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Abstract. Let S be the set of all open edge neighborhood sets of edges of G = (V, E). Let 
x, y, z be three variables each taking value + or –. The edge neighborhood transformation 
graph NeG

xyz is the graph having E∪S as the vertex set and for any two vertices u and v in 
E ∪ S, u and v are adjacent in NeG

xyz if and only if one of the following conditions holds: 
(i) u, v ∈ E. x = + if u, v ∈ F where F is an open edge neighborhood set of G. x = – if u, v 
∉ F where F is an open edge neighborhood set of G. (ii)  u, v ∈ S. y =  + if u ∩ v ≠ φ. y = 
– if u ∩ v = φ. (iii)  u ∈ E and v ∈ S. z = + if u ∈ v. z = – if u ∉ v. In this paper, we initiate 
a study of edge neighborhood transformation graphs. Also characterizations are given for 
graphs for which (i) NeG

+++ is totally disconnected (ii) Ne(G) = NeG
+++ and (iii)Nse(G) = 

NeG
+++. 

Keywords:  edge neighborhood graph, middle edge neighborhood graph, semientire edge 
neighborhood graph, entire edge neighborhood graph 
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1. Introduction 
By a graph G = (V, E), we mean a finite, undirected without loops, multiple edges or 
isolated vertices. Any undefined term in this paper may be found in Kulli [1]. 
 Let G be a graph with |V| = p vertices and |E| = q edges. For any edge e ∈E, the 
open edge neighborhood set N(e) of e is the set of edges adjacent to e. Let E = {e1, 
e2,…,eq}. Let S = {N(e1), N(e2), …, N(eq)} be the set of all open edge neighborhood sets 
of edges of G. 
 The edge neighborhood graph Ne(G) of a graph G = (V, E) is the graph with the 
vertex set E∪S in which two vertices u and v are adjacent if u ∈ E and v is an open edge 
neighborhood set containing u. This concept was introduced in [2]. Many other graph 
valued functions in graph theory were studied, for example, in [3 -16] and also graph 
valued functions in domination theory were studied, for example, in [17- 28]. 
 The open edge neighborhood graph Noe(G) of a graph G is the graph with the 
vertex set S in which two vertices u and v are adjacent if u ∩ v ≠ φ. This concept was 
introduced in [29]. 
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 The common edge neighborhood graph Nce(G) of  a graph G is the graph having 
the vertex set E and with two vertices adjacent in Nce(G) if there exists an open edge 
neighborhood set in G containing them. This concept was introduced in [29]. 
 The middle edge neighborhood graph Men(G) of a graph G = (V, E) is the graph 
with the vertex set E ∪ S where S is the set of all open edge neighborhood sets of G and 
with two vertices u and v in Men(G) adjacent if u, v ∈ S and u ∩ v ≠ φ or u ∈ E and v is an 
open edge neighborhood set containing u. This concept was introduced by Kulli in [30]. 
 The semientire edge neighborhood graph Nse(G) of  a graph G = (V, E) is the 
graph with the vertex set E∪S where S is the set of all open edge neighborhood sets of G 
and with two vertices u, v in Nse(G) adjacent if u, v ∈ N where N is an open edge 
neighborhood set in G or u ∈ E and v is an open edge neighborhood set containing u. 
This concept was introduced in [31]. 
 The entire edge neighborhood graph Nee(G) of a graph G = (V, E) is the graph 
with the vertex set E ∪ S where S is the set of all open edge neighborhood sets of G with 
two vertices u, v in Nee(G) adjacent if u, v ∈ N where N is an open edge neighborhood set 
in G or u, v ∈ S and u ∩ v ≠ φ or u ∈ E and v is an open edge neighborhood containing u. 
This concept was introduced by Kulli in [32]. 

 Let G  be the complement of G. 
 Recently many new transformation graphs were studied, for example, in [33 - 
38]. In this paper, we introduce edge neighborhood transformation graphs. 
 
2. Edge neighborhood transformation graphs 
The entire edge neighborhood graph of a graph inspired us to introduce edge 
neighborhood transformation graphs. We now define edge neighborhood transformation 
graphs Gxyz when x or y or z is either + or –. 

 
Definition 1. Let G = (V, E) be a graph. Let S be the set of all open edge neighborhood 
sets of edges of G. Let x, y, z be three variables each taking value + or –. The edge 
neighborhood transformation graph NeG

xyz is the graph having E∪S as the vertex set and 
for any two vertices u and v in E ∪ S, u and v are adjacent if and only if one of the 
following conditions holds: 
(i)  u, v ∈ E. x = + if u, v ∈ F where F is an open edge neighborhood set of G. x = –   if 

u, v, ∉ F where F is an open edge neighborhood set of G. 
(ii)   u, v ∈ S. y = + if u ∩ v ≠ φ. y = –  if u ∩ v = φ. 
(iii)   u ∈ E and  v ∈ S. z = + if u ∈ v. z = – if u ∉ v. 
 Using the above edge neighborhood transformation, we find eight distinct edge 
neighborhood transformation graphs: NeG

+++, NeG
+– +, NeG

++–, NeG
–++, NeG

+– –, NeG
–+–, 

NeG
– – +, NeG

– – –. 
 
Example 2. In Figure 1, a graph G, its edge neighborhood graphs NeG

+++, NeG
– – –, NeG

– 

++, and NeG
+– – are shown.  
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Figure 1: 

 
 
3. The edge neighborhood transformation graph NeG

+++ 
Among edge neighborhood transformation graphs one is the entire edge neighborhood 
graph Nee(G). It is easy to see that 
 
Proposition 4. For any graph G without isolated vertices, Nee(G)=NeG

+++. 
 
Remark 5. For any graph G without isolated vertices, the edge neighborhood graph 
Ne(G) of G is a spanning subgraph of NeG

+++. 
 
Remark 6. For any graph G without isolated vertices, the middle edge neighborhood 
graph Men(G) of G is a spanning subgraph of NeG

+++. 
 
Remark 7. For any graph G without isolated vertices, the semientire edge neighborhood 
graph Nse(G) of G is a spanning subgraph of  NeG

+++. 
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Remark 8. For any graph G without isolated vertices, the open edge neighborhood graph 
Noe(G) and the common edge neighborhood graph Nce(G) are vertex and also edge 
disjoint induced subgraphs of NeG

+++. 
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Figure 2: 

 
Remark 9. Form Figure 1 and Figure 2, we have NeC3

+++ = NeK1,3
+++. But C3 ≠ K1,3. 

 

Theorem 10. NeG
+++ = nK  if and only if G = nK2, n≥1. 

Proof: Suppose G = nK2, n≥1. Then each component of G is an edge. Then N(e) is a null 

set. Clearly NeG
+++ = nK . 

 Conversely suppose NeG
+++= nK . We now prove that G = nK2. On the contrary, 

assume G ≠ nK2. Then there exists a component of G which has at least 2 edges, say uv = 
e1 and vw = e2. Then N(e1) and N(e2) are nonempty open edge neighborhood sets of edges 

e1 and e2 respectively. Thus NeG
+++ contains an edge. Thus NeG

+++ 
nK≠ , which is a 

contradiction. Hence each component of G is an edge. Thus G = nK2. 
 
 Theorem 10 may be written as 
Theorem 11. NeG

+++ is totally disconnected if and only if each component of G is K2. 
 
Theorem 12. NeG

+++ = 2mP2 if and only if G = mP3, m ≥ 1. 
Proof: Suppose G = mP3. Then each open edge neighborhood set of an edge of G 
contains exactly one edge. Thus the corresponding vertex of open edge neighborhood set 
is adjacent with exactly one vertex in NeG

+++. Since G has 2m edges, it implies that G has 
2m open edge neighborhood sets. Thus NeG

+++ has 4m vertices and the degree of each 
vertex is one. Thus NeG

+++ =  2mP2. 
 Conversely suppose NeG

+++ = 2mP2. We prove that G = mP3, m≥1. On the 
contrary, assume G ≠ mP3. We consider the following two cases. 
Case 1. Suppose G = mP2. By Theorem 10, NeG

+++ = mP1, which is a contradiction. 
Case 2. Suppose G = mG1, where G1 is a component of G with at least 4 vertices. Then 
there exists at least one open edge neighborhood set N containing two or more edges of 
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G. Then v together with two edges will form a subgraph P3 in NeG
+++, which is a 

contradiction. 
 From the above two cases, we conclude that G = mP3. 
 
 We characterize graphs G for which NeG

+++ = Ne (G). 
Theorem 13. For any graph G without isolated vertices and without isolated edges, 

    Ne(G) ⊆ NeG
+++                                  (1) 

Furthermore, equality in (1) holds if and only if every open edge neighborhood set 
contains exactly one edge. 
Proof: By Remark 5,   Ne(G) ⊆ NeG

+++. 
We now prove the second part. 
 Suppose equality in (1) holds. Assume an open edge neighborhood set of an edge 
of G contains at least two edges, say e1, e2, …, en. n≥2. Then the corresponding vertices 
of e1, e2,…, en are not mutually adjacent in Ne(G), but they are mutually adjacent in 
NeG

+++. Hence Ne(G) ≠ NeG
+++, which is  a contradiction. Thus two or more edges of G 

are not in the same open edge neighborhood set. This proves that every open edge 
neighborhood set contains exactly one edge. 
 Conversely, suppose every open edge neighborhood set contains exactly one 
edge. Then every pair of open edge neighborhood sets of G are disjoint. Hence the 
corresponding vertices of open edge neighborhood sets in NeG

+++ are not adjacent. Thus 
NeG

+++ ⊆ Ne(G) and since Ne(G) ⊆ NeG
+++, it implies that equality in (1) holds. 

 
Proposition 14. If G = mP3, m≥1, then Ne(G) = NeG

+++. 
Proof: This follows from Theorem 12 and Theorem 13. 
 
 Next we characterize graphs G for which NeG

+++ = Nse(G). 
 
Theorem 15: For any graph G without isolated vertices and without isolated edges, 

    Nse(G) ⊆ NeG
+++                                 (2) 

Furthermore, equality in (2) holds if and only if every pair of open edge neighborhood 
sets of edges of G is disjoint. 
Proof: By Remark 7, Nse(G) ⊆ NeG

+++. 
 We now prove the second part. 
 Suppose equality in (2) holds. We prove that every pair of open edge 
neighborhood sets of edges of G is disjoint. On the contrary, assume N1, N2,…, Nk, k≥2 
are open edge neighborhood sets of edges of G such that Ni ∩ Nj ≠ φ, 1≤i, j≤k, i≠j. Then 
the corresponding vertices of Ni and Nj are not adjacent in NSe(G) and they are adjacent in 
NeG

+++. Hence Nse(G) ≠ NeG
+++, which is a contradiction. Thus every pair of open edge 

neighborhood sets of G is adjacent. 
 Conversely suppose every pair of open edge neighborhood sets of G is disjoint. 
Then two vertices corresponding to open edge neighborhood sets cannot be adjacent in 
NeG

+++. Hence NeG
+++ ⊆ Nse(G) and since Nse(G) ⊆ NeG

+++, it implies that equality in (2) 
holds. 
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