of a fg- super closed set is called a fg- super open set. 
 
Definition 2.5. A subset A of a space X is called fδg-closed if fclδ (A) ≤H, whenever A ≤ 
H and H is a fuzzy super open set. 
 
Definition 2.6. A fuzzy set A in fts (X, τ) is called fuzzy δg ∗- super closed if and only if 
fclδ (A) ≤ B, whenever A ≤ B and B is fuzzy g- super open in X. 
 
Theorem 2.7. Every fuzzy δ- super closed set is a fuzzy δg ∗-super closed set in (X, Γ). 
Proof. Let A be a fuzzy δ- super closed set in a fts X and B be a fuzzy g- super open  set 
in X such that A ≤ B. Since A is a fuzzy δ- super closed, fcl δ (A) = A. Therefore fcl δ 
(A) = A ≤ B. Hence A is a fuzzy δg ∗- super closed set.  
 
Theorem 2.8. If A is fuzzy δ- super open and fuzzy δg ∗- super closed in (X, τ), then A is 
fuzzy δ- super closed in (X, Γ). 
Proof. Let A be fuzzy δ- super open and fuzzy δg ∗- super closed in X. Suppose A ≤ A, 
then fcl δ (A) ≤ A. But A ≤ fcl δ (A), which implies that fcl δ (A) = A. Hence A is fuzzy 
δ- super closed.  
 
Theorem 2.9. Let (X, Γ) be a fts and A be a fuzzy set of X. Then A is fuzzy δg ∗- super 
closed if and only if A –q B implies fcl δ (A) –q B for every fuzzy δg ∗-closed set B of 
(X, Γ). 
Proof. Suppose A is a fuzzy δg ∗- super closed set of X. Let B be a fuzzy g super closed 
set in X such that A −q B. Then A ≤ 1 − B and 1 − B is a fuzzy g- super open set of X. 
Therefore fcl δ (A) ≤ 1 − B, as A is fuzzy δg ∗- super closed. Hence fcl δ (A) –q B. 
Conversely, let D be a fuzzy g- super open set in X such that A ≤ D. Then A –q (1 − D) 
and 1 − D is a fuzzy g- super closed set in X. By hypothesis, fcl δ (A) –q (1 − D) which 
implies, cl δ (A) ≤ D. Hence A is fuzzy δg ∗- super closed.  
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Theorem 2.10. If A is a fuzzy δg ∗-closed set in (X, τ) and A ≤ B ≤ fcl δ (A), then B is a 
fuzzy δg ∗- super closed set in (X, Γ). 
Proof. Let A be a fuzzy δg ∗-closed set in (X, τ). Given A ≤ B ≤fcl δ (A). Suppose B ≤ H 
where H is fuzzy g- super open set. Since A ≤ B ≤H and A is a fuzzy δg ∗- super closed 
set, we get fcl δ (A) ≤ H. As B ≤ fcl δ (A),f clδ ( B) ≤ f clδ ( f clδ ( A)) = f clδ ( A) we get 
f clδ ( B) ≤ H. Hence B is a fuzzy δg ∗- super closed set in (X, τ).  
 
Theorem 2.11. If A is a fuzzy δg ∗-open set in (X, τ) and fintδ (A) ≤B ≤ A, then B is a 
fuzzy δg ∗- super open set in (X, Γ). 
Proof. Let A be fuzzy δg ∗- super open set and B be any fuzzy set in X such that fintδ 
(A) ≤ B ≤ A. Then   1 − A is a fuzzy δg ∗-closed set and 1 − A ≤ 1 − B ≤ fclδ (1 − A), as 
1 − f intδ (A) = fclδ (1 − A). Therefore 1 − B is a fuzzy δg ∗- super closed. Hence B is 
fuzzy δg ∗- super open.  
 
3. Fuzzy strongly g ∗∗∗∗- super closed sets in fuzzy topological spaces 
Definition 3.1. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, Γ) is called 
fuzzy strongly  g ∗- super closed if cl (int (A)) ≤ H, whenever A ≤ H and H is fg- super 
open in X. 
 
Theorem 3.2. Every fuzzy closed set is a fuzzy strongly g ∗- super closed set in the fuzzy 
topological space (X, Γ). 
Proof. Let A be fuzzy super closed set in X and H be a fg- super open set in X such that 
A ≤ H. Since A is fuzzy super closed, cl (A) = A. Therefore cl (A) ≤ H.Now, cl (int (A)) 
≤cl(A)≤ H. Hence A is fuzzy strongly g*-super-closed set in X.  
 
Theorem 3.1. Every fuzzy g *- super closed set is a fuzzy strongly g *- super closed set 
in (X, Γ).  
Proof. Suppose that A is fg *- super closed in X. Let H be a fg- super open set in X such 
that A ≤ H. Then cl (A) ≤ H, since A is fg *- super closed. Now,cl (int (A)) ≤ cl (A) ≤ H, 
hence A is fuzzy strongly g *- super closed set inX. However the converse of the 
Theorem 4.5 need not be true in general. 
 
Theorem 3.2. Let A be a fuzzy strongly g *- super closed set in (X,Γτ) and x p be a fuzzy 
point of (X, Γ) such that x pqcl (int(A)) then cl (int(x p)) qA.  
Proof. Let A be a fuzzy strongly g *- super closed set in (X,Γ) and x p be a fuzzy point of 
(X, τ) such that x pqcl (int (A)). Suppose cl (int (x p))−qA,then cl (int (x p)) q1 − A and 
hence A ≤ 1 − cl (int (x p)). Now, 1 −cl (int (x p)) is fuzzy super open. Moreover, since A 
is fuzzy strongly g *- super closed, cl (int (A)) ≤ 1 − cl (int (x p)) ≤ 1 − x p. Hence x p−qcl 
(int (A)), which is a contradiction. 
 
Theorem 3.3. If A is a fuzzy strongly g *- super closed set in (X, Γ) and A ≤B ≤ cl (int 
(A)), then B is fuzzy strongly g *- super closed in (X, τ). 
Proof. Let A be a fuzzy strongly g *- super closed set in (X, Γ) and B ≤ H where H is a 
fuzzy g- super open set in X. Then A ≤ H. Since A is a fuzzy strongly g *- super closed 
set, it follows that cl (int (A)) ≤ H . Now, B ≤ cl (int (A)) implies cl (int (B)) ≤ cl (int (cl 
(int (A)))) = cl (int (A)).We get, cl (int (B)) ≤ H. Hence, B is a fuzzy strongly g *- super 
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closed set in (X,Γτ).  
 
Definition 3.2. A fuzzy set A of (X, τ) is called fuzzy strongly g *- super open set in X if 
and only if 1 − A is fuzzy strongly g *- super closed in X. In other words, A is fuzzy 
strongly g *- super open if and only if H ≤cl (int (A)), whenever H ≤ A of H is fg- super 
closed in X. 
 
Theorem 3.4. Let (Y, τY) be a subspace of a fuzzy topological space (X,Γ) and A be a 
fuzzy set of Y. If A is fuzzy strongly g *- super closed in X, then A is a fuzzy strongly g 
*- super closed in Y. 
Proof. Let Y be a subspace of X and H be a fg- super open set in Y such that A ≤ H. We 
have to prove that cly (int y (A)) ≤ H. Since H is fg-super open in Y, we have H = G ∩ Y 
where G is fg- super open in X. Hence A ≤ H = G ∩ Y implies A ≤ G and A is fuzzy 
strongly g *- super open in X. We get cl (int (A)) ≤ G. Therefore cl (int (A)) ∩ Y ≤ G ∩ 
Y = H. Thus cl (int (A)) ≤ H, whenever A ≤ H and H is fuzzy g-super open in Y. Hence 
A is fuzzy strongly g *- super open in Y.  
 
Theorem 3.5. If a fuzzy set A of a fuzzy topological space X is both fuzzy super open 
and fuzzy strongly g *- super closed, then it is fuzzy super closed. 
 Proof. Suppose that a fuzzy set A of X is both fuzzy super open and fuzzy strongly g *- 
super closed. Now, A ≥ cl (int (A)) ≥ cl (A). That is A ≥ cl (A), since A ≤ cl (A). So we 
get A = cl (A). Hence A is fuzzy super closed in X.  
 
Theorem 3.6. If a fuzzy set A of a fuzzy topological space X is both fuzzy strongly g *- 
super closed and fuzzy semi super open, then it is fg *- super closed.  
Proof. Suppose a fuzzy set A of X is both fuzzy strongly g *- super closed and fuzzy 
semi open in X. Let H be a fg-open set such that A ≤ H. Since A is fuzzy strongly g *- 
super closed, therefore cl (int (A)) ≤ H. Also since A is fs- super open, A ≤ cl (int (A)). 
We have cl (A) ≤ cl (int (A)) ≤ H. Hence A is fg *- super closed in X.  
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