Intern. J. Fuzzy Mathematical Archive Vol. 10, No. 2, 2016, 155-160 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 6 June 2016 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Fuzzy Strongly G*-Super Closed Sets and Fuzzy δg*-Super Closed Sets

M.K. Mishra and M.Shukla

Department of MCA, EGS Pillay Engineering College, Nagapattinam-611002, India Department of Science, Arignar Anna College, Karaikal-609602, India Email: drmkm1969@rediffmail.com

Received 21 May 2016; accepted 27 May 2016

Abstract. In this paper, we studied and introduce a new class of fuzzy sets called fuzzy strongly g *- super closed sets is introduced and explore some of its characterization.

Keywords: Fuzzy topological spaces, Fuzzy generalized super closed sets, Fuzzy g *- super closed sets, Fuzzy strongly g *- super closed sets

AMS Mathematics Subject Classification (2010): 46S40, 47S40

1. Introduction and preliminaries

Let X be a non-empty set and I= [0,1]. A fuzzy set on X is a mapping from X in to I. The null fuzzy set 0 is the mapping from X in to I which assumes only the value is 0 and whole fuzzy sets 1 is a mapping from X on to I which takes the values 1 only. The union (resp. intersection) of a family { A_{α} : $\alpha \in \Lambda$ } of fuzzy sets of X is defined by to be the mapping sup A_{α} (resp. inf A_{α}). A fuzzy set A of X is contained in a fuzzy set B of X if $A(x) \leq B(x)$ for each $x \in X$. A fuzzy point x_{β} in X is a fuzzy set defined by x_{β} (y) = β for y=x and x(y) = 0 for $y \neq x$, $\beta \in [0,1]$ and $y \in X$. A fuzzy point x_{β} is said to be quasicoincident with the fuzzy set A denoted by $x_{\beta q}A$ if and only if $\beta + A(x) > 1$. A fuzzy set A is quasi –coincident with a fuzzy set B denoted by A_qB if and only if there exists a point $x \in X$ such that A(x) + B(x) > 1. A $\leq B$ if and only if $\overline{A_qB^c}$).

A family τ of fuzzy sets of X is called a fuzzy topology on X if 0,1 belongs to τ and τ is super closed with respect to arbitrary union and finite intersection .The members of τ are called fuzzy super open sets and their complement are fuzzy super closed sets. For any fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy super closed super sets of A and the interior of A (denoted by int(A)) is the union of all fuzzy super open subsets of A.

Definition 1.1. A subset A of a fuzzy topological space (X, τ) is called

- 1. fuzzy super closure $scl(A) = \{x \in X: cl(U) \cap A \neq \phi\}$
- 2. fuzzy super interior $sint(A) = \{x \in X: cl(U) \le A \neq \phi\}$
- 3. fuzzy super closed if $scl(A) \le A$.
- 4. fuzzy super open if 1-A is fuzzy super closed sint(A)=A

M.K. Mishra and M.Shukla

Let X be a fuzzy topological space and A be a fuzzy set of X. The fuzzy interior (respectively fuzzy closure) of a fuzzy set A in X will be denoted by int(A) (resp.cl(A)).

Definition 1.2. A subset A of a fuzzy topological space X is called

- fuzzy pre super open set if A ≤ int(cl (A)) and a pre super closed set if cl(int (A))≤ A.
- fuzzy semi super open set if A ≤clint (A) and a semi super closed set if int(cl (A))≤A.
- 3. fuzzy regular super open set if A = int(cl (A)) and a regular super closed set if A = cl(int(A)).
- 4. fuzzy π super open set if A is a finite union of regular super open sets.
- 5. fuzzy regular semi super open[4] if there is a regular super open U such that U $\leq A \leq cl(U)$.

Definition 1.3. A fuzzy set A of (X, Γ) is called,

- 1. semi super open (in short, fs-open) if $A \le cl$ (int (A)) and a fuzzy semi super closed (fs- super closed) if int (cl (A)) $\le A$.
- 2. fuzzy pre- super open (fp-open) if $A \le int [cl (A)]$ and a fuzzy pre super closed (fp- super closed) if cl (int (A)) $\le A$.
- 3. fuzzy α super open (f α super open) if $A \leq int [cl (int (A))]$ and a fuzzy α super closed (f α super closed) if cl (int [cl (A)]) $\leq A$.
- 4. fuzzy semi pre- super open (fsp- super open) if $A \le cl$ (int [cl (A)]) and a fuzzy semi pre- super closed (fsp- super closed) if int [cl (int (A))] $\le A$.
- 5. fuzzy θ super open (f θ super open) if A = int θ (A) and a fuzzy θ super closed (f θ super closed) if A = cl θ (A) where cl θ (A) = \cap {cl (μ) : A $\leq \mu, \mu \in \tau$ }.
- 6. fuzzy generalized super closed (fg- super closed) if cl (A) \leq H, whenever A \leq H and H is fuzzy super open set in X.
- 7. fuzzy generalized semi super closed (gfs- super closed) if scl (A) \leq H, whenever A \leq H and H is fs- super open set in X. This set is also called generalized fuzzy weakly semi super closed set.
- 8. fuzzy generalized semi super closed (fgs- super closed) if scl (A) \leq H, whenever A \leq H and H is fuzzy super open set in X.
- 9. fuzzy generalized pre- super closed (fgp- super closed) if pcl (A) \leq H, whenever A \leq H and H is fuzzy super open set in X.
- 10. fuzzy α -generalized super closed (fag- super closed) if α cl (A) \leq H, whenever A \leq H and H is fuzzy super open set in X.
- 11. fuzzy generalized α super -closed (fg α super closed) if α cl (A) \leq H, whenever H is fuzzy super open set in X.
- 12. fuzzy generalized semi pre- super closed (fsp- super closed) if spcl (A) \leq H,whenever A \leq H and H is fuzzy super open set in X.
- 13. fuzzy semi pre-generalized super closed (fspg- super closed) if spcl (A) \leq H, whenever A \leq H and H is fs- super open in X.
- 14. fuzzy θ -generalized super closed (f θ g- super closed) if cl (θ (A)) \leq H, whenever A \leq H and H is fuzzy super open in X.
- 15. fuzzy g *- super closed (fg *- super closed) if cl (A) \leq H, whenever A \leq H and H is fg- super open in X.

Fuzzy Strongly G*-Super Closed Sets and Fuzzy δg*-Super Closed Sets

Definition 1.4. A fuzzy set in X is called a fuzzy point if and only if it takes the value 0 for all $y \in X$ except one, say $x \in X$. If its value at x is $p (0 , we denote this fuzzy point by <math>x_p$, where the point x is called its support.

2. δg ***** - super closed sets

Definition 2.1. A fuzzy point x_a is said to be a fuzzy δ -cluster point of a fuzzy set A in a fts X if every fuzzy regular super open quasi neighborhood of H of x _a is quasi coincident with A.

Definition 2.2. The union of all fuzzy δ -cluster points of A is called the fuzzy δ - super closure of A, is denoted by δcl (A).

Definition 2.3. A subset A of a topological space (X, Γ) is called a fuzzy g- super closed set if fcl $(A) \leq H$, whenever $A \leq H$ and H is super open in (X, Γ) .

Definition 2.4. The complement of a fg- super closed set is called a fg- super open set.

Definition 2.5. A subset A of a space X is called $f\delta g$ -closed if $fcl\delta(A) \leq H$, whenever $A \leq H$ and H is a fuzzy super open set.

Definition 2.6. A fuzzy set A in fts (X, τ) is called fuzzy $\delta g \ast$ - super closed if and only if fcl $\delta(A) \leq B$, whenever $A \leq B$ and B is fuzzy g- super open in X.

Theorem 2.7. Every fuzzy δ - super closed set is a fuzzy δg *-super closed set in (X, Γ). **Proof.** Let A be a fuzzy δ - super closed set in a fts X and B be a fuzzy g- super open set in X such that $A \leq B$. Since A is a fuzzy δ - super closed, fcl δ (A) = A. Therefore fcl δ (A) = A \leq B. Hence A is a fuzzy δg *- super closed set.

Theorem 2.8. If A is fuzzy δ - super open and fuzzy δg *- super closed in (X, τ) , then A is fuzzy δ - super closed in (X, Γ) .

Proof. Let A be fuzzy δ - super open and fuzzy δg *- super closed in X. Suppose $A \le A$, then fcl δ (A) $\le A$. But $A \le$ fcl δ (A), which implies that fcl δ (A) = A. Hence A is fuzzy δ - super closed.

Theorem 2.9. Let (X, Γ) be a fts and A be a fuzzy set of X. Then A is fuzzy $\delta g \ast$ - super closed if and only if A –q B implies fcl δ (A) –q B for every fuzzy $\delta g \ast$ -closed set B of (X, Γ) .

Proof. Suppose A is a fuzzy $\delta g \ast$ - super closed set of X. Let B be a fuzzy g super closed set in X such that A -q B. Then A $\leq 1 - B$ and 1 - B is a fuzzy g- super open set of X. Therefore fcl δ (A) $\leq 1 - B$, as A is fuzzy $\delta g \ast$ - super closed. Hence fcl δ (A) -q B. Conversely, let D be a fuzzy g- super open set in X such that A $\leq D$. Then A -q (1 - D) and 1 - D is a fuzzy g- super closed set in X. By hypothesis, fcl δ (A) -q (1 - D) which implies, cl δ (A) \leq D. Hence A is fuzzy $\delta g \ast$ - super closed.

M.K. Mishra and M.Shukla

Theorem 2.10. If A is a fuzzy δg *-closed set in (X, τ) and $A \le B \le fcl \delta$ (A), then B is a fuzzy δg *- super closed set in (X, Γ) .

Proof. Let A be a fuzzy δg *-closed set in (X, τ) . Given $A \leq B \leq fcl \delta$ (A). Suppose $B \leq H$ where H is fuzzy g- super open set. Since $A \leq B \leq H$ and A is a fuzzy δg *- super closed set, we get fcl δ (A) \leq H. As $B \leq fcl \delta$ (A), f cl δ (B) \leq f cl δ (A) = f cl δ (A) we get f cl δ (B) \leq H. Hence B is a fuzzy δg *- super closed set in (X, τ).

Theorem 2.11. If A is a fuzzy δg *-open set in (X, τ) and fint $\delta(A) \leq B \leq A$, then B is a fuzzy δg *- super open set in (X, Γ) .

Proof. Let A be fuzzy $\delta g \ast$ - super open set and B be any fuzzy set in X such that fint $\delta(A) \leq B \leq A$. Then 1 - A is a fuzzy $\delta g \ast$ -closed set and $1 - A \leq 1 - B \leq fcl\delta(1 - A)$, as 1 - f int $\delta(A) = fcl\delta(1 - A)$. Therefore 1 - B is a fuzzy $\delta g \ast$ - super closed. Hence B is fuzzy $\delta g \ast$ - super open.

3. Fuzzy strongly g *- super closed sets in fuzzy topological spaces

Definition 3.1. Let (X, τ) be a fuzzy topological space. A fuzzy set A of (X, Γ) is called fuzzy strongly g *- super closed if cl (int (A)) \leq H, whenever A \leq H and H is fg- super open in X.

Theorem 3.2. Every fuzzy closed set is a fuzzy strongly $g \ast$ - super closed set in the fuzzy topological space (X, Γ).

Proof. Let A be fuzzy super closed set in X and H be a fg- super open set in X such that $A \le H$. Since A is fuzzy super closed, cl (A) = A. Therefore cl (A) \le H.Now, cl (int (A)) \le cl(A) \le H. Hence A is fuzzy strongly g*-super-closed set in X.

Theorem 3.1. Every fuzzy g *- super closed set is a fuzzy strongly g *- super closed set in (X, Γ) .

Proof. Suppose that A is fg *- super closed in X. Let H be a fg- super open set in X such that $A \le H$. Then cl (A) $\le H$, since A is fg *- super closed. Now, cl (int (A)) \le cl (A) $\le H$, hence A is fuzzy strongly g *- super closed set in X. However the converse of the Theorem 4.5 need not be true in general.

Theorem 3.2. Let A be a fuzzy strongly g *- super closed set in $(X,\Gamma\tau)$ and x _p be a fuzzy point of (X, Γ) such that x pqcl (int(A)) then cl (int(x p)) qA.

Proof. Let A be a fuzzy strongly g *- super closed set in (X, Γ) and x p be a fuzzy point of (X, τ) such that x pqcl (int (A)). Suppose cl (int $(x_p))$ -qA,then cl (int $(x_p))$ q1 – A and hence $A \leq 1 - cl$ (int (x_p)). Now, 1 –cl (int (x_p)) is fuzzy super open. Moreover, since A is fuzzy strongly g *- super closed, cl (int (A)) $\leq 1 - cl$ (int (x_p)) $\leq 1 - x_p$. Hence x $_p$ -qcl (int (A)), which is a contradiction.

Theorem 3.3. If A is a fuzzy strongly g *- super closed set in (X, Γ) and $A \leq B \leq cl$ (int (A)), then B is fuzzy strongly g *- super closed in (X, τ) .

Proof. Let A be a fuzzy strongly g *- super closed set in (X, Γ) and $B \le H$ where H is a fuzzy g- super open set in X. Then $A \le H$. Since A is a fuzzy strongly g *- super closed set, it follows that cl (int (A)) $\le H$. Now, $B \le cl$ (int (A)) implies cl (int (B)) $\le cl$ (int (cl (int (A)))) = cl (int (A)). We get, cl (int (B)) $\le H$. Hence, B is a fuzzy strongly g *- super

Fuzzy Strongly G*-Super Closed Sets and Fuzzy δg*-Super Closed Sets

closed set in $(X, \Gamma \tau)$.

Definition 3.2. A fuzzy set A of (X, τ) is called fuzzy strongly g *- super open set in X if and only if 1 – A is fuzzy strongly g *- super closed in X. In other words, A is fuzzy strongly g *- super open if and only if H \leq cl (int (A)), whenever H \leq A of H is fg- super closed in X.

Theorem 3.4. Let $(Y, \tau Y)$ be a subspace of a fuzzy topological space (X,Γ) and A be a fuzzy set of Y. If A is fuzzy strongly g *- super closed in X, then A is a fuzzy strongly g *- super closed in Y.

Proof. Let Y be a subspace of X and H be a fg- super open set in Y such that $A \le H$. We have to prove that cly (int y (A)) \le H. Since H is fg-super open in Y, we have $H = G \cap Y$ where G is fg- super open in X. Hence $A \le H = G \cap Y$ implies $A \le G$ and A is fuzzy strongly g *- super open in X. We get cl (int (A)) \le G. Therefore cl (int (A)) $\cap Y \le G \cap Y = H$. Thus cl (int (A)) \le H, whenever $A \le H$ and H is fuzzy g-super open in Y. Hence A is fuzzy strongly g *- super open in Y.

Theorem 3.5. If a fuzzy set A of a fuzzy topological space X is both fuzzy super open and fuzzy strongly g *- super closed, then it is fuzzy super closed.

Proof. Suppose that a fuzzy set A of X is both fuzzy super open and fuzzy strongly g *-super closed. Now, $A \ge cl$ (int (A)) $\ge cl$ (A). That is $A \ge cl$ (A), since $A \le cl$ (A). So we get A = cl (A). Hence A is fuzzy super closed in X.

Theorem 3.6. If a fuzzy set A of a fuzzy topological space X is both fuzzy strongly g *-super closed and fuzzy semi super open, then it is fg *- super closed.

Proof. Suppose a fuzzy set A of X is both fuzzy strongly g *- super closed and fuzzy semi open in X. Let H be a fg-open set such that $A \le H$. Since A is fuzzy strongly g *- super closed, therefore cl (int (A)) \le H. Also since A is fs- super open, $A \le$ cl (int (A)). We have cl (A) \le cl (int (A)) \le H. Hence A is fg *- super closed in X.

REFERENCES

- 1. A.S.Bin Shahana, On fuzzy strong semi continuity and fuzzy pre continuity, *Fuzzy* Sets and Systems, 44 (1991) 303-308.
- 2. K.K.Axad, On fuzzy semi continuity fuzzy almost continuity and fuzzy weakly continuity, *J.Math. Anal. Appl.*, 82 (1981) 14-32.
- 3. A.S.Bin Sahana, Mapping in fuzzy topological spaces, *Fuzzy Sets and Systems*, 61 (1994) 209-213.
- 4. A.S.Bin Sahana, On fuzzy strongly semi continuity and fuzzy pre continuity, *Fuzzy Sets and Systems*, 44 (1991) 303-308.
- 5. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-190.
- 6. D.Andrijevic, Semi preopen sets, Mat. Vesnik, 38 (1986) 24-32.
- 7. G.J.Klir and B.Yuan, Fuzzy sets and fuzzy logic theory and applications Prentice Hall of India, New Delhi, 2003.
- 8. K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, *J. Math. Anal. Appl.*, 82 (1981) 14-32.
- 9. L.A. Zadeh, Fuzzy Sets, Inform and Control, 8(1965) 338-35.

M.K. Mishra and M.Shukla

- 10. Y.M.Lin and K.M.Lou, Fuzzy topology, World Scientific Publication Singapore (1997)
- 11. N.Livine, Generalized closed sets in topology, *Rand. Circ Mat. Palermo*, 19(2) (1970) 571-599.
- 12. N.Livine, Semi Open Sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963) 36-41.
- 13. R.Lowen, A comparison of different compactness notion on fuzzy topological spaces, *J. Math. Anal. Appl.*, 64 (1978) 446-454.
- 14. R.Lowen, Fuzzy topological Spaces and fuzzy compactness, *J. Math. Anal. Appl.*, 56 (1976) 621-633.
- 15. A.S.Mashour, M.F.Abd.Monsef and S.N.EI., Deeb, On pre continuous and weak precontinious mappings, *Proc. Math and Phys. Soc, Egypt*, 53 (1982) 47-53.
- 16. S.Nanda, On fuzzy topological spaces, *Fuzzy Sets and Systems*, 19(2) (1986) 193-197.
- 17. S.Nanda, Strongly compact fuzzy topological spaces, *Fuzzy Sets and Systems*, 42 (1990) 259-262.
- 18. P.M.Pu and Y.M.Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and moore smith convergence, *J.Math. Anal. Appl.*, 76 (1980) 571-599.
- 19. N.Palaniappan and K.C.Rao, Regular generalized closed sets, *Kyungpook Math. J.*, 33(2) (1932) 11-219.
- 20. R.Prasad, S.S.Thakur and R.K.Saraf, Fuzzy α-irresolute mapping, J. Fuzzy Math, 2(2) (1994) 335-339.
- 21. P.M.Pu and Y.M.Lin, Fuzzy topology II. Product quotient spaces, J.Math. Anal. Appl., 77 (1980) 20-27
- 22. P.M.Pu and Y.M.Lin, Fuzzy topology, I. Neighborhood structure of a fuzzy point Moore Smith convergence, *J.Math.Anal.Appl.*, 76 (1980) 571-599.
- 23. S.Ganguli and S.Saha, On separation axioms and separations of connected sets in fuzzy topological spaces, *Bull. Cal. Math.*, 79 (1987) 215-225.
- 24. T.H.Yalvac, Semi interior, semi closure of a fuzzy set, J. Math. Anal. Appl., 132 (1988) 356-364.
- 25. C.K.Wong, On fuzzy points and local properties of fuzzy topology, *J. Math Anal. Appl.*, 46 (1974) 316-328.